Phase separation in cGAS-STING signaling

Quanjin Li , Pu Gao

Front. Med. ›› 2023, Vol. 17 ›› Issue (5) : 855 -866.

PDF (1968KB)
Front. Med. ›› 2023, Vol. 17 ›› Issue (5) : 855 -866. DOI: 10.1007/s11684-023-1026-6
REVIEW
REVIEW

Phase separation in cGAS-STING signaling

Author information +
History +
PDF (1968KB)

Abstract

Biomolecular condensates formed by phase separation are widespread and play critical roles in many physiological and pathological processes. cGAS-STING signaling functions to detect aberrant DNA signals to initiate anti-infection defense and antitumor immunity. At the same time, cGAS-STING signaling must be carefully regulated to maintain immune homeostasis. Interestingly, exciting recent studies have reported that biomolecular phase separation exists and plays important roles in different steps of cGAS-STING signaling, including cGAS condensates, STING condensates, and IRF3 condensates. In addition, several intracellular and extracellular factors have been proposed to modulate the condensates in cGAS-STING signaling. These studies reveal novel activation and regulation mechanisms of cGAS-STING signaling and provide new opportunities for drug discovery. Here, we summarize recent advances in the phase separation of cGAS-STING signaling and the development of potential drugs targeting these innate immune condensates.

Keywords

biomolecular condensates / phase separation / cGAS-STING pathway / cGAS / STING / cGAMP / interferon

Cite this article

Download citation ▾
Quanjin Li, Pu Gao. Phase separation in cGAS-STING signaling. Front. Med., 2023, 17(5): 855-866 DOI:10.1007/s11684-023-1026-6

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Sun L, Wu J, Du F, Chen X, Chen ZJ. Cyclic GMP-AMP synthase is a cytosolic DNA sensor that activates the type I interferon pathway. Science 2013; 339(6121): 786–791

[2]

Wu J, Sun L, Chen X, Du F, Shi H, Chen C, Chen ZJ. Cyclic GMP-AMP is an endogenous second messenger in innate immune signaling by cytosolic DNA. Science 2013; 339(6121): 826–830

[3]

Ablasser A, Goldeck M, Cavlar T, Deimling T, Witte G, Rohl I, Hopfner KP, Ludwig J, Hornung V. cGAS produces a 2′-5′-linked cyclic dinucleotide second messenger that activates STING. Nature 2013; 498(7454): 380–384

[4]

Gao P, Ascano M, Wu Y, Barchet W, Gaffney BL, Zillinger T, Serganov AA, Liu Y, Jones RA, Hartmann G, Tuschl T, Patel DJ. Cyclic [G(2′,5′)pA(3′,5′)p] is the metazoan second messenger produced by DNA-activated cyclic GMP-AMP synthase. Cell 2013; 153(5): 1094–1107

[5]

Gao P, Ascano M, Zillinger T, Wang W, Dai P, Serganov AA, Gaffney BL, Shuman S, Jones RA, Deng L, Hartmann G, Barchet W, Tuschl T, Patel DJ. Structure-function analysis of STING activation by c[G(2′,5′)pA(3′,5′)p] and targeting by antiviral DMXAA. Cell 2013; 154(4): 748–762

[6]

Li X, Shu C, Yi G, Chaton CT, Shelton CL, Diao J, Zuo X, Kao CC, Herr AB, Li P. Cyclic GMP-AMP synthase is activated by double-stranded DNA-induced oligomerization. Immunity 2013; 39(6): 1019–1031

[7]

Ishikawa H, Barber GN. STING is an endoplasmic reticulum adaptor that facilitates innate immune signalling. Nature 2008; 455(7213): 674–678

[8]

Zhong B, Yang Y, Li S, Wang YY, Li Y, Diao F, Lei C, He X, Zhang L, Tien P, Shu HB. The adaptor protein MITA links virus-sensing receptors to IRF3 transcription factor activation. Immunity 2008; 29(4): 538–550

[9]

Sun W, Li Y, Chen L, Chen H, You F, Zhou X, Zhou Y, Zhai Z, Chen D, Jiang Z. ERIS, an endoplasmic reticulum IFN stimulator, activates innate immune signaling through dimerization. Proc Natl Acad Sci USA 2009; 106(21): 8653–8658

[10]

Saitoh T, Fujita N, Hayashi T, Takahara K, Satoh T, Lee H, Matsunaga K, Kageyama S, Omori H, Noda T, Yamamoto N, Kawai T, Ishii K, Takeuchi O, Yoshimori T, Akira S. Atg9a controls dsDNA-driven dynamic translocation of STING and the innate immune response. Proc Natl Acad Sci USA 2009; 106(49): 20842–20846

[11]

Ishikawa H, Ma Z, Barber GN. STING regulates intracellular DNA-mediated, type I interferon-dependent innate immunity. Nature 2009; 461(7265): 788–792

[12]

Dobbs N, Burnaevskiy N, Chen D, Gonugunta VK, Alto NM, Yan N. STING activation by translocation from the ER is associated with infection and autoinflammatory disease. Cell Host Microbe 2015; 18(2): 157–168

[13]

Fang R, Jiang Q, Guan Y, Gao P, Zhang R, Zhao Z, Jiang Z. Golgi apparatus-synthesized sulfated glycosaminoglycans mediate polymerization and activation of the cGAMP sensor STING. Immunity 2021; 54(5): 962–975 e8

[14]

Tanaka Y, Chen ZJ. STING specifies IRF3 phosphorylation by TBK1 in the cytosolic DNA signaling pathway. Sci Signal 2012; 5(214): ra20

[15]

Lin R, Heylbroeck C, Pitha PM, Hiscott J. Virus-dependent phosphorylation of the IRF-3 transcription factor regulates nuclear translocation, transactivation potential, and proteasome-mediated degradation. Mol Cell Biol 1998; 18(5): 2986–2996

[16]

Fitzgerald KA, McWhirter SM, Faia KL, Rowe DC, Latz E, Golenbock DT, Coyle AJ, Liao SM, Maniatis T. IKKepsilon and TBK1 are essential components of the IRF3 signaling pathway. Nat Immunol 2003; 4(5): 491–496

[17]

Ishii KJ, Coban C, Kato H, Takahashi K, Torii Y, Takeshita F, Ludwig H, Sutter G, Suzuki K, Hemmi H, Sato S, Yamamoto M, Uematsu S, Kawai T, Takeuchi O, Akira S. A Toll-like receptor-independent antiviral response induced by double-stranded B-form DNA. Nat Immunol 2006; 7(1): 40–48

[18]

Stetson DB, Medzhitov R. Recognition of cytosolic DNA activates an IRF3-dependent innate immune response. Immunity 2006; 24(1): 93–103

[19]

Chen C, Xu P. Cellular functions of cGAS-STING signaling. Trends Cell Biol 2023; 33(8): 630–648

[20]

Gao D, Li T, Li XD, Chen X, Li QZ, Wight-Carter M, Chen ZJ. Activation of cyclic GMP-AMP synthase by self-DNA causes autoimmune diseases. Proc Natl Acad Sci USA 2015; 112(42): E5699–E5705

[21]

Konno H, Yamauchi S, Berglund A, Putney RM, Mulé JJ, Barber GN. Suppression of STING signaling through epigenetic silencing and missense mutation impedes DNA damage mediated cytokine production. Oncogene 2018; 37(15): 2037–2051

[22]

Motwani M, Pesiridis S, Fitzgerald KA. DNA sensing by the cGAS-STING pathway in health and disease. Nat Rev Genet 2019; 20(11): 657–674

[23]

Cui X, Zhang R, Cen S, Zhou J. STING modulators: predictive significance in drug discovery. Eur J Med Chem 2019; 182: 111591

[24]

Wang Y, Luo J, Alu A, Han X, Wei Y, Wei X. cGAS-STING pathway in cancer biotherapy. Mol Cancer 2020; 19(1): 136

[25]

Hopfner KP, Hornung V. Molecular mechanisms and cellular functions of cGAS-STING signalling. Nat Rev Mol Cell Biol 2020; 21(9): 501–521

[26]

Li P, Banjade S, Cheng HC, Kim S, Chen B, Guo L, Llaguno M, Hollingsworth JV, King DS, Banani SF, Russo PS, Jiang QX, Nixon BT, Rosen MK. Phase transitions in the assembly of multivalent signalling proteins. Nature 2012; 483(7389): 336–340

[27]

Kato M, Han TW, Xie S, Shi K, Du X, Wu LC, Mirzaei H, Goldsmith EJ, Longgood J, Pei J, Grishin NV, Frantz DE, Schneider JW, Chen S, Li L, Sawaya MR, Eisenberg D, Tycko R, McKnight SL. Cell-free formation of RNA granules: low complexity sequence domains form dynamic fibers within hydrogels. Cell 2012; 149(4): 753–767

[28]

Han TW, Kato M, Xie S, Wu LC, Mirzaei H, Pei J, Chen M, Xie Y, Allen J, Xiao G, McKnight SL. Cell-free formation of RNA granules: bound RNAs identify features and components of cellular assemblies. Cell 2012; 149(4): 768–779

[29]

Banani SF, Lee HO, Hyman AA, Rosen MK. Biomolecular condensates: organizers of cellular biochemistry. Nat Rev Mol Cell Biol 2017; 18(5): 285–298

[30]

Alberti S, Gladfelter A, Mittag T. Considerations and challenges in studying liquid-liquid phase separation and biomolecular condensates. Cell 2019; 176(3): 419–434

[31]

Alberti S, Dormann D. Liquid–liquid phase separation in disease. Annu Rev Genet 2019; 53(1): 171–194

[32]

Mitrea DM, Mittasch M, Gomes BF, Klein IA, Murcko MA. Modulating biomolecular condensates: a novel approach to drug discovery. Nat Rev Drug Discov 2022; 21(11): 841–862

[33]

Xiao Q, McAtee CK, Su X. Phase separation in immune signalling. Nat Rev Immunol 2022; 22(3): 188–199

[34]

Xie W, Lama L, Adura C, Tomita D, Glickman JF, Tuschl T, Patel DJ. Human cGAS catalytic domain has an additional DNA-binding interface that enhances enzymatic activity and liquid-phase condensation. Proc Natl Acad Sci USA 2019; 116(24): 11946–11955

[35]

Civril F, Deimling T, de Oliveira Mann CC, Ablasser A, Moldt M, Witte G, Hornung V, Hopfner KP. Structural mechanism of cytosolic DNA sensing by cGAS. Nature 2013; 498(7454): 332–337

[36]

Tao J, Zhang XW, Jin J, Du XX, Lian T, Yang J, Zhou X, Jiang Z, Su XD. Nonspecific DNA binding of cGAS N terminus promotes cGAS activation. J Immunol 2017; 198(9): 3627–3636

[37]

Du M, Chen ZJ. DNA-induced liquid phase condensation of cGAS activates innate immune signaling. Science 2018; 361(6403): 704–709

[38]

Yao Y, Wang W, Chen C. Mechanisms of phase-separation-mediated cGAS activation revealed by dcFCCS. PNAS Nexus 2022; 1(3): pgac109

[39]

Zhou W, Mohr L, Maciejowski J, Kranzusch PJ. cGAS phase separation inhibits TREX1-mediated DNA degradation and enhances cytosolic DNA sensing. Mol Cell 2021; 81(4): 739–755 e7

[40]

Gray EE, Treuting PM, Woodward JJ, Stetson DB. Cutting Edge: cGAS is required for lethal autoimmune disease in the Trex1-deficient mouse model of Aicardi–Goutières syndrome. J Immunol 2015; 195(5): 1939–1943

[41]

Tao X, Song J, Song Y, Zhang Y, Yang J, Zhang P, Zhang D, Chen D, Sun Q. Ku proteins promote DNA binding and condensation of cyclic GMP-AMP synthase. Cell Rep 2022; 40(10): 111310

[42]

Zhang J, Zhou EC, He Y, Chai ZL, Ji BZ, Tu Y, Wang HL, Wu WQ, Liu Y, Zhang XH, Liu Y. ZYG11B potentiates the antiviral innate immune response by enhancing cGAS-DNA binding and condensation. Cell Rep 2023; 42(3): 112278

[43]

Kim SS, Pandey KK, Choi HS, Kim SY, Law PY, Wei LN, Loh HH. Poly(C) binding protein family is a transcription factor in mu-opioid receptor gene expression. Mol Pharmacol 2005; 68(3): 729–736

[44]

Liao CY, Lei CQ, Shu HB. PCBP1 modulates the innate immune response by facilitating the binding of cGAS to DNA. Cell Mol Immunol 2021; 18(10): 2334–2343

[45]

Gu H, Yang J, Zhang J, Song Y, Zhang Y, Xu P, Zhu Y, Wang L, Zhang P, Li L, Chen D, Sun Q. PCBP2 maintains antiviral signaling homeostasis by regulating cGAS enzymatic activity via antagonizing its condensation. Nat Commun 2022; 13(1): 1564

[46]

Wang Y, Ning X, Gao P, Wu S, Sha M, Lv M, Zhou X, Gao J, Fang R, Meng G, Su X, Jiang Z. Inflammasome activation triggers caspase-1-mediated cleavage of cGAS to regulate responses to DNA virus. Infect Immun 2017; 46(3): 393–404

[47]

Zheng Y, Liu Q, Wu Y, Ma L, Zhang Z, Liu T, Jin S, She Y, Li YP, Cui J. Zika virus elicits inflammation to evade antiviral response by cleaving cGAS via NS1-caspase-1 axis. EMBO J 2018; 37(18): e99347

[48]

Shi C, Yang X, Hou Y, Jin X, Guo L, Zhou Y, Zhang C, Yin H. USP15 promotes cGAS activation through deubiquitylation and liquid condensation. Nucleic Acids Res 2022; 50(19): 11093–11108

[49]

Yang P, Mathieu C, Kolaitis RM, Zhang P, Messing J, Yurtsever U, Yang Z, Wu J, Li Y, Pan Q, Yu J, Martin EW, Mittag T, Kim HJ, Taylor JP. G3BP1 is a tunable switch that triggers phase separation to assemble stress granules. Cell 2020; 181(2): 325–345 e28

[50]

Guillén -Boixet J, Kopach A, Holehouse AS, Wittmann S, Jahnel M, Schlussler R, Kim K, Trussina I, Wang J, Mateju D, Poser I, Maharana S, Ruer-Gruss M, Richter D, Zhang X, Chang YT, Guck J, Honigmann A, Mahamid J, Hyman AA, Pappu RV, Alberti S, Franzmann TM. RNA-induced conformational switching and clustering of G3BP drive stress granule assembly by condensation. Cell 2020; 181(2): 346–361 e17

[51]

Liu ZS, Cai H, Xue W, Wang M, Xia T, Li WJ, Xing JQ, Zhao M, Huang YJ, Chen S, Wu SM, Wang X, Liu X, Pang X, Zhang ZY, Li T, Dai J, Dong F, Xia Q, Li AL, Zhou T, Liu ZG, Zhang XM, Li T. G3BP1 promotes DNA binding and activation of cGAS. Nat Immunol 2019; 20(1): 18–28

[52]

Zhao M, Xia T, Xing JQ, Yin LH, Li XW, Pan J, Liu JY, Sun LM, Wang M, Li T, Mao J, Han QY, Xue W, Cai H, Wang K, Xu X, Li T, He K, Wang N, Li AL, Zhou T, Zhang XM, Li WH, Li T. The stress granule protein G3BP1 promotes pre-condensation of cGAS to allow rapid responses to DNA. EMBO Rep 2022; 23(1): e53166

[53]

Hu S, Sun H, Yin L, Li J, Mei S, Xu F, Wu C, Liu X, Zhao F, Zhang D, Huang Y, Ren L, Cen S, Wang J, Liang C, Guo F. PKR-dependent cytosolic cGAS foci are necessary for intracellular DNA sensing. Sci Signal 2019; 12(609): eaav7934

[54]

Lahaye X, Gentili M, Silvin A, Conrad C, Picard L, Jouve M, Zueva E, Maurin M, Nadalin F, Knott GJ, Zhao B, Du F, Rio M, Amiel J, Fox AH, Li P, Etienne L, Bond CS, Colleaux L, Manel N. NONO detects the nuclear HIV capsid to promote cGAS-mediated innate immune activation. Cell 2018; 175(2): 488–501 e22

[55]

Yoh SM, Schneider M, Seifried J, Soonthornvacharin S, Akleh RE, Olivieri KC, De Jesus PD, Ruan C, de Castro E, Ruiz PA, Germanaud D, des Portes V, Garcia-Sastre A, Konig R, Chanda SK. PQBP1 is a proximal sensor of the cGAS-dependent innate response to HIV-1. Cell 2015; 161(6): 1293–1305

[56]

Orzalli MH, Broekema NM, Diner BA, Hancks DC, Elde NC, Cristea IM, Knipe DM. cGAS-mediated stabilization of IFI16 promotes innate signaling during herpes simplex virus infection. Proc Natl Acad Sci USA 2015; 112(14): E1773–E1781

[57]

Almine JF, O’Hare CA, Dunphy G, Haga IR, Naik RJ, Atrih A, Connolly DJ, Taylor J, Kelsall IR, Bowie AG, Beard PM, Unterholzner L. IFI16 and cGAS cooperate in the activation of STING during DNA sensing in human keratinocytes. Nat Commun 2017; 8(1): 14392

[58]

Jønsson KL, Laustsen A, Krapp C, Skipper KA, Thavachelvam K, Hotter D, Egedal JH, Kjolby M, Mohammadi P, Prabakaran T, Sørensen LK, Sun C, Jensen SB, Holm CK, Lebbink RJ, Johannsen M, Nyegaard M, Mikkelsen JG, Kirchhoff F, Paludan SR, Jakobsen MR. IFI16 is required for DNA sensing in human macrophages by promoting production and function of cGAMP. Nat Commun 2017; 8(1): 14391

[59]

Lian H, Wei J, Zang R, Ye W, Yang Q, Zhang XN, Chen YD, Fu YZ, Hu MM, Lei CQ, Luo WW, Li S, Shu HB. ZCCHC3 is a co-sensor of cGAS for dsDNA recognition in innate immune response. Nat Commun 2018; 9(1): 3349

[60]

Chen S, Rong M, Lv Y, Zhu D, Xiang Y. Regulation of cGAS activity by RNA-modulated phase separation. EMBO Rep 2023; 24(2): e51800

[61]

Firpo MR, Mounce BC. Diverse functions of polyamines in virus infection. Biomolecules 2020; 10(4): 628

[62]

Ames BN, Dubin DT. The role of polyamines in the neutralization of bacteriophage deoxyribonucleic acid. J Biol Chem 1960; 235(3): 769–775

[63]

Gibson W, Roizman B. Compartmentalization of spermine and spermidine in the herpes simplex virion. Proc Natl Acad Sci USA 1971; 68(11): 2818–2821

[64]

Huang SL, Felsenfeld G. Solubility of complexes of polynucleotides with spermine. Nature 1960; 188(4747): 301–302

[65]

Flink I, Pettijohn DE. Polyamines stabilise DNA folds. Nature 1975; 253(5486): 62–63

[66]

Pelta J, Livolant F, Sikorav JL. DNA aggregation induced by polyamines and cobalthexamine. J Biol Chem 1996; 271(10): 5656–5662

[67]

Lambert O, Letellier L, Gelbart WM, Rigaud JL. DNA delivery by phage as a strategy for encapsulating toroidal condensates of arbitrary size into liposomes. Proc Natl Acad Sci USA 2000; 97(13): 7248–7253

[68]

Lander GC, Johnson JE, Rau DC, Potter CS, Carragher B, Evilevitch A. DNA bending-induced phase transition of encapsidated genome in phage λ. Nucleic Acids Res 2013; 41(8): 4518–4524

[69]

Roos WH, Ivanovska IL, Evilevitch A, Wuite GJ. Viral capsids: mechanical characteristics, genome packaging and delivery mechanisms. Cell Mol Life Sci 2007; 64(12): 1484–1497

[70]

Wang L, Li S, Wang K, Wang N, Liu Q, Sun Z, Wang L, Wang L, Liu Q, Song C, Yang Q. Spermine enhances antiviral and anticancer responses by stabilizing DNA binding with the DNA sensor cGAS. Immunity 2023; 56(2): 272–288 e7

[71]

Wang L, Liu Q, Wang N, Li S, Bian W, Sun Z, Wang L, Wang L, Liu C, Song C, Liu Q, Yang Q. Oleic acid dissolves cGAS-DNA phase separation to inhibit immune surveillance. Adv Sci (Weinh) 2023; 10(14): 2206820

[72]

Wu JJ, Li W, Shao Y, Avey D, Fu B, Gillen J, Hand T, Ma S, Liu X, Miley W, Konrad A, Neipel F, Stürzl M, Whitby D, Li H, Zhu F. Inhibition of cGAS DNA sensing by a herpesvirus virion protein. Cell Host Microbe 2015; 18(3): 333–344

[73]

Huang J, You H, Su C, Li Y, Chen S, Zheng C. Herpes simplex virus 1 tegument protein VP22 abrogates cGAS/STING-mediated antiviral innate immunity. J Virol 2018; 92(15): e00841–18

[74]

Hertzog J, Zhou W, Fowler G, Rigby RE, Bridgeman A, Blest HT, Cursi C, Chauveau L, Davenne T, Warner BE, Kinchington PR, Kranzusch PJ, Rehwinkel J. Varicella-Zoster virus ORF9 is an antagonist of the DNA sensor cGAS. EMBO J 2022; 41(14): e109217

[75]

Xu G, Liu C, Zhou S, Li Q, Feng Y, Sun P, Feng H, Gao Y, Zhu J, Luo X, Zhan Q, Liu S, Zhu S, Deng H, Li D, Gao P. Viral tegument proteins restrict cGAS-DNA phase separation to mediate immune evasion. Mol Cell 2021; 81(13): 2823–2837 e9

[76]

Bhowmik D, Du M, Tian Y, Ma S, Wu J, Chen Z, Yin Q, Zhu F. Cooperative DNA binding mediated by KicGAS/ORF52 oligomerization allows inhibition of DNA-induced phase separation and activation of cGAS. Nucleic Acids Res 2021; 49(16): 9389–9403

[77]

Domizio JD, Gulen MF, Saidoune F, Thacker VV, Yatim A, Sharma K, Nass T, Guenova E, Schaller M, Conrad C, Goepfert C, de Leval L, Garnier CV, Berezowska S, Dubois A, Gilliet M, Ablasser A. The cGAS-STING pathway drives type I IFN immunopathology in COVID-19. Nature 2022; 603(7899): 145–151

[78]

Cai S, Zhang C, Zhuang Z, Zhang S, Ma L, Yang S, Zhou T, Wang Z, Xie W, Jin S, Zhao J, Guan X, Wu J, Cui J, Wu Y. Phase-separated nucleocapsid protein of SARS-CoV-2 suppresses cGAS-DNA recognition by disrupting cGAS-G3BP1 complex. Signal Transduct Target Ther 2023; 8(1): 170

[79]

Zhang Y, Ma Z, Wang Y, Boyer J, Ni G, Cheng L, Su S, Zhang Z, Zhu Z, Qian J, Su L, Zhang Q, Damania B, Liu P. Streptavidin promotes DNA binding and activation of cGAS to enhance innate immunity. iScience 2020; 23(9): 101463

[80]

Liu S, Yang B, Hou Y, Cui K, Yang X, Li X, Chen L, Liu S, Zhang Z, Jia Y, Xie Y, Xue Y, Li X, Yan B, Wu C, Deng W, Qi J, Lu D, Gao GF, Wang P, Shang G. The mechanism of STING autoinhibition and activation. Mol Cell 2023; 83(9): 1502–1518. e10

[81]

Shang G, Zhang C, Chen ZJ, Bai XC, Zhang X. Cryo-EM structures of STING reveal its mechanism of activation by cyclic GMP-AMP. Nature 2019; 567(7748): 389–393

[82]

Barlowe C, Helenius A. Cargo capture and bulk flow in the early secretory pathway. Annu Rev Cell Dev Biol 2016; 32(1): 197–222

[83]

Zhang C, Shang G, Gui X, Zhang X, Bai XC, Chen ZJ. Structural basis of STING binding with and phosphorylation by TBK1. Nature 2019; 567(7748): 394–398

[84]

Liu S, Cai X, Wu J, Cong Q, Chen X, Li T, Du F, Ren J, Wu YT, Grishin NV, Chen ZJ. Phosphorylation of innate immune adaptor proteins MAVS, STING, and TRIF induces IRF3 activation. Science 2015; 347(6227): aaa2630

[85]

Zhao B, Shu C, Gao X, Sankaran B, Du F, Shelton CL, Herr AB, Ji JY, Li P. Structural basis for concerted recruitment and activation of IRF-3 by innate immune adaptor proteins. Proc Natl Acad Sci USA 2016; 113(24): E3403–E3412

[86]

Yu X, Zhang L, Shen J, Zhai Y, Jiang Q, Yi M, Deng X, Ruan Z, Fang R, Chen Z, Ning X, Jiang Z. The STING phase-separator suppresses innate immune signalling. Nat Cell Biol 2021; 23(4): 330–340

[87]

Wang C, Guan Y, Lv M, Zhang R, Guo Z, Wei X, Du X, Yang J, Li T, Wan Y, Su X, Huang X, Jiang Z. Manganese increases the sensitivity of the cGAS-STING pathway for double-stranded DNA and is required for the host defense against DNA viruses. Immunity 2018; 48(4): 675–687.e7

[88]

Lin R, Mamane Y, Hiscott J. Structural and functional analysis of interferon regulatory factor 3: localization of the transactivation and autoinhibitory domains. Mol Cell Biol 1999; 19(4): 2465–2474

[89]

Qin BY, Liu C, Lam SS, Srinath H, Delston R, Correia JJ, Derynck R, Lin K. Crystal structure of IRF-3 reveals mechanism of autoinhibition and virus-induced phosphoactivation. Nat Struct Mol Biol 2003; 10(11): 913–921

[90]

Takahasi K, Suzuki NN, Horiuchi M, Mori M, Suhara W, Okabe Y, Fukuhara Y, Terasawa H, Akira S, Fujita T, Inagaki F. X-ray crystal structure of IRF-3 and its functional implications. Nat Struct Mol Biol 2003; 10(11): 922–927

[91]

Qin Z, Fang X, Sun W, Ma Z, Dai T, Wang S, Zong Z, Huang H, Ru H, Lu H, Yang B, Lin S, Zhou F, Zhang L. Deactylation by SIRT1 enables liquid-liquid phase separation of IRF3/IRF7 in innate antiviral immunity. Nat Immunol 2022; 23(8): 1193–1207

[92]

Xu C, Wang L, Fozouni P, Evjen G, Chandra V, Jiang J, Lu C, Nicastri M, Bretz C, Winkler JD, Amaravadi R, Garcia BA, Adams PD, Ott M, Tong W, Johansen T, Dou Z, Berger SL. SIRT1 is downregulated by autophagy in senescence and ageing. Nat Cell Biol 2020; 22(10): 1170–1179

[93]

Pardo PS, Boriek AM. SIRT1 regulation in ageing and obesity. Mech Ageing Dev 2020; 188: 111249

[94]

Piroth L, Cottenet J, Mariet AS, Bonniaud P, Blot M, Tubert-Bitter P, Quantin C. Comparison of the characteristics, morbidity, and mortality of COVID-19 and seasonal influenza: a nationwide, population-based retrospective cohort study. Lancet Respir Med 2021; 9(3): 251–259

[95]

Bartleson JM, Radenkovic D, Covarrubias AJ, Furman D, Winer DA, Verdin E. SARS-CoV-2, COVID-19 and the ageing immune system. Nat Aging 2021; 1(9): 769–782

[96]

Liu Y, Jesus AA, Marrero B, Yang D, Ramsey SE, Sanchez G A M, Tenbrock K, Wittkowski H, Jones OY, Kuehn HS, Lee CR, DiMattia MA, Cowen EW, Gonzalez B, Palmer I, DiGiovanna JJ, Biancotto A, Kim H, Tsai WL, Trier AM, Huang Y, Stone DL, Hill S, Kim HJ, St Hilaire C, Gurprasad S, Plass N, Chapelle D, Horkayne-Szakaly I, Foell D, Barysenka A, Candotti F, Holland SM, Hughes JD, Mehmet H, Issekutz AC, Raffeld M, McElwee J, Fontana JR, Minniti CP, Moir S, Kastner DL, Gadina M, Steven AC, Wingfield PT, Brooks SR, Rosenzweig SD, Fleisher TA, Deng Z, Boehm M, Paller AS, Goldbach-Mansky R. Activated STING in a vascular and pulmonary syndrome. N Engl J Med 2014; 371(6): 507–518

[97]

König N, Fiehn C, Wolf C, Schuster M, Cura Costa E, Tüngler V, Alvarez HA, Chara O, Engel K, Goldbach-Mansky R, Günther C, Lee-Kirsch MA. Familial chilblain lupus due to a gain-of-function mutation in STING. Ann Rheum Dis 2017; 76(2): 468–472

[98]

Jeremiah N, Neven B, Gentili M, Callebaut I, Maschalidi S, Stolzenberg MC, Goudin N, Frémond ML, Nitschke P, Molina TJ, Blanche S, Picard C, Rice GI, Crow YJ, Manel N, Fischer A, Bader-Meunier B, Rieux-Laucat F. Inherited STING-activating mutation underlies a familial inflammatory syndrome with lupus-like manifestations. J Clin Invest 2014; 124(12): 5516–5520

[99]

Meng F, Yu Z, Zhang D, Chen S, Guan H, Zhou R, Wu Q, Zhang Q, Liu S, Venkat Ramani MK, Yang B, Ba XQ, Zhang J, Huang J, Bai X, Qin J, Feng XH, Ouyang S, Zhang YJ, Liang T, Xu P. Induced phase separation of mutant NF2 imprisons the cGAS-STING machinery to abrogate antitumor immunity. Mol Cell 2021; 81(20): 4147–4164 e7

[100]

Petrilli AM, Fernández-Valle C. Role of Merlin/NF2 inactivation in tumor biology. Oncogene 2016; 35(5): 537–548

[101]

Cooper J, Giancotti FG. Molecular insights into NF2/Merlin tumor suppressor function. FEBS Lett 2014; 588(16): 2743–2752

[102]

Wileman T. Aggresomes and pericentriolar sites of virus assembly: cellular defense or viral design?. Annu Rev Microbiol 2007; 61(1): 149–167

[103]

Rincheval V, Lelek M, Gault E, Bouillier C, Sitterlin D, Blouquit-Laye S, Galloux M, Zimmer C, Eleouet JF, Rameix-Welti MA. Functional organization of cytoplasmic inclusion bodies in cells infected by respiratory syncytial virus. Nat Commun 2017; 8(1): 563

[104]

Nikolic J, Le Bars R, Lama Z, Scrima N, Lagaudrière-Gesbert C, Gaudin Y, Blondel D. Negri bodies are viral factories with properties of liquid organelles. Nat Commun 2017; 8(1): 58

[105]

Guseva S, Milles S, Jensen MR, Salvi N, Kleman JP, Maurin D, Ruigrok RWH, Blackledge M. Measles virus nucleo- and phosphoproteins form liquid-like phase-separated compartments that promote nucleocapsid assembly. Sci Adv 2020; 6(14): eaaz7095

[106]

Bailly B, Richard CA, Sharma G, Wang L, Johansen L, Cao J, Pendharkar V, Sharma DC, Galloux M, Wang Y, Cui R, Zou G, Guillon P, von Itzstein M, Eléouët JF, Altmeyer R. Targeting human respiratory syncytial virus transcription anti-termination factor M2–1 to inhibit in vivo viral replication. Sci Rep 2016; 6(1): 25806

[107]

Risso-Ballester J, Galloux M, Cao J, Le Goffic R, Hontonnou F, Jobart-Malfait A, Desquesnes A, Sake SM, Haid S, Du M, Zhang X, Zhang H, Wang Z, Rincheval V, Zhang Y, Pietschmann T, Eleouet JF, Rameix-Welti MA, Altmeyer R. A condensate-hardening drug blocks RSV replication in vivo. Nature 2021; 595(7868): 596–599

[108]

Wang S, Dai T, Qin Z, Pan T, Chu F, Lou L, Zhang L, Yang B, Huang H, Lu H, Zhou F. Targeting liquid-liquid phase separation of SARS-CoV-2 nucleocapsid protein promotes innate antiviral immunity by elevating MAVS activity. Nat Cell Biol 2021; 23(7): 718–732

[109]

Shim JH, Su ZY, Chae JI, Kim DJ, Zhu F, Ma WY, Bode AM, Yang CS, Dong Z. Epigallocatechin gallate suppresses lung cancer cell growth through Ras-GTPase-activating protein SH3 domain-binding protein 1. Cancer Prev Res (Phila) 2010; 3(5): 670–679

[110]

Jang M, Cai L, Udeani GO, Slowing KV, Thomas CF, Beecher CW, Fong HH, Farnsworth NR, Kinghorn AD, Mehta RG, Moon RC, Pezzuto JM. Cancer chemopreventive activity of resveratrol, a natural product derived from grapes. Science 1997; 275(5297): 218–220

[111]

Milne JC, Lambert PD, Schenk S, Carney DP, Smith JJ, Gagne DJ, Jin L, Boss O, Perni RB, Vu CB, Bemis JE, Xie R, Disch JS, Ng PY, Nunes JJ, Lynch AV, Yang H, Galonek H, Israelian K, Choy W, Iffland A, Lavu S, Medvedik O, Sinclair DA, Olefsky JM, Jirousek MR, Elliott PJ, Westphal CH. Small molecule activators of SIRT1 as therapeutics for the treatment of type 2 diabetes. Nature 2007; 450(7170): 712–716

[112]

Luo M, Wang H, Wang Z, Cai H, Lu Z, Li Y, Du M, Huang G, Wang C, Chen X, Porembka MR, Lea J, Frankel AE, Fu YX, Chen ZJ, Gao J. A STING-activating nanovaccine for cancer immunotherapy. Nat Nanotechnol 2017; 12(7): 648–654

[113]

Li S, Luo M, Wang Z, Feng Q, Wilhelm J, Wang X, Li W, Wang J, Cholka A, Fu YX, Sumer BD, Yu H, Gao J. Prolonged activation of innate immune pathways by a polyvalent STING agonist. Nat Biomed Eng 2021; 5(5): 455–466

[114]

Hofweber M, Dormann D. Friend or foe—post-translational modifications as regulators of phase separation and RNP granule dynamics. J Biol Chem 2019; 294(18): 7137–7150

[115]

Li J, Zhang M, Ma W, Yang B, Lu H, Zhou F, Zhang L. Post-translational modifications in liquid-liquid phase separation: a comprehensive review. Mol Biomed 2022; 3(1): 13

RIGHTS & PERMISSIONS

Higher Education Press

AI Summary AI Mindmap
PDF (1968KB)

3055

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/