
Metabolism and metabolomics in senescence, aging, and age-related diseases: a multiscale perspective
Ziyi Wang, Hongying Zhu, Wei Xiong
Front. Med. ››
Metabolism and metabolomics in senescence, aging, and age-related diseases: a multiscale perspective
The pursuit of healthy aging has long rendered aging and senescence captivating. Age-related ailments, such as cardiovascular diseases, diabetes, and neurodegenerative disorders, pose significant threats to individuals. Recent studies have shed light on the intricate mechanisms encompassing genetics, epigenetics, transcriptomics, and metabolomics in the processes of senescence and aging, as well as the establishment of age-related pathologies. Amidst these underlying mechanisms governing aging and related pathology metabolism assumes a pivotal role that holds promise for intervention and therapeutics. The advancements in metabolomics techniques and analysis methods have significantly propelled the study of senescence and aging, particularly with the aid of multiscale metabolomics which has facilitated the discovery of metabolic markers and therapeutic potentials. This review provides an overview of senescence and aging, emphasizing the crucial role metabolism plays in the aging process as well as age-related diseases.
metabolism / aging / senescence / age-related diseases / metabolomics
[1] |
Hayflick L. The limited in vitro lifetime of human diploid cell strains. Exp Cell Res 1965; 37(3): 614–636
CrossRef
Google scholar
|
[2] |
Nicholson JK, Lindon JC, Holmes E. “Metabonomics”: understanding the metabolic responses of living systems to pathophysiological stimuli via multivariate statistical analysis of biological NMR spectroscopic data. Xenobiotica 1999; 29(11): 1181–1189
CrossRef
Google scholar
|
[3] |
Muñoz-Espín D, Serrano M. Cellular senescence: from physiology to pathology. Nat Rev Mol Cell Biol 2014; 15(7): 482–496
CrossRef
Google scholar
|
[4] |
Sharpless NE, Sherr CJ. Forging a signature of in vivo senescence. Nat Rev Cancer 2015; 15(7): 397–408
CrossRef
Google scholar
|
[5] |
Hernandez-Segura A, de Jong TV, Melov S, Guryev V, Campisi J, Demaria M. Unmasking transcriptional heterogeneity in senescent cells. Curr Biol 2017; 27(17): 2652–2660.e4
CrossRef
Google scholar
|
[6] |
Wiley CD, Velarde MC, Lecot P, Liu S, Sarnoski EA, Freund A, Shirakawa K, Lim HW, Davis SS, Ramanathan A, Gerencser AA, Verdin E, Campisi J. Mitochondrial dysfunction induces senescence with a distinct secretory phenotype. Cell Metab 2016; 23(2): 303–314
CrossRef
Google scholar
|
[7] |
Petrova NV, Velichko AK, Razin SV, Kantidze OL. Small molecule compounds that induce cellular senescence. Aging Cell 2016; 15(6): 999–1017
CrossRef
Google scholar
|
[8] |
Chen JH, Stoeber K, Kingsbury S, Ozanne SE, Williams GH, Hales CN. Loss of proliferative capacity and induction of senescence in oxidatively stressed human fibroblasts. J Biol Chem 2004; 279(47): 49439–49446
CrossRef
Google scholar
|
[9] |
Burd CE, Sorrentino JA, Clark KS, Darr DB, Krishnamurthy J, Deal AM, Bardeesy N, Castrillon DH, Beach DH, Sharpless NE. Monitoring tumorigenesis and senescence in vivo with a p16(INK4a)-luciferase model. Cell 2013; 152(1–2): 340–351
CrossRef
Google scholar
|
[10] |
Wang X, Feng Y, Pan L, Wang Y, Xu X, Lu J, Huang B. The proximal GC-rich region of p16(INK4a) gene promoter plays a role in its transcriptional regulation. Mol Cell Biochem 2007; 301(1–2): 259–266
CrossRef
Google scholar
|
[11] |
Ohtani N, Zebedee Z, Huot TJ, Stinson JA, Sugimoto M, Ohashi Y, Sharrocks AD, Peters G, Hara E. Opposing effects of Ets and Id proteins on p16INK4a expression during cellular senescence. Nature 2001; 409(6823): 1067–1070
CrossRef
Google scholar
|
[12] |
Passegue E, Wagner EF. JunB suppresses cell proliferation by transcriptional activation of p16 (INK4a) expression. EMBO J 2000; 19(12): 2969–2979
CrossRef
Google scholar
|
[13] |
Gan Q, Huang J, Zhou R, Niu J, Zhu X, Wang J, Zhang Z, Tong T. PPARgamma accelerates cellular senescence by inducing p16INK4α expression in human diploid fibroblasts. J Cell Sci 2008; 121(Pt 13): 2235–2245
CrossRef
Google scholar
|
[14] |
Li J, Poi MJ, Tsai MD. Regulatory mechanisms of tumor suppressor P16INK4α and their relevance to cancer. Biochemistry 2011; 50(25): 5566–5582
CrossRef
Google scholar
|
[15] |
Huang Y, Wu J, Li R, Wang P, Han L, Zhang Z, Tong T. B-MYB delays cell aging by repressing p16INK4α transcription. Cell Mol Life Sci 2011; 68(5): 893–901
CrossRef
Google scholar
|
[16] |
Kotake Y, Ozawa Y, Harada M, Kitagawa K, Niida H, Morita Y, Tanaka K, Suda T, Kitagawa M. YB1 binds to and represses the p16 tumor suppressor gene. Genes Cells 2013; 18(11): 999–1006
CrossRef
Google scholar
|
[17] |
Zhu D, Xu G, Ghandhi S, Hubbard K. Modulation of the expression of p16INK4a and p14ARF by hnRNP A1 and A2 RNA binding proteins: implications for cellular senescence. J Cell Physiol 2002; 193(1): 19–25
CrossRef
Google scholar
|
[18] |
Guo GE, Ma LW, Jiang B, Yi J, Tong TJ, Wang WG. Hydrogen peroxide induces p16INK4a through an AUF1-dependent manner. J Cell Biochem 2010; 109(5): 1000–1005
CrossRef
Google scholar
|
[19] |
Huang W, Tan D, Wang X, Han S, Tan J, Zhao Y, Lu J, Huang B. Histone deacetylase 3 represses p15INK4b and p21WAF1/cip1 transcription by interacting with Sp1. Biochem Biophys Res Commun 2006; 339(1): 165–171
CrossRef
Google scholar
|
[20] |
Koo BH, Kim Y, Je Cho Y, Kim DS. Distinct roles of transforming growth factor-beta signaling and transforming growth factor-beta receptor inhibitor SB431542 in the regulation of p21 expression. Eur J Pharmacol 2015; 764: 413–423
CrossRef
Google scholar
|
[21] |
Jung YS, Qian Y, Chen X. Examination of the expanding pathways for the regulation of p21 expression and activity. Cell Signal 2010; 22(7): 1003–1012
CrossRef
Google scholar
|
[22] |
Al-Khalaf HH, Aboussekhra A. p16INK4A positively regulates p21WAF1 expression by suppressing AUF1-dependent mRNA decay. PLoS One 2013; 8(7): e70133
CrossRef
Google scholar
|
[23] |
Hayakawa T, Iwai M, Aoki S, Takimoto K, Maruyama M, Maruyama W, Motoyama N. SIRT1 suppresses the senescence-associated secretory phenotype through epigenetic gene regulation. PLoS One 2015; 10(1): e0116480
CrossRef
Google scholar
|
[24] |
Takahashi A, Imai Y, Yamakoshi K, Kuninaka S, Ohtani N, Yoshimoto S, Hori S, Tachibana M, Anderton E, Takeuchi T, Shinkai Y, Peters G, Saya H, Hara E. DNA damage signaling triggers degradation of histone methyltransferases through APC/CCdh1 in senescent cells. Mol Cell 2012; 45(1): 123–131
CrossRef
Google scholar
|
[25] |
Laberge RM, Sun Y, Orjalo AV, Patil CK, Freund A, Zhou L, Curran SC, Davalos AR, Wilson-Edell KA, Liu S, Limbad C, Demaria M, Li P, Hubbard GB, Ikeno Y, Javors M, Desprez PY, Benz CC, Kapahi P, Nelson PS, Campisi J. MTOR regulates the pro-tumorigenic senescence-associated secretory phenotype by promoting IL1A translation. Nat Cell Biol 2015; 17(8): 1049–1061
CrossRef
Google scholar
|
[26] |
Herranz N, Gallage S, Mellone M, Wuestefeld T, Klotz S, Hanley CJ, Raguz S, Acosta JC, Innes AJ, Banito A, Georgilis A, Montoya A, Wolter K, Dharmalingam G, Faull P, Carroll T, Martinez-Barbera JP, Cutillas P, Reisinger F, Heikenwalder M, Miller RA, Withers D, Zender L, Thomas GJ, Gil J. mTOR regulates MAPKAPK2 translation to control the senescence-associated secretory phenotype. Nat Cell Biol 2015; 17(9): 1205–1217
CrossRef
Google scholar
|
[27] |
Tiedje C, Ronkina N, Tehrani M, Dhamija S, Laass K, Holtmann H, Kotlyarov A, Gaestel M. The p38/MK2-driven exchange between tristetraprolin and HuR regulates AU-rich element-dependent translation. PLoS Genet 2012; 8(9): e1002977
CrossRef
Google scholar
|
[28] |
Takasugi M, Okada R, Takahashi A, Virya Chen D, Watanabe S, Hara E. Small extracellular vesicles secreted from senescent cells promote cancer cell proliferation through EphA2. Nat Commun 2017; 8(1): 15729
CrossRef
Google scholar
|
[29] |
Jun JI, Lau LF. Taking aim at the extracellular matrix: CCN proteins as emerging therapeutic targets. Nat Rev Drug Discov 2011; 10(12): 945–963
CrossRef
Google scholar
|
[30] |
Baker DJ, Childs BG, Durik M, Wijers ME, Sieben CJ, Zhong J, Saltness RA, Jeganathan KB, Verzosa GC, Pezeshki A, Khazaie K, Miller JD, van Deursen JM. Naturally occurring p16Ink4a-positive cells shorten healthy lifespan. Nature 2016; 530(7589): 184–189
CrossRef
Google scholar
|
[31] |
Acosta JC, O’Loghlen A, Banito A, Guijarro MV, Augert A, Raguz S, Fumagalli M, Da Costa M, Brown C, Popov N, Takatsu Y, Melamed J, d’Adda di Fagagna F, Bernard D, Hernando E, Gil J. Chemokine signaling via the CXCR2 receptor reinforces senescence. Cell 2008; 133(6): 1006–1018
CrossRef
Google scholar
|
[32] |
Adams PD. Healing and hurting: molecular mechanisms, functions, and pathologies of cellular senescence. Mol Cell 2009; 36(1): 2–14
CrossRef
Google scholar
|
[33] |
Demaria M, Ohtani N, Youssef SA, Rodier F, Toussaint W, Mitchell JR, Laberge RM, Vijg J, Van Steeg H, Dolle ME, Hoeijmakers JH, de Bruin A, Hara E, Campisi J. An essential role for senescent cells in optimal wound healing through secretion of PDGF-AA. Dev Cell 2014; 31(6): 722–733
CrossRef
Google scholar
|
[34] |
Bent EH, Gilbert LA, Hemann MT. A senescence secretory switch mediated by PI3K/AKT/mTOR activation controls chemoprotective endothelial secretory responses. Genes Dev 2016; 30(16): 1811–1821
CrossRef
Google scholar
|
[35] |
Blagosklonny MV. Cell cycle arrest is not yet senescence, which is not just cell cycle arrest: terminology for TOR-driven aging. Aging (Albany NY) 2012; 4(3): 159–165
CrossRef
Google scholar
|
[36] |
Cormenier J, Martin N, Desle J, Salazar-Cardozo C, Pourtier A, Abbadie C, Pluquet O. The ATF6α arm of the Unfolded Protein Response mediates replicative senescence in human fibroblasts through a COX2/prostaglandin E2 intracrine pathway. Mech Ageing Dev 2018; 170: 82–91
CrossRef
Google scholar
|
[37] |
Tam AB, Mercado EL, Hoffmann A, Niwa M. ER stress activates NF-κB by integrating functions of basal IKK activity, IRE1 and PERK. PLoS One 2012; 7(10): e45078
CrossRef
Google scholar
|
[38] |
Lee BY, Han JA, Im JS, Morrone A, Johung K, Goodwin EC, Kleijer WJ, DiMaio D, Hwang ES. Senescence-associated β-galactosidase is lysosomal β-galactosidase. Aging Cell 2006; 5(2): 187–195
CrossRef
Google scholar
|
[39] |
Kurz DJ, Decary S, Hong Y, Erusalimsky JD. Senescence-associated (β)-galactosidase reflects an increase in lysosomal mass during replicative ageing of human endothelial cells. J Cell Sci 2000; 113(Pt 20): 3613–3622
|
[40] |
Georgakopoulou EA, Tsimaratou K, Evangelou K, Fernandez-Marcos PJ, Zoumpourlis V, Trougakos IP, Kletsas D, Bartek J, Serrano M, Gorgoulis VG. Specific lipofuscin staining as a novel biomarker to detect replicative and stress-induced senescence. A method applicable in cryo-preserved and archival tissues. Aging (Albany NY) 2013; 5(1): 37–50
CrossRef
Google scholar
|
[41] |
Tai H, Wang Z, Gong H, Han X, Zhou J, Wang X, Wei X, Ding Y, Huang N, Qin J, Zhang J, Wang S, Gao F, Chrzanowska-Lightowlers ZM, Xiang R, Xiao H. Autophagy impairment with lysosomal and mitochondrial dysfunction is an important characteristic of oxidative stress-induced senescence. Autophagy 2017; 13(1): 99–113
CrossRef
Google scholar
|
[42] |
Korolchuk VI, Miwa S, Carroll B, von Zglinicki T. Mitochondria in cell senescence: is mitophagy the weakest link. EBioMedicine 2017; 21: 7–13
CrossRef
Google scholar
|
[43] |
Passos JF, Saretzki G, Ahmed S, Nelson G, Richter T, Peters H, Wappler I, Birket MJ, Harold G, Schaeuble K, Birch-Machin MA, Kirkwood TB, von Zglinicki T. Mitochondrial dysfunction accounts for the stochastic heterogeneity in telomere-dependent senescence. PLoS Biol 2007; 5(5): e110
CrossRef
Google scholar
|
[44] |
Studencka M, Schaber J. Senoptosis: non-lethal DNA cleavage as a route to deep senescence. Oncotarget 2017; 8(19): 30656–30671
CrossRef
Google scholar
|
[45] |
Di Micco R, Krizhanovsky V, Baker D, d’Adda di Fagagna F. Cellular senescence in ageing: from mechanisms to therapeutic opportunities. Nat Rev Mol Cell Biol 2021; 22(2): 75–95
CrossRef
Google scholar
|
[46] |
Venable ME, Lee JY, Smyth MJ, Bielawska A, Obeid LM. Role of ceramide in cellular senescence. J Biol Chem 1995; 270(51): 30701–30708
CrossRef
Google scholar
|
[47] |
Venable ME, Yin X. Ceramide induces endothelial cell senescence. Cell Biochem Funct 2009; 27(8): 547–551
CrossRef
Google scholar
|
[48] |
Lee JY, Bielawska AE, Obeid LM. Regulation of cyclin-dependent kinase 2 activity by ceramide. Exp Cell Res 2000; 261(2): 303–311
CrossRef
Google scholar
|
[49] |
Quijano C, Cao L, Fergusson MM, Romero H, Liu J, Gutkind S, Rovira II, Mohney RP, Karoly ED, Finkel T. Oncogene-induced senescence results in marked metabolic and bioenergetic alterations. Cell Cycle 2012; 11(7): 1383–1392
CrossRef
Google scholar
|
[50] |
Lizardo DY, Lin YL, Gokcumen O, Atilla-Gokcumen GE. Regulation of lipids is central to replicative senescence. Mol Biosyst 2017; 13(3): 498–509
CrossRef
Google scholar
|
[51] |
Wiley CD, Brumwell AN, Davis SS, Jackson JR, Valdovinos A, Calhoun C, Alimirah F, Castellanos CA, Ruan R, Wei Y, Chapman HA, Ramanathan A, Campisi J, Jourdan Le Saux C. Secretion of leukotrienes by senescent lung fibroblasts promotes pulmonary fibrosis. JCI Insight 2019; 4(24): e130056
CrossRef
Google scholar
|
[52] |
Acosta JC, Banito A, Wuestefeld T, Georgilis A, Janich P, Morton JP, Athineos D, Kang TW, Lasitschka F, Andrulis M, Pascual G, Morris KJ, Khan S, Jin H, Dharmalingam G, Snijders AP, Carroll T, Capper D, Pritchard C, Inman GJ, Longerich T, Sansom OJ, Benitah SA, Zender L, Gil J. A complex secretory program orchestrated by the inflammasome controls paracrine senescence. Nat Cell Biol 2013; 15(8): 978–990
CrossRef
Google scholar
|
[53] |
Wiley CD, Sharma R, Davis SS, Lopez-Dominguez JA, Mitchell KP, Wiley S, Alimirah F, Kim DE, Payne T, Rosko A, Aimontche E, Deshpande SM, Neri F, Kuehnemann C, Demaria M, Ramanathan A, Campisi J. Oxylipin biosynthesis reinforces cellular senescence and allows detection of senolysis. Cell Metab 2021; 33(6): 1124–1136.e5
CrossRef
Google scholar
|
[54] |
Li H, Ren M, Li Q. H NMR-based metabolomics reveals the intrinsic interaction of age, plasma signature metabolites, and nutrient intake in the longevity population in Guangxi, China. Nutrients 2022; 14(12): 2539
CrossRef
Google scholar
|
[55] |
Rist MJ, Roth A, Frommherz L, Weinert CH, Kruger R, Merz B, Bunzel D, Mack C, Egert B, Bub A, Gorling B, Tzvetkova P, Luy B, Hoffmann I, Kulling SE, Watzl B. Metabolite patterns predicting sex and age in participants of the Karlsruhe Metabolomics and Nutrition (KarMeN) study. PLoS One 2017; 12(8): e0183228
CrossRef
Google scholar
|
[56] |
Bunning BJ, Contrepois K, Lee-McMullen B, Dhondalay GKR, Zhang W, Tupa D, Raeber O, Desai M, Nadeau KC, Snyder MP, Andorf S. Global metabolic profiling to model biological processes of aging in twins. Aging Cell 2020; 19(1): e13073
CrossRef
Google scholar
|
[57] |
Jové M, Mate I, Naudi A, Mota-Martorell N, Portero-Otin M, De la Fuente M, Pamplona R. Human aging is a metabolome-related matter of gender. J Gerontol A Biol Sci Med Sci 2016; 71(5): 578–585
CrossRef
Google scholar
|
[58] |
Dunn WB, Lin W, Broadhurst D, Begley P, Brown M, Zelena E, Vaughan AA, Halsall A, Harding N, Knowles JD, Francis-McIntyre S, Tseng A, Ellis DI, O’Hagan S, Aarons G, Benjamin B, Chew-Graham S, Moseley C, Potter P, Winder CL, Potts C, Thornton P, McWhirter C, Zubair M, Pan M, Burns A, Cruickshank JK, Jayson GC, Purandare N, Wu FC, Finn JD, Haselden JN, Nicholls AW, Wilson ID, Goodacre R, Kell DB. Molecular phenotyping of a UK population: defining the human serum metabolome. Metabolomics 2015; 11(1): 9–26
CrossRef
Google scholar
|
[59] |
Johnson LC, Parker K, Aguirre BF, Nemkov TG, D’Alessandro A, Johnson SA, Seals DR, Martens CR. The plasma metabolome as a predictor of biological aging in humans. Geroscience 2019; 41(6): 895–906
CrossRef
Google scholar
|
[60] |
Aird KM, Zhang G, Li H, Tu Z, Bitler BG, Garipov A, Wu H, Wei Z, Wagner SN, Herlyn M, Zhang R. Suppression of nucleotide metabolism underlies the establishment and maintenance of oncogene-induced senescence. Cell Rep 2013; 3(4): 1252–1265
CrossRef
Google scholar
|
[61] |
Aird KM, Worth AJ, Snyder NW, Lee JV, Sivanand S, Liu Q, Blair IA, Wellen KE, Zhang R. ATM couples replication stress and metabolic reprogramming during cellular senescence. Cell Rep 2015; 11(6): 893–901
CrossRef
Google scholar
|
[62] |
Buj R, Chen CW, Dahl ES, Leon KE, Kuskovsky R, Maglakelidze N, Navaratnarajah M, Zhang G, Doan MT, Jiang H, Zaleski M, Kutzler L, Lacko H, Lu Y, Mills GB, Gowda R, Robertson GP, Warrick JI, Herlyn M, Imamura Y, Kimball SR, DeGraff DJ, Snyder NW, Aird KM. Suppression of p16 induces mTORC1-mediated nucleotide metabolic reprogramming. Cell Rep 2019; 28(8): 1971–1980.e1978
|
[63] |
Teruya T, Goga H, Yanagida M. Human age-declined saliva metabolic markers determined by LC-MS. Sci Rep 2021; 11(1): 18135
CrossRef
Google scholar
|
[64] |
Chaleckis R, Murakami I, Takada J, Kondoh H, Yanagida M. Individual variability in human blood metabolites identifies age-related differences. Proc Natl Acad Sci USA 2016; 113(16): 4252–4259
CrossRef
Google scholar
|
[65] |
Hwangbo N, Zhang X, Raftery D, Gu H, Hu SC, Montine TJ, Quinn JF, Chung KA, Hiller AL, Wang D, Fei Q, Bettcher L, Zabetian CP, Peskind E, Li G, Promislow DEL, Franks A. A metabolomic aging clock using human cerebrospinal fluid. J Gerontol A Biol Sci Med Sci 2022; 77(4): 744–754
CrossRef
Google scholar
|
[66] |
Ichi I, Kamikawa C, Nakagawa T, Kobayashi K, Kataoka R, Nagata E, Kitamura Y, Nakazaki C, Matsura T, Kojo S. Neutral sphingomyelinase-induced ceramide accumulation by oxidative stress during carbon tetrachloride intoxication. Toxicology 2009; 261(1–2): 33–40
CrossRef
Google scholar
|
[67] |
Robinson O, Chadeau Hyam M, Karaman I, Climaco Pinto R, Ala-Korpela M, Handakas E, Fiorito G, Gao H, Heard A, Jarvelin MR, Lewis M, Pazoki R, Polidoro S, Tzoulaki I, Wielscher M, Elliott P, Vineis P. Determinants of accelerated metabolomic and epigenetic aging in a UK cohort. Aging Cell 2020; 19(6): e13149
CrossRef
Google scholar
|
[68] |
Masaldan S, Clatworthy SAS, Gamell C, Meggyesy PM, Rigopoulos AT, Haupt S, Haupt Y, Denoyer D, Adlard PA, Bush AI, Cater MA. Iron accumulation in senescent cells is coupled with impaired ferritinophagy and inhibition of ferroptosis. Redox Biol 2018; 14: 100–115
CrossRef
Google scholar
|
[69] |
Masaldan S, Clatworthy SAS, Gamell C, Smith ZM, Francis PS, Denoyer D, Meggyesy PM, Fontaine S, Cater MA. Copper accumulation in senescent cells: interplay between copper transporters and impaired autophagy. Redox Biol 2018; 16: 322–331
CrossRef
Google scholar
|
[70] |
Zhang Y, Unnikrishnan A, Deepa SS, Liu Y, Li Y, Ikeno Y, Sosnowska D, Van Remmen H, Richardson A. A new role for oxidative stress in aging: the accelerated aging phenotype in Sod1-/- mice is correlated to increased cellular senescence. Redox Biol 2017; 11: 30–37
CrossRef
Google scholar
|
[71] |
Kumar J, Barhydt T, Awasthi A, Lithgow GJ, Killilea DW, Kapahi P. Zinc levels modulate lifespan through multiple longevity pathways in Caenorhabditis elegans. PLoS One 2016; 11(4): e0153513
CrossRef
Google scholar
|
[72] |
Salazar G, Huang J, Feresin RG, Zhao Y, Griendling KK. Zinc regulates Nox1 expression through a NF-κB and mitochondrial ROS dependent mechanism to induce senescence of vascular smooth muscle cells. Free Radic Biol Med 2017; 108: 225–235
CrossRef
Google scholar
|
[73] |
Malavolta M, Costarelli L, Giacconi R, Basso A, Piacenza F, Pierpaoli E, Provinciali M, Ogo OA, Ford D. Changes in Zn homeostasis during long term culture of primary endothelial cells and effects of Zn on endothelial cell senescence. Exp Gerontol 2017; 99: 35–45
CrossRef
Google scholar
|
[74] |
Rudolf E, Cervinka M. Stress responses of human dermal fibroblasts exposed to zinc pyrithione. Toxicol Lett 2011; 204(2–3): 164–173
CrossRef
Google scholar
|
[75] |
Lafargue A, Degorre C, Corre I, Alves-Guerra MC, Gaugler MH, Vallette F, Pecqueur C, Paris F. Ionizing radiation induces long-term senescence in endothelial cells through mitochondrial respiratory complex II dysfunction and superoxide generation. Free Radic Biol Med 2017; 108: 750–759
CrossRef
Google scholar
|
[76] |
Ogrodnik M, Miwa S, Tchkonia T, Tiniakos D, Wilson CL, Lahat A, Day CP, Burt A, Palmer A, Anstee QM, Grellscheid SN, Hoeijmakers JHJ, Barnhoorn S, Mann DA, Bird TG, Vermeij WP, Kirkland JL, Passos JF, von Zglinicki T, Jurk D. Cellular senescence drives age-dependent hepatic steatosis. Nat Commun 2017; 8(1): 15691
CrossRef
Google scholar
|
[77] |
Velarde MC, Flynn JM, Day NU, Melov S, Campisi J. Mitochondrial oxidative stress caused by Sod2 deficiency promotes cellular senescence and aging phenotypes in the skin. Aging (Albany NY) 2012; 4(1): 3–12
CrossRef
Google scholar
|
[78] |
Harman D. Aging: a theory based on free radical and radiation chemistry. J Gerontol 1956; 11(3): 298–300
CrossRef
Google scholar
|
[79] |
Zhu H, Li Q, Liao T, Yin X, Chen Q, Wang Z, Dai M, Yi L, Ge S, Miao C, Zeng W, Qu L, Ju Z, Huang G, Cang C, Xiong W. Metabolomic profiling of single enlarged lysosomes. Nat Methods 2021; 18(7): 788–798
CrossRef
Google scholar
|
[80] |
Symons JL, Cho KJ, Chang JT, Du G, Waxham MN, Hancock JF, Levental I, Levental KR. Lipidomic atlas of mammalian cell membranes reveals hierarchical variation induced by culture conditions, subcellular membranes, and cell lineages. Soft Matter 2021; 17(2): 288–297
CrossRef
Google scholar
|
[81] |
Qiao X, Zhang Y, Ye A, Zhang Y, Xie T, Lv Z, Shi C, Wu D, Chu B, Wu X, Zhang W, Wang P, Liu GH, Wang CC, Wang L, Chen C. ER reductive stress caused by Ero1α S-nitrosation accelerates senescence. Free Radic Biol Med 2022; 180: 165–178
CrossRef
Google scholar
|
[82] |
Lee JH, Lee J. Endoplasmic reticulum (ER) stress and its role in pancreatic β-cell dysfunction and senescence in type 2 diabetes. Int J Mol Sci 2022; 23(9): 4843
CrossRef
Google scholar
|
[83] |
Celik C, Lee SYT, Yap WS, Thibault G. Endoplasmic reticulum stress and lipids in health and diseases. Prog Lipid Res 2023; 89: 101198
CrossRef
Google scholar
|
[84] |
Fujimoto M, Hayashi T, Su TP. The role of cholesterol in the association of endoplasmic reticulum membranes with mitochondria. Biochem Biophys Res Commun 2012; 417(1): 635–639
CrossRef
Google scholar
|
[85] |
Issop L, Fan J, Lee S, Rone MB, Basu K, Mui J, Papadopoulos V. Mitochondria-associated membrane formation in hormone-stimulated Leydig cell steroidogenesis: role of ATAD3. Endocrinology 2015; 156(1): 334–345
CrossRef
Google scholar
|
[86] |
Mignard V, Dubois N, Lanoe D, Joalland MP, Oliver L, Pecqueur C, Heymann D, Paris F, Vallette FM, Lalier L. Sphingolipid distribution at mitochondria-associated membranes (MAMs) upon induction of apoptosis. J Lipid Res 2020; 61(7): 1025–1037
CrossRef
Google scholar
|
[87] |
Mouchiroud L, Houtkooper RH, Moullan N, Katsyuba E, Ryu D, Canto C, Mottis A, Jo YS, Viswanathan M, Schoonjans K, Guarente L, Auwerx J. The NAD+/sirtuin pathway modulates longevity through activation of mitochondrial UPR and FOXO signaling. Cell 2013; 154(2): 430–441
CrossRef
Google scholar
|
[88] |
Scheibye-Knudsen M, Mitchell SJ, Fang EF, Iyama T, Ward T, Wang J, Dunn CA, Singh N, Veith S, Hasan-Olive MM, Mangerich A, Wilson MA, Mattson MP, Bergersen LH, Cogger VC, Warren A, Le Couteur DG, Moaddel R, Wilson DM 3rd, Croteau DL, de Cabo R, Bohr VA. A high-fat diet and NAD+ activate Sirt1 to rescue premature aging in cockayne syndrome. Cell Metab 2014; 20(5): 840–855
CrossRef
Google scholar
|
[89] |
Asadi Shahmirzadi A, Edgar D, Liao CY, Hsu YM, Lucanic M, Asadi Shahmirzadi A, Wiley CD, Gan G, Kim DE, Kasler HG, Kuehnemann C, Kaplowitz B, Bhaumik D, Riley RR, Kennedy BK, Lithgow GJ. Alpha-ketoglutarate, an endogenous metabolite, extends lifespan and compresses morbidity in aging mice. Cell Metab 2020; 32(3): 447–456.e6
CrossRef
Google scholar
|
[90] |
Wang Y, Deng P, Liu Y, Wu Y, Chen Y, Guo Y, Zhang S, Zheng X, Zhou L, Liu W, Li Q, Lin W, Qi X, Ou G, Wang C, Yuan Q. Alpha-ketoglutarate ameliorates age-related osteoporosis via regulating histone methylations. Nat Commun 2020; 11(1): 5596
CrossRef
Google scholar
|
[91] |
Han YM, Bedarida T, Ding Y, Somba BK, Lu Q, Wang Q, Song P, Zou MH. β-hydroxybutyrate prevents vascular senescence through hnRNP A1-mediated upregulation of Oct4. Mol Cell 2018; 71(6): 1064–1078.e5
CrossRef
Google scholar
|
[92] |
Wang SY, Wang WJ, Liu JQ, Song YH, Li P, Sun XF, Cai GY, Chen XM. Methionine restriction delays senescence and suppresses the senescence-associated secretory phenotype in the kidney through endogenous hydrogen sulfide. Cell Cycle 2019; 18(14): 1573–1587
CrossRef
Google scholar
|
[93] |
Assmus B, Urbich C, Aicher A, Hofmann WK, Haendeler J, Rossig L, Spyridopoulos I, Zeiher AM, Dimmeler S. HMG-CoA reductase inhibitors reduce senescence and increase proliferation of endothelial progenitor cells via regulation of cell cycle regulatory genes. Circ Res 2003; 92(9): 1049–1055
CrossRef
Google scholar
|
[94] |
Liu S, Uppal H, Demaria M, Desprez PY, Campisi J, Kapahi P. Simvastatin suppresses breast cancer cell proliferation induced by senescent cells. Sci Rep 2015; 5(1): 17895
CrossRef
Google scholar
|
[95] |
Kitada K, Nakano D, Ohsaki H, Hitomi H, Minamino T, Yatabe J, Felder RA, Mori H, Masaki T, Kobori H, Nishiyama A. Hyperglycemia causes cellular senescence via a SGLT2- and p21-dependent pathway in proximal tubules in the early stage of diabetic nephropathy. J Diabetes Complications 2014; 28(5): 604–611
CrossRef
Google scholar
|
[96] |
Thomas SR, Witting PK, Drummond GR. Redox control of endothelial function and dysfunction: molecular mechanisms and therapeutic opportunities. Antioxid Redox Signal 2008; 10(10): 1713–1765
CrossRef
Google scholar
|
[97] |
Abe J, Berk BC. Reactive oxygen species as mediators of signal transduction in cardiovascular disease. Trends Cardiovasc Med 1998; 8(2): 59–64
CrossRef
Google scholar
|
[98] |
Naik E, Dixit VM. Mitochondrial reactive oxygen species drive proinflammatory cytokine production. J Exp Med 2011; 208(3): 417–420
CrossRef
Google scholar
|
[99] |
Wenzel P, Schuhmacher S, Kienhofer J, Muller J, Hortmann M, Oelze M, Schulz E, Treiber N, Kawamoto T, Scharffetter-Kochanek K, Munzel T, Burkle A, Bachschmid MM, Daiber A. Manganese superoxide dismutase and aldehyde dehydrogenase deficiency increase mitochondrial oxidative stress and aggravate age-dependent vascular dysfunction. Cardiovasc Res 2008; 80(2): 280–289
CrossRef
Google scholar
|
[100] |
Corral-Debrinski M. Hypoxemia is associated with mitochondrial DNA damage and gene induction. Implications for cardiac disease. JAMA 1991; 266(13): 1812–1816
CrossRef
Google scholar
|
[101] |
Ding Y, Xia B, Yu J, Leng J, Huang J. Mitochondrial DNA mutations and essential hypertension. Int J Mol Med 2013; 32(4): 768–774
CrossRef
Google scholar
|
[102] |
Zhu W, Gregory JC, Org E, Buffa JA, Gupta N, Wang Z, Li L, Fu X, Wu Y, Mehrabian M, Sartor RB, McIntyre TM, Silverstein RL, Tang WHW, DiDonato JA, Brown JM, Lusis AJ, Hazen SL. Gut microbial metabolite TMAO enhances platelet hyperreactivity and thrombosis risk. Cell 2016; 165(1): 111–124
CrossRef
Google scholar
|
[103] |
Ganna A, Salihovic S, Sundstrom J, Broeckling CD, Hedman AK, Magnusson PK, Pedersen NL, Larsson A, Siegbahn A, Zilmer M, Prenni J, Arnlov J, Lind L, Fall T, Ingelsson E. Large-scale metabolomic profiling identifies novel biomarkers for incident coronary heart disease. PLoS Genet 2014; 10(12): e1004801
CrossRef
Google scholar
|
[104] |
Nascimben L, Ingwall JS, Pauletto P, Friedrich J, Gwathmey JK, Saks V, Pessina AC, Allen PD. Creatine kinase system in failing and nonfailing human myocardium. Circulation 1996; 94(8): 1894–1901
CrossRef
Google scholar
|
[105] |
Neubauer S, Krahe T, Schindler R, Horn M, Hillenbrand H, Entzeroth C, Mader H, Kromer EP, Riegger GA, Lackner K. 31P magnetic resonance spectroscopy in dilated cardiomyopathy and coronary artery disease. Altered cardiac high-energy phosphate metabolism in heart failure. Circulation 1992; 86(6): 1810–1818
CrossRef
Google scholar
|
[106] |
Stanley WC, Recchia FA, Lopaschuk GD. Myocardial substrate metabolism in the normal and failing heart. Physiol Rev 2005; 85(3): 1093–1129
CrossRef
Google scholar
|
[107] |
Ussher JR, Elmariah S, Gerszten RE, Dyck JR. The emerging role of metabolomics in the diagnosis and prognosis of cardiovascular disease. J Am Coll Cardiol 2016; 68(25): 2850–2870
CrossRef
Google scholar
|
[108] |
Ahmad T, Kelly JP, McGarrah RW, Hellkamp AS, Fiuzat M, Testani JM, Wang TS, Verma A, Samsky MD, Donahue MP, Ilkayeva OR, Bowles DE, Patel CB, Milano CA, Rogers JG, Felker GM, O’Connor CM, Shah SH, Kraus WE. Prognostic implications of long-chain acylcarnitines in heart failure and reversibility with mechanical circulatory support. J Am Coll Cardiol 2016; 67(3): 291–299
CrossRef
Google scholar
|
[109] |
Sack MN, Rader TA, Park S, Bastin J, McCune SA, Kelly DP. Fatty acid oxidation enzyme gene expression is downregulated in the failing heart. Circulation 1996; 94(11): 2837–2842
CrossRef
Google scholar
|
[110] |
Lommi J, Kupari M, Yki-Jarvinen H. Free fatty acid kinetics and oxidation in congestive heart failure. Am J Cardiol 1998; 81(1): 45–50
CrossRef
Google scholar
|
[111] |
Chen Y, Hu D, Zhao L, Tang W, Li B. Unraveling metabolic alterations in transgenic mouse model of Alzheimer’s disease using MALDI MS imaging with 4-aminocinnoline-3-carboxamide matrix. Anal Chim Acta 2022; 1192: 339337
CrossRef
Google scholar
|
[112] |
Panyard DJ, Kim KM, Darst BF, Deming YK, Zhong X, Wu Y, Kang H, Carlsson CM, Johnson SC, Asthana S, Engelman CD, Lu Q. Cerebrospinal fluid metabolomics identifies 19 brain-related phenotype associations. Commun Biol 2021; 4(1): 63
CrossRef
Google scholar
|
[113] |
Teruya T, Chen YJ, Kondoh H, Fukuji Y, Yanagida M. Whole-blood metabolomics of dementia patients reveal classes of disease-linked metabolites. Proc Natl Acad Sci USA 2021; 118(37): e2022857118
CrossRef
Google scholar
|
[114] |
Feringa FM, van der Kant R. Cholesterol and Alzheimer’s disease; from risk genes to pathological effects. Front Aging Neurosci 2021; 13: 690372
CrossRef
Google scholar
|
[115] |
Cutler RG, Kelly J, Storie K, Pedersen WA, Tammara A, Hatanpaa K, Troncoso JC, Mattson MP. Involvement of oxidative stress-induced abnormalities in ceramide and cholesterol metabolism in brain aging and Alzheimer’s disease. Proc Natl Acad Sci USA 2004; 101(7): 2070–2075
CrossRef
Google scholar
|
[116] |
Mori T, Paris D, Town T, Rojiani AM, Sparks DL, Delledonne A, Crawford F, Abdullah LI, Humphrey JA, Dickson DW, Mullan MJ. Cholesterol accumulates in senile plaques of Alzheimer disease patients and in transgenic APP(SW) mice. J Neuropathol Exp Neurol 2001; 60(8): 778–785
CrossRef
Google scholar
|
[117] |
Liu Y, Zhong X, Shen J, Jiao L, Tong J, Zhao W, Du K, Gong S, Liu M, Wei M. Elevated serum TC and LDL-C levels in Alzheimer’s disease and mild cognitive impairment: a meta-analysis study. Brain Res 2020; 1727: 146554
CrossRef
Google scholar
|
[118] |
Varma VR, Busra Luleci H, Oommen AM, Varma S, Blackshear CT, Griswold ME, An Y, Roberts JA, O’Brien R, Pletnikova O, Troncoso JC, Bennett DA, Cakir T, Legido-Quigley C, Thambisetty M. Abnormal brain cholesterol homeostasis in Alzheimer’s disease—a targeted metabolomic and transcriptomic study. NPJ Aging Mech Dis 2021; 7(1): 11
CrossRef
Google scholar
|
[119] |
Wang H, Kulas JA, Wang C, Holtzman DM, Ferris HA, Hansen SB. Regulation of beta-amyloid production in neurons by astrocyte-derived cholesterol. Proc Natl Acad Sci USA 2021; 118(33): e2102191118
CrossRef
Google scholar
|
[120] |
Li X, Zhang J, Li D, He C, He K, Xue T, Wan L, Zhang C, Liu Q. Astrocytic ApoE reprograms neuronal cholesterol metabolism and histone-acetylation-mediated memory. Neuron 2021; 109(6): 957–970.e8
CrossRef
Google scholar
|
[121] |
Pierrot N, Tyteca D, D’Auria L, Dewachter I, Gailly P, Hendrickx A, Tasiaux B, Haylani LE, Muls N, N’Kuli F, Laquerriere A, Demoulin JB, Campion D, Brion JP, Courtoy PJ, Kienlen-Campard P, Octave JN. Amyloid precursor protein controls cholesterol turnover needed for neuronal activity. EMBO Mol Med 2013; 5(4): 608–625
CrossRef
Google scholar
|
[122] |
Gutierrez E, Lutjohann D, Kerksiek A, Fabiano M, Oikawa N, Kuerschner L, Thiele C, Walter J. Importance of gamma-secretase in the regulation of liver X receptor and cellular lipid metabolism. Life Sci Alliance 2020; 3(6): e201900521
CrossRef
Google scholar
|
[123] |
Fong LK, Yang MM, Dos Santos Chaves R, Reyna SM, Langness VF, Woodruff G, Roberts EA, Young JE, Goldstein LSB. Full-length amyloid precursor protein regulates lipoprotein metabolism and amyloid-beta clearance in human astrocytes. J Biol Chem 2018; 293(29): 11341–11357
CrossRef
Google scholar
|
[124] |
Schonfeld P, Reiser G. How the brain fights fatty acids’ toxicity. Neurochem Int 2021; 148: 105050
CrossRef
Google scholar
|
[125] |
Qi G, Mi Y, Shi X, Gu H, Brinton RD, Yin F. ApoE4 impairs neuron-astrocyte coupling of fatty acid metabolism. Cell Rep 2021; 34(1): 108572
CrossRef
Google scholar
|
[126] |
Ates G, Goldberg J, Currais A, Maher P. CMS121, a fatty acid synthase inhibitor, protects against excess lipid peroxidation and inflammation and alleviates cognitive loss in a transgenic mouse model of Alzheimer’s disease. Redox Biol 2020; 36: 101648
CrossRef
Google scholar
|
[127] |
Ralhan I, Chang CL, Lippincott-Schwartz J, Ioannou MS. Lipid droplets in the nervous system. J Cell Biol 2021; 220(7): e202102136
CrossRef
Google scholar
|
[128] |
Marschallinger J, Iram T, Zardeneta M, Lee SE, Lehallier B, Haney MS, Pluvinage JV, Mathur V, Hahn O, Morgens DW, Kim J, Tevini J, Felder TK, Wolinski H, Bertozzi CR, Bassik MC, Aigner L, Wyss-Coray T. Lipid-droplet-accumulating microglia represent a dysfunctional and proinflammatory state in the aging brain. Nat Neurosci 2020; 23(2): 194–208
CrossRef
Google scholar
|
[129] |
Cramb KML, Beccano-Kelly D, Cragg SJ, Wade-Martins R. Impaired dopamine release in Parkinson’s disease. Brain 2023; 146(8): 3117–3132
CrossRef
Google scholar
|
[130] |
Zhou ZD, Yi LX, Wang DQ, Lim TM, Tan EK. Role of dopamine in the pathophysiology of Parkinson’s disease. Transl Neurodegener 2023; 12(1): 44
CrossRef
Google scholar
|
[131] |
Sacheli MA, Neva JL, Lakhani B, Murray DK, Vafai N, Shahinfard E, English C, McCormick S, Dinelle K, Neilson N, McKenzie J, Schulzer M, McKenzie DC, Appel-Cresswell S, McKeown MJ, Boyd LA, Sossi V, Stoessl AJ. Exercise increases caudate dopamine release and ventral striatal activation in Parkinson’s disease. Mov Disord 2019; 34(12): 1891–1900
CrossRef
Google scholar
|
[132] |
Akdemir UO, Bora Tokcaer A, Atay LO. Dopamine transporter SPECT imaging in Parkinson’s disease and parkinsonian disorders. Turk J Med Sci 2021; 51(2): 400–410
CrossRef
Google scholar
|
[133] |
Hu L, Dong MX, Huang YL, Lu CQ, Qian Q, Zhang CC, Xu XM, Liu Y, Chen GH, Wei YD. Integrated metabolomics and proteomics analysis reveals plasma lipid metabolic disturbance in patients with Parkinson’s disease. Front Mol Neurosci 2020; 13: 80
CrossRef
Google scholar
|
[134] |
Shao Y, Li T, Liu Z, Wang X, Xu X, Li S, Xu G, Le W. Comprehensive metabolic profiling of Parkinson’s disease by liquid chromatography-mass spectrometry. Mol Neurodegener 2021; 16(1): 4
CrossRef
Google scholar
|
[135] |
Belarbi K, Cuvelier E, Bonte MA, Desplanque M, Gressier B, Devos D, Chartier-Harlin MC. Glycosphingolipids and neuroinflammation in Parkinson’s disease. Mol Neurodegener 2020; 15(1): 59
CrossRef
Google scholar
|
[136] |
Fernandez-Irigoyen J, Cartas-Cejudo P, Iruarrizaga-Lejarreta M, Santamaria E. Alteration in the cerebrospinal fluid lipidome in Parkinson’s disease: a post-mortem pilot study. Biomedicines 2021; 9(5): 491
CrossRef
Google scholar
|
[137] |
Galper J, Dean NJ, Pickford R, Lewis SJG, Halliday GM, Kim WS, Dzamko N. Lipid pathway dysfunction is prevalent in patients with Parkinson’s disease. Brain 2022; 145(10): 3472–3487
CrossRef
Google scholar
|
[138] |
Skowronska-Krawczyk D, Budin I. Aging membranes: unexplored functions for lipids in the lifespan of the central nervous system. Exp Gerontol 2020; 131: 110817
CrossRef
Google scholar
|
[139] |
Huebecker M, Moloney EB, van der Spoel AC, Priestman DA, Isacson O, Hallett PJ, Platt FM. Reduced sphingolipid hydrolase activities, substrate accumulation and ganglioside decline in Parkinson’s disease. Mol Neurodegener 2019; 14(1): 40
CrossRef
Google scholar
|
[140] |
Qi A, Liu L, Zhang J, Chen S, Xu S, Chen Y, Zhang L, Cai C. Plasma metabolic analysis reveals the dysregulation of short-chain fatty acid metabolism in Parkinson’s disease. Mol Neurobiol 2023; 60(5): 2619–2631
CrossRef
Google scholar
|
[141] |
Kawahata I, Bousset L, Melki R, Fukunaga K. Fatty acid-binding protein 3 is critical for α-synuclein uptake and MPP-induced mitochondrial dysfunction in cultured dopaminergic neurons. Int J Mol Sci 2019; 20(21): 5358
CrossRef
Google scholar
|
[142] |
Liu M, Jiao Q, Du X, Bi M, Chen X, Jiang H. Potential crosstalk between Parkinson’s disease and energy metabolism. Aging Dis 2021; 12(8): 2003–2015
CrossRef
Google scholar
|
[143] |
Komici K, Femminella GD, Bencivenga L, Rengo G, Pagano G. Diabetes mellitus and Parkinson’s disease: a systematic review and meta-analyses. J Parkinsons Dis 2021; 11(4): 1585–1596
CrossRef
Google scholar
|
[144] |
Sánchez-Gómez A, Diaz Y, Duarte-Salles T, Compta Y, Marti MJ. Prediabetes, type 2 diabetes mellitus and risk of Parkinson’s disease: a population-based cohort study. Parkinsonism Relat Disord 2021; 89: 22–27
CrossRef
Google scholar
|
[145] |
Chohan H, Senkevich K, Patel RK, Bestwick JP, Jacobs BM, Bandres Ciga S, Gan-Or Z, Noyce AJ. Type 2 diabetes as a determinant of Parkinson’s disease risk and progression. Mov Disord 2021; 36(6): 1420–1429
CrossRef
Google scholar
|
[146] |
Chung HS, Lee JS, Kim JA, Roh E, Lee YB, Hong SH, Yu JH, Kim NH, Yoo HJ, Seo JA, Kim SG, Kim NH, Baik SH, Choi KM. Fasting plasma glucose variability in midlife and risk of Parkinson’s disease: a nationwide population-based study. Diabetes Metab 2021; 47(3): 101195
CrossRef
Google scholar
|
[147] |
Rhee SY, Han KD, Kwon H, Park SE, Park YG, Kim YH, Yoo SJ, Rhee EJ, Lee WY. Association between glycemic status and the risk of Parkinson disease: a nationwide population-based study. Diabetes Care 2020; 43(9): 2169–2175
CrossRef
Google scholar
|
[148] |
Pignalosa FC, Desiderio A, Mirra P, Nigro C, Perruolo G, Ulianich L, Formisano P, Beguinot F, Miele C, Napoli R, Fiory F. Diabetes and cognitive impairment: a role for glucotoxicity and dopaminergic dysfunction. Int J Mol Sci 2021; 22(22): 12366
CrossRef
Google scholar
|
[149] |
Pérez-Taboada I, Alberquilla S, Martin ED, Anand R, Vietti-Michelina S, Tebeka NN, Cantley J, Cragg SJ, Moratalla R, Vallejo M. Diabetes causes dysfunctional dopamine neurotransmission favoring nigrostriatal degeneration in mice. Mov Disord 2020; 35(9): 1636–1648
CrossRef
Google scholar
|
[150] |
Lv YQ, Yuan L, Sun Y, Dou HW, Su JH, Hou ZP, Li JY, Li W. Long-term hyperglycemia aggravates alpha-synuclein aggregation and dopaminergic neuronal loss in a Parkinson’s disease mouse model. Transl Neurodegener 2022; 11(1): 14
CrossRef
Google scholar
|
[151] |
Su CJ, Shen Z, Cui RX, Huang Y, Xu DL, Zhao FL, Pan J, Shi AM, Liu T, Yu YL. Thioredoxin-interacting protein (TXNIP) regulates parkin/PINK1-mediated mitophagy in dopaminergic neurons under high-glucose conditions: implications for molecular links between Parkinson’s disease and diabetes. Neurosci Bull 2020; 36(4): 346–358
CrossRef
Google scholar
|
[152] |
Jeong SM, Han K, Kim D, Rhee SY, Jang W, Shin DW. Body mass index, diabetes, and the risk of Parkinson’s disease. Mov Disord 2020; 35(2): 236–244
CrossRef
Google scholar
|
[153] |
Ou R, Wei Q, Hou Y, Zhang L, Liu K, Lin J, Jiang Z, Song W, Cao B, Shang H. Effect of diabetes control status on the progression of Parkinson’s disease: a prospective study. Ann Clin Transl Neurol 2021; 8(4): 887–897
CrossRef
Google scholar
|
[154] |
Szturm T, Beheshti I, Mahana B, Hobson DE, Goertzen A, Ko JH. Imaging cerebral glucose metabolism during dual-task walking in patients with Parkinson’s disease. J Neuroimaging 2021; 31(2): 356–362
CrossRef
Google scholar
|
[155] |
Simmering JE, Welsh MJ, Liu L, Narayanan NS, Pottegard A. Association of glycolysis-enhancing α-1 blockers with risk of developing Parkinson disease. JAMA Neurol 2021; 78(4): 407–413
CrossRef
Google scholar
|
[156] |
Cai R, Zhang Y, Simmering JE, Schultz JL, Li Y, Fernandez-Carasa I, Consiglio A, Raya A, Polgreen PM, Narayanan NS, Yuan Y, Chen Z, Su W, Han Y, Zhao C, Gao L, Ji X, Welsh MJ, Liu L. Enhancing glycolysis attenuates Parkinson’s disease progression in models and clinical databases. J Clin Invest 2019; 129(10): 4539–4549
CrossRef
Google scholar
|
[157] |
Tang BL. Glucose, glycolysis, and neurodegenerative diseases. J Cell Physiol 2020; 235(11): 7653–7662
CrossRef
Google scholar
|
[158] |
Melnikova A, Pozdyshev D, Barinova K, Kudryavtseva S, Muronetz VI. α-synuclein overexpression in SH-SY5Y human neuroblastoma cells leads to the accumulation of thioflavin S-positive aggregates and impairment of glycolysis. Biochemistry (Mosc) 2020; 85(5): 604–613
CrossRef
Google scholar
|
[159] |
Kumari S, Goyal V, Kumaran SS, Dwivedi SN, Srivastava A, Jagannathan NR. Quantitative metabolomics of saliva using proton NMR spectroscopy in patients with Parkinson’s disease and healthy controls. Neurol Sci 2020; 41(5): 1201–1210
CrossRef
Google scholar
|
[160] |
Sinclair E, Trivedi DK, Sarkar D, Walton-Doyle C, Milne J, Kunath T, Rijs AM, de Bie RMA, Goodacre R, Silverdale M, Barran P. Metabolomics of sebum reveals lipid dysregulation in Parkinson’s disease. Nat Commun 2021; 12(1): 1592
CrossRef
Google scholar
|
[161] |
Bhansali S, Bhansali A, Walia R, Saikia UN, Dhawan V. Alterations in mitochondrial oxidative stress and mitophagy in subjects with prediabetes and type 2 diabetes mellitus. Front Endocrinol (Lausanne) 2017; 8: 347
CrossRef
Google scholar
|
[162] |
Schrauwen P, Schrauwen-Hinderling V, Hoeks J, Hesselink MK. Mitochondrial dysfunction and lipotoxicity. Biochim Biophys Acta Mol Cell Biol Lipids 2010; 1801(3): 266–271
CrossRef
Google scholar
|
[163] |
Kelley DE, He J, Menshikova EV, Ritov VB. Dysfunction of mitochondria in human skeletal muscle in type 2 diabetes. Diabetes 2002; 51(10): 2944–2950
CrossRef
Google scholar
|
[164] |
Phielix E, Schrauwen-Hinderling VB, Mensink M, Lenaers E, Meex R, Hoeks J, Kooi ME, Moonen-Kornips E, Sels JP, Hesselink MK, Schrauwen P. Lower intrinsic ADP-stimulated mitochondrial respiration underlies in vivo mitochondrial dysfunction in muscle of male type 2 diabetic patients. Diabetes 2008; 57(11): 2943–2949
CrossRef
Google scholar
|
[165] |
Robertson RP, Harmon J, Tran PO, Tanaka Y, Takahashi H. Glucose toxicity in β-cells: type 2 diabetes, good radicals gone bad, and the glutathione connection. Diabetes 2003; 52(3): 581–587
CrossRef
Google scholar
|
[166] |
Anello M, Lupi R, Spampinato D, Piro S, Masini M, Boggi U, Del Prato S, Rabuazzo AM, Purrello F, Marchetti P. Functional and morphological alterations of mitochondria in pancreatic β cells from type 2 diabetic patients. Diabetologia 2005; 48(2): 282–289
CrossRef
Google scholar
|
[167] |
Xie X, Yi Z, Sinha S, Madan M, Bowen BP, Langlais P, Ma D, Mandarino L, Meyer C. Proteomics analyses of subcutaneous adipocytes reveal novel abnormalities in human insulin resistance. Obesity (Silver Spring) 2016; 24(7): 1506–1514
CrossRef
Google scholar
|
[168] |
Luo L, Liu M. Adipose tissue in control of metabolism. J Endocrinol 2016; 231(3): R77–R99
CrossRef
Google scholar
|
[169] |
Petersen KF, Dufour S, Savage DB, Bilz S, Solomon G, Yonemitsu S, Cline GW, Befroy D, Zemany L, Kahn BB, Papademetris X, Rothman DL, Shulman GI. The role of skeletal muscle insulin resistance in the pathogenesis of the metabolic syndrome. Proc Natl Acad Sci USA 2007; 104(31): 12587–12594
CrossRef
Google scholar
|
[170] |
DeFronzo RA, Tripathy D. Skeletal muscle insulin resistance is the primary defect in type 2 diabetes. Diabetes Care 2009; 32(Suppl 2): S157–163
|
[171] |
Krssak M, Brehm A, Bernroider E, Anderwald C, Nowotny P, Dalla Man C, Cobelli C, Cline GW, Shulman GI, Waldhausl W, Roden M. Alterations in postprandial hepatic glycogen metabolism in type 2 diabetes. Diabetes 2004; 53(12): 3048–3056
CrossRef
Google scholar
|
[172] |
Glass CK, Olefsky JM. Inflammation and lipid signaling in the etiology of insulin resistance. Cell Metab 2012; 15(5): 635–645
CrossRef
Google scholar
|
[173] |
Gancheva S, Jelenik T, Alvarez-Hernandez E, Roden M. Interorgan metabolic crosstalk in human insulin resistance. Physiol Rev 2018; 98(3): 1371–1415
CrossRef
Google scholar
|
[174] |
Girousse A, Tavernier G, Valle C, Moro C, Mejhert N, Dinel AL, Houssier M, Roussel B, Besse-Patin A, Combes M, Mir L, Monbrun L, Bezaire V, Prunet-Marcassus B, Waget A, Vila I, Caspar-Bauguil S, Louche K, Marques MA, Mairal A, Renoud ML, Galitzky J, Holm C, Mouisel E, Thalamas C, Viguerie N, Sulpice T, Burcelin R, Arner P, Langin D. Partial inhibition of adipose tissue lipolysis improves glucose metabolism and insulin sensitivity without alteration of fat mass. PLoS Biol 2013; 11(2): e1001485
CrossRef
Google scholar
|
[175] |
Solinas G, Boren J, Dulloo AG. De novo lipogenesis in metabolic homeostasis: more friend than foe. Mol Metab 2015; 4(5): 367–377
CrossRef
Google scholar
|
[176] |
Cao H, Gerhold K, Mayers JR, Wiest MM, Watkins SM, Hotamisligil GS. Identification of a lipokine, a lipid hormone linking adipose tissue to systemic metabolism. Cell 2008; 134(6): 933–944
CrossRef
Google scholar
|
[177] |
Yilmaz M, Claiborn KC, Hotamisligil GS. De novo lipogenesis products and endogenous lipokines. Diabetes 2016; 65(7): 1800–1807
CrossRef
Google scholar
|
[178] |
Zhao H, Li X, Zhang D, Chen H, Chao Y, Wu K, Dong X, Su J. Integrative bone metabolomics-lipidomics strategy for pathological mechanism of postmenopausal osteoporosis mouse model. Sci Rep 2018; 8(1): 16456
CrossRef
Google scholar
|
[179] |
Parhami F, Jackson SM, Tintut Y, Le V, Balucan JP, Territo M, Demer LL. Atherogenic diet and minimally oxidized low density lipoprotein inhibit osteogenic and promote adipogenic differentiation of marrow stromal cells. J Bone Miner Res 1999; 14(12): 2067–2078
CrossRef
Google scholar
|
[180] |
Tintut Y, Parhami F, Tsingotjidou A, Tetradis S, Territo M, Demer LL. 8-Isoprostaglandin E2 enhances receptor-activated NF-κB ligand (RANKL)-dependent osteoclastic potential of marrow hematopoietic precursors via the cAMP pathway. J Biol Chem 2002; 277(16): 14221–14226
CrossRef
Google scholar
|
[181] |
You L, Sheng ZY, Tang CL, Chen L, Pan L, Chen JY. High cholesterol diet increases osteoporosis risk via inhibiting bone formation in rats. Acta Pharmacol Sin 2011; 32(12): 1498–1504
CrossRef
Google scholar
|
[182] |
Miyazaki T, Iwasawa M, Nakashima T, Mori S, Shigemoto K, Nakamura H, Katagiri H, Takayanagi H, Tanaka S. Intracellular and extracellular ATP coordinately regulate the inverse correlation between osteoclast survival and bone resorption. J Biol Chem 2012; 287(45): 37808–37823
CrossRef
Google scholar
|
[183] |
Moayyeri A, Cheung CL, Tan KC, Morris JA, Cerani A, Mohney RP, Richards JB, Hammond C, Spector TD, Menni C. Metabolomic pathways to osteoporosis in middle-aged women: a genome-metabolome-wide Mendelian randomization study. J Bone Miner Res 2018; 33(4): 643–650
CrossRef
Google scholar
|
[184] |
Miyamoto K, Hirayama A, Sato Y, Ikeda S, Maruyama M, Soga T, Tomita M, Nakamura M, Matsumoto M, Yoshimura N, Miyamoto T. A metabolomic profile predictive of new osteoporosis or sarcopenia development. Metabolites 2021; 11(5): 278
CrossRef
Google scholar
|
[185] |
Sartori T, Santos ACA, Oliveira da Silva R, Kodja G, Rogero MM, Borelli P, Fock RA. Branched chain amino acids improve mesenchymal stem cell proliferation, reducing nuclear factor κB expression and modulating some inflammatory properties. Nutrition 2020; 78: 110935
CrossRef
Google scholar
|
[186] |
Deng D, Pan C, Wu Z, Sun Y, Liu C, Xiang H, Yin P, Shang D. An integrated metabolomic study of osteoporosis: discovery and quantification of hyocholic acids as candidate markers. Front Pharmacol 2021; 12: 725341
CrossRef
Google scholar
|
[187] |
Cantó C, Menzies KJ, Auwerx J. NAD+ metabolism and the control of energy homeostasis: a balancing Act between mitochondria and the nucleus. Cell Metab 2015; 22(1): 31–53
CrossRef
Google scholar
|
[188] |
Gomes AP, Price NL, Ling AJ, Moslehi JJ, Montgomery MK, Rajman L, White JP, Teodoro JS, Wrann CD, Hubbard BP, Mercken EM, Palmeira CM, de Cabo R, Rolo AP, Turner N, Bell EL, Sinclair DA. Declining NAD+ induces a pseudohypoxic state disrupting nuclear-mitochondrial communication during aging. Cell 2013; 155(7): 1624–1638
CrossRef
Google scholar
|
[189] |
Yoshino J, Mills KF, Yoon MJ, Imai S. Nicotinamide mononucleotide, a key NAD+ intermediate, treats the pathophysiology of diet- and age-induced diabetes in mice. Cell Metab 2011; 14(4): 528–536
CrossRef
Google scholar
|
[190] |
Wan QL, Fu X, Meng X, Luo Z, Dai W, Yang J, Wang C, Wang H, Zhou Q. Hypotaurine promotes longevity and stress tolerance via the stress response factors DAF-16/FOXO and SKN-1/NRF2 in Caenorhabditis elegans. Food Funct 2020; 11(1): 347–357
CrossRef
Google scholar
|
[191] |
Kahn BB, Alquier T, Carling D, Hardie DG. AMP-activated protein kinase: ancient energy gauge provides clues to modern understanding of metabolism. Cell Metab 2005; 1(1): 15–25
CrossRef
Google scholar
|
[192] |
Narkar VA, Downes M, Yu RT, Embler E, Wang YX, Banayo E, Mihaylova MM, Nelson MC, Zou Y, Juguilon H, Kang H, Shaw RJ, Evans RM. AMPK and PPARδ agonists are exercise mimetics. Cell 2008; 134(3): 405–415
CrossRef
Google scholar
|
[193] |
Anisimov VN, Berstein LM, Egormin PA, Piskunova TS, Popovich IG, Zabezhinski MA, Kovalenko IG, Poroshina TE, Semenchenko AV, Provinciali M, Re F, Franceschi C. Effect of metformin on life span and on the development of spontaneous mammary tumors in HER-2/neu transgenic mice. Exp Gerontol 2005; 40(8–9): 685–693
CrossRef
Google scholar
|
[194] |
Wu S, Zou MH. AMPK, mitochondrial function, and cardiovascular disease. Int J Mol Sci 2020; 21(14): 4987
CrossRef
Google scholar
|
[195] |
Kapahi P, Chen D, Rogers AN, Katewa SD, Li PW, Thomas EL, Kockel L. With TOR, less is more: a key role for the conserved nutrient-sensing TOR pathway in aging. Cell Metab 2010; 11(6): 453–465
CrossRef
Google scholar
|
[196] |
Zoncu R, Efeyan A, Sabatini DM. mTOR: from growth signal integration to cancer, diabetes and ageing. Nat Rev Mol Cell Biol 2011; 12(1): 21–35
CrossRef
Google scholar
|
[197] |
Harrison DE, Strong R, Sharp ZD, Nelson JF, Astle CM, Flurkey K, Nadon NL, Wilkinson JE, Frenkel K, Carter CS, Pahor M, Javors MA, Fernandez E, Miller RA. Rapamycin fed late in life extends lifespan in genetically heterogeneous mice. Nature 2009; 460(7253): 392–395
CrossRef
Google scholar
|
[198] |
Masoro EJ. Overview of caloric restriction and ageing. Mech Ageing Dev 2005; 126(9): 913–922
CrossRef
Google scholar
|
[199] |
Huffman DM, Barzilai N. Role of visceral adipose tissue in aging. Biochim Biophys Acta, Gen Subj 2009; 1790(10): 1117–1123
CrossRef
Google scholar
|
[200] |
Bartke A, Westbrook R. Metabolic characteristics of long-lived mice. Front Genet 2012; 3: 288
CrossRef
Google scholar
|
[201] |
Youm YH, Nguyen KY, Grant RW, Goldberg EL, Bodogai M, Kim D, D’Agostino D, Planavsky N, Lupfer C, Kanneganti TD, Kang S, Horvath TL, Fahmy TM, Crawford PA, Biragyn A, Alnemri E, Dixit VD. The ketone metabolite β-hydroxybutyrate blocks NLRP3 inflammasome-mediated inflammatory disease. Nat Med 2015; 21(3): 263–269
CrossRef
Google scholar
|
[202] |
Zhang Y, Chen K, Sloan SA, Bennett ML, Scholze AR, O’Keeffe S, Phatnani HP, Guarnieri P, Caneda C, Ruderisch N, Deng S, Liddelow SA, Zhang C, Daneman R, Maniatis T, Barres BA, Wu JQ. An RNA-sequencing transcriptome and splicing database of glia, neurons, and vascular cells of the cerebral cortex. J Neurosci 2014; 34(36): 11929–11947
CrossRef
Google scholar
|
[203] |
Roy A, Jana M, Corbett GT, Ramaswamy S, Kordower JH, Gonzalez FJ, Pahan K. Regulation of cyclic AMP response element binding and hippocampal plasticity-related genes by peroxisome proliferator-activated receptor alpha. Cell Rep 2013; 4(4): 724–737
CrossRef
Google scholar
|
[204] |
Luo R, Su LY, Li G, Yang J, Liu Q, Yang LX, Zhang DF, Zhou H, Xu M, Fan Y, Li J, Yao YG. Activation of PPARA-mediated autophagy reduces Alzheimer disease-like pathology and cognitive decline in a murine model. Autophagy 2020; 16(1): 52–69
CrossRef
Google scholar
|
[205] |
Mota SI, Pita I, Aguas R, Tagorti S, Virmani A, Pereira FC, Rego AC. Mechanistic perspectives on differential mitochondrial-based neuroprotective effects of several carnitine forms in Alzheimer’s disease in vitro model. Arch Toxicol 2021; 95(8): 2769–2784
CrossRef
Google scholar
|
[206] |
Dai L, Zou L, Meng L, Qiang G, Yan M, Zhang Z. Cholesterol metabolism in neurodegenerative diseases: molecular mechanisms and therapeutic targets. Mol Neurobiol 2021; 58(5): 2183–2201
CrossRef
Google scholar
|
[207] |
Palermo G, Giannoni S, Giuntini M, Belli E, Frosini D, Siciliano G, Ceravolo R. Statins in Parkinson’s disease: influence on motor progression. J Parkinsons Dis 2021; 11(4): 1651–1662
CrossRef
Google scholar
|
[208] |
Nguyen TTH, Fournier A, Courtois E, Artaud F, Escolano S, Tubert-Bitter P, Boutron-Ruault MC, Degaey I, Roze E, Canonico M, Ahmed I, Thiebaut ACM, Elbaz A. Statin use and incidence of Parkinson’s disease in women from the French E3N cohort study. Mov Disord 2023; 38(5): 854–865
CrossRef
Google scholar
|
[209] |
Soppert J, Lehrke M, Marx N, Jankowski J, Noels H. Lipoproteins and lipids in cardiovascular disease: from mechanistic insights to therapeutic targeting. Adv Drug Deliv Rev 2020; 159: 4–33
CrossRef
Google scholar
|
[210] |
Duarte Lau F, Giugliano RP. Lipoprotein(a) and its significance in cardiovascular disease: a review. JAMA Cardiol 2022; 7(7): 760–769
CrossRef
Google scholar
|
[211] |
Brauer R, Wei L, Ma T, Athauda D, Girges C, Vijiaratnam N, Auld G, Whittlesea C, Wong I, Foltynie T. Diabetes medications and risk of Parkinson’s disease: a cohort study of patients with diabetes. Brain 2020; 143(10): 3067–3076
CrossRef
Google scholar
|
[212] |
Labandeira CM, Fraga-Bau A, Arias Ron D, Munoz A, Alonso-Losada G, Koukoulis A, Romero-Lopez J, Rodriguez-Perez AI. Diabetes, insulin and new therapeutic strategies for Parkinson’s disease: focus on glucagon-like peptide-1 receptor agonists. Front Neuroendocrinol 2021; 62: 100914
CrossRef
Google scholar
|
[213] |
Zhang L, Zhang L, Li Y, Li L, Melchiorsen JU, Rosenkilde M, Holscher C. The novel dual GLP-1/GIP receptor agonist DA-CH5 is superior to single GLP-1 receptor agonists in the MPTP model of Parkinson’s disease. J Parkinsons Dis 2020; 10(2): 523–542
CrossRef
Google scholar
|
[214] |
Wang DX, Chen AD, Wang QJ, Xin YY, Yin J, Jing YH. Protective effect of metformin against rotenone-induced parkinsonism in mice. Toxicol Mech Methods 2020; 30(5): 350–357
CrossRef
Google scholar
|
[215] |
Ryu YK, Go J, Park HY, Choi YK, Seo YJ, Choi JH, Rhee M, Lee TG, Lee CH, Kim KS. Metformin regulates astrocyte reactivity in Parkinson’s disease and normal aging. Neuropharmacology 2020; 175: 108173
CrossRef
Google scholar
|
[216] |
Hussain S, Singh A, Baxi H, Taylor B, Burgess J, Antony B. Thiazolidinedione use is associated with reduced risk of Parkinson’s disease in patients with diabetes: a meta-analysis of real-world evidence. Neurol Sci 2020; 41(12): 3697–3703
CrossRef
Google scholar
|
[217] |
Lita A, Kuzmin AN, Pliss A, Baev A, Rzhevskii A, Gilbert MR, Larion M, Prasad PN. Toward single-organelle lipidomics in live cells. Anal Chem 2019; 91(17): 11380–11387
CrossRef
Google scholar
|
[218] |
Zhu H, Zou G, Wang N, Zhuang M, Xiong W, Huang G. Single-neuron identification of chemical constituents, physiological changes, and metabolism using mass spectrometry. Proc Natl Acad Sci USA 2017; 114(10): 2586–2591
CrossRef
Google scholar
|
[219] |
Lombard-Banek C, Li J, Portero EP, Onjiko RM, Singer CD, Plotnick DO, Al Shabeeb RQ, Nemes P. In vivo subcellular mass spectrometry enables proteo-metabolomic single-cell systems biology in a chordate embryo developing to a normally behaving tadpole (X. laevis). Angew Chem Int Ed 2021; 60(23): 12852–12858
CrossRef
Google scholar
|
[220] |
Capolupo L, Khven I, Lederer AR, Mazzeo L, Glousker G, Ho S, Russo F, Montoya JP, Bhandari DR, Bowman AP, Ellis SR, Guiet R, Burri O, Detzner J, Muthing J, Homicsko K, Kuonen F, Gilliet M, Spengler B, Heeren RMA, Dotto GP, La Manno G, D'Angelo G. Sphingolipids control dermal fibroblast heterogeneity. Science 2022; 376(6590): eabh1623
CrossRef
Google scholar
|
[221] |
Ostrowski SG, Van Bell CT, Winograd N, Ewing AG. Mass spectrometric imaging of highly curved membranes during Tetrahymena mating. Science 2004; 305(5680): 71–73
CrossRef
Google scholar
|
[222] |
Yeager AN, Weber PK, Kraft ML. Three-dimensional imaging of cholesterol and sphingolipids within a Madin-Darby canine kidney cell. Biointerphases 2016; 11(2): 02A309
CrossRef
Google scholar
|
[223] |
Arrojo e Drigo R, Lev-Ram V, Tyagi S, Ramachandra R, Deerinck T, Bushong E, Phan S, Orphan V, Lechene C, Ellisman MH, Hetzer MW. Age mosaicism across multiple scales in adult tissues. Cell Metab 2019; 30(2): 343–351.e3
CrossRef
Google scholar
|
[224] |
Wang X, Hou Y, Hou Z, Xiong W, Huang G. Mass spectrometry imaging of brain cholesterol and metabolites with trifluoroacetic acid-enhanced desorption electrospray ionization. Anal Chem 2019; 91(4): 2719–2726
CrossRef
Google scholar
|
[225] |
Liu C, Qi K, Yao L, Xiong Y, Zhang X, Zang J, Tian C, Xu M, Yang J, Lin Z, Lv Y, Xiong W, Pan Y. Imaging of Polar and Nonpolar Species Using Compact Desorption Electrospray Ionization/Postphotoionization Mass Spectrometry. Anal Chem 2019; 91(10): 6616–6623
CrossRef
Google scholar
|
[226] |
Carlred L, Vukojevic V, Johansson B, Schalling M, Hook F, Sjovall P. Imaging of amyloid-β in Alzheimer’s disease transgenic mouse brains with ToF-SIMS using immunoliposomes. Biointerphases 2016; 11(2): 02A312
CrossRef
Google scholar
|
[227] |
Philipsen MH, Phan NTN, Fletcher JS, Malmberg P, Ewing AG. Mass spectrometry imaging shows cocaine and methylphenidate have opposite effects on major lipids in Drosophila brain. ACS Chem Neurosci 2018; 9(6): 1462–1468
CrossRef
Google scholar
|
[228] |
Ollen-Bittle N, Pejhan S, Pasternak SH, Keene CD, Zhang Q, Whitehead SN. Co-registration of MALDI-MSI and histology demonstrates gangliosides co-localize with amyloid beta plaques in Alzheimer’s disease. Acta Neuropathol 2024; 147(1): 105
CrossRef
Google scholar
|
[229] |
Zhang Q, Li Y, Sui P, Sun XH, Gao Y, Wang CY. MALDI mass spectrometry imaging discloses the decline of sulfoglycosphingolipid and glycerophosphoinositol species in the brain regions related to cognition in a mouse model of Alzheimer’s disease. Talanta 2024; 266(Pt 2): 125022
CrossRef
Google scholar
|
[230] |
Michno W, Bowman A, Jha D, Minta K, Ge J, Koutarapu S, Zetterberg H, Blennow K, Lashley T, Heeren RMA, Hanrieder J. Spatial neurolipidomics at the single amyloid-β plaque level in postmortem human Alzheimer’s disease brain. ACS Chem Neurosci 2024; 15(4): 877–888
CrossRef
Google scholar
|
[231] |
Liao T, Ren Z, Chai Z, Yuan M, Miao C, Li J, Chen Q, Li Z, Wang Z, Yi L, Ge S, Qian W, Shen L, Wang Z, Xiong W, Zhu H. A super-resolution strategy for mass spectrometry imaging via transfer learning. Nat Mach Intell 2023; 5(6): 656–668
CrossRef
Google scholar
|
[232] |
Esselman AB, Patterson NH, Migas LG, Dufresne M, Djambazova KV, Colley ME, Van de Plas R, Spraggins JM. Microscopy-directed imaging mass spectrometry for rapid high spatial resolution molecular imaging of glomeruli. J Am Soc Mass Spectrom 2023; 34(7): 1305–1314
CrossRef
Google scholar
|
/
〈 |
|
〉 |