Phase separation in cGAS-STING signaling

Quanjin Li, Pu Gao

PDF(1968 KB)
PDF(1968 KB)
Front. Med. ›› 2023, Vol. 17 ›› Issue (5) : 855-866. DOI: 10.1007/s11684-023-1026-6
REVIEW
REVIEW

Phase separation in cGAS-STING signaling

Author information +
History +

Abstract

Biomolecular condensates formed by phase separation are widespread and play critical roles in many physiological and pathological processes. cGAS-STING signaling functions to detect aberrant DNA signals to initiate anti-infection defense and antitumor immunity. At the same time, cGAS-STING signaling must be carefully regulated to maintain immune homeostasis. Interestingly, exciting recent studies have reported that biomolecular phase separation exists and plays important roles in different steps of cGAS-STING signaling, including cGAS condensates, STING condensates, and IRF3 condensates. In addition, several intracellular and extracellular factors have been proposed to modulate the condensates in cGAS-STING signaling. These studies reveal novel activation and regulation mechanisms of cGAS-STING signaling and provide new opportunities for drug discovery. Here, we summarize recent advances in the phase separation of cGAS-STING signaling and the development of potential drugs targeting these innate immune condensates.

Keywords

biomolecular condensates / phase separation / cGAS-STING pathway / cGAS / STING / cGAMP / interferon

Cite this article

Download citation ▾
Quanjin Li, Pu Gao. Phase separation in cGAS-STING signaling. Front. Med., 2023, 17(5): 855‒866 https://doi.org/10.1007/s11684-023-1026-6

References

[1]
Sun L, Wu J, Du F, Chen X, Chen ZJ. Cyclic GMP-AMP synthase is a cytosolic DNA sensor that activates the type I interferon pathway. Science 2013; 339(6121): 786–791
CrossRef Google scholar
[2]
Wu J, Sun L, Chen X, Du F, Shi H, Chen C, Chen ZJ. Cyclic GMP-AMP is an endogenous second messenger in innate immune signaling by cytosolic DNA. Science 2013; 339(6121): 826–830
CrossRef Google scholar
[3]
Ablasser A, Goldeck M, Cavlar T, Deimling T, Witte G, Rohl I, Hopfner KP, Ludwig J, Hornung V. cGAS produces a 2′-5′-linked cyclic dinucleotide second messenger that activates STING. Nature 2013; 498(7454): 380–384
CrossRef Google scholar
[4]
Gao P, Ascano M, Wu Y, Barchet W, Gaffney BL, Zillinger T, Serganov AA, Liu Y, Jones RA, Hartmann G, Tuschl T, Patel DJ. Cyclic [G(2′,5′)pA(3′,5′)p] is the metazoan second messenger produced by DNA-activated cyclic GMP-AMP synthase. Cell 2013; 153(5): 1094–1107
CrossRef Google scholar
[5]
Gao P, Ascano M, Zillinger T, Wang W, Dai P, Serganov AA, Gaffney BL, Shuman S, Jones RA, Deng L, Hartmann G, Barchet W, Tuschl T, Patel DJ. Structure-function analysis of STING activation by c[G(2′,5′)pA(3′,5′)p] and targeting by antiviral DMXAA. Cell 2013; 154(4): 748–762
CrossRef Google scholar
[6]
Li X, Shu C, Yi G, Chaton CT, Shelton CL, Diao J, Zuo X, Kao CC, Herr AB, Li P. Cyclic GMP-AMP synthase is activated by double-stranded DNA-induced oligomerization. Immunity 2013; 39(6): 1019–1031
CrossRef Google scholar
[7]
Ishikawa H, Barber GN. STING is an endoplasmic reticulum adaptor that facilitates innate immune signalling. Nature 2008; 455(7213): 674–678
CrossRef Google scholar
[8]
Zhong B, Yang Y, Li S, Wang YY, Li Y, Diao F, Lei C, He X, Zhang L, Tien P, Shu HB. The adaptor protein MITA links virus-sensing receptors to IRF3 transcription factor activation. Immunity 2008; 29(4): 538–550
CrossRef Google scholar
[9]
Sun W, Li Y, Chen L, Chen H, You F, Zhou X, Zhou Y, Zhai Z, Chen D, Jiang Z. ERIS, an endoplasmic reticulum IFN stimulator, activates innate immune signaling through dimerization. Proc Natl Acad Sci USA 2009; 106(21): 8653–8658
CrossRef Google scholar
[10]
Saitoh T, Fujita N, Hayashi T, Takahara K, Satoh T, Lee H, Matsunaga K, Kageyama S, Omori H, Noda T, Yamamoto N, Kawai T, Ishii K, Takeuchi O, Yoshimori T, Akira S. Atg9a controls dsDNA-driven dynamic translocation of STING and the innate immune response. Proc Natl Acad Sci USA 2009; 106(49): 20842–20846
CrossRef Google scholar
[11]
Ishikawa H, Ma Z, Barber GN. STING regulates intracellular DNA-mediated, type I interferon-dependent innate immunity. Nature 2009; 461(7265): 788–792
CrossRef Google scholar
[12]
Dobbs N, Burnaevskiy N, Chen D, Gonugunta VK, Alto NM, Yan N. STING activation by translocation from the ER is associated with infection and autoinflammatory disease. Cell Host Microbe 2015; 18(2): 157–168
CrossRef Google scholar
[13]
Fang R, Jiang Q, Guan Y, Gao P, Zhang R, Zhao Z, Jiang Z. Golgi apparatus-synthesized sulfated glycosaminoglycans mediate polymerization and activation of the cGAMP sensor STING. Immunity 2021; 54(5): 962–975 e8
CrossRef Google scholar
[14]
Tanaka Y, Chen ZJ. STING specifies IRF3 phosphorylation by TBK1 in the cytosolic DNA signaling pathway. Sci Signal 2012; 5(214): ra20
CrossRef Google scholar
[15]
Lin R, Heylbroeck C, Pitha PM, Hiscott J. Virus-dependent phosphorylation of the IRF-3 transcription factor regulates nuclear translocation, transactivation potential, and proteasome-mediated degradation. Mol Cell Biol 1998; 18(5): 2986–2996
CrossRef Google scholar
[16]
Fitzgerald KA, McWhirter SM, Faia KL, Rowe DC, Latz E, Golenbock DT, Coyle AJ, Liao SM, Maniatis T. IKKepsilon and TBK1 are essential components of the IRF3 signaling pathway. Nat Immunol 2003; 4(5): 491–496
CrossRef Google scholar
[17]
Ishii KJ, Coban C, Kato H, Takahashi K, Torii Y, Takeshita F, Ludwig H, Sutter G, Suzuki K, Hemmi H, Sato S, Yamamoto M, Uematsu S, Kawai T, Takeuchi O, Akira S. A Toll-like receptor-independent antiviral response induced by double-stranded B-form DNA. Nat Immunol 2006; 7(1): 40–48
CrossRef Google scholar
[18]
Stetson DB, Medzhitov R. Recognition of cytosolic DNA activates an IRF3-dependent innate immune response. Immunity 2006; 24(1): 93–103
CrossRef Google scholar
[19]
Chen C, Xu P. Cellular functions of cGAS-STING signaling. Trends Cell Biol 2023; 33(8): 630–648
CrossRef Google scholar
[20]
Gao D, Li T, Li XD, Chen X, Li QZ, Wight-Carter M, Chen ZJ. Activation of cyclic GMP-AMP synthase by self-DNA causes autoimmune diseases. Proc Natl Acad Sci USA 2015; 112(42): E5699–E5705
CrossRef Google scholar
[21]
Konno H, Yamauchi S, Berglund A, Putney RM, Mulé JJ, Barber GN. Suppression of STING signaling through epigenetic silencing and missense mutation impedes DNA damage mediated cytokine production. Oncogene 2018; 37(15): 2037–2051
CrossRef Google scholar
[22]
Motwani M, Pesiridis S, Fitzgerald KA. DNA sensing by the cGAS-STING pathway in health and disease. Nat Rev Genet 2019; 20(11): 657–674
CrossRef Google scholar
[23]
Cui X, Zhang R, Cen S, Zhou J. STING modulators: predictive significance in drug discovery. Eur J Med Chem 2019; 182: 111591
CrossRef Google scholar
[24]
Wang Y, Luo J, Alu A, Han X, Wei Y, Wei X. cGAS-STING pathway in cancer biotherapy. Mol Cancer 2020; 19(1): 136
CrossRef Google scholar
[25]
Hopfner KP, Hornung V. Molecular mechanisms and cellular functions of cGAS-STING signalling. Nat Rev Mol Cell Biol 2020; 21(9): 501–521
CrossRef Google scholar
[26]
Li P, Banjade S, Cheng HC, Kim S, Chen B, Guo L, Llaguno M, Hollingsworth JV, King DS, Banani SF, Russo PS, Jiang QX, Nixon BT, Rosen MK. Phase transitions in the assembly of multivalent signalling proteins. Nature 2012; 483(7389): 336–340
CrossRef Google scholar
[27]
Kato M, Han TW, Xie S, Shi K, Du X, Wu LC, Mirzaei H, Goldsmith EJ, Longgood J, Pei J, Grishin NV, Frantz DE, Schneider JW, Chen S, Li L, Sawaya MR, Eisenberg D, Tycko R, McKnight SL. Cell-free formation of RNA granules: low complexity sequence domains form dynamic fibers within hydrogels. Cell 2012; 149(4): 753–767
CrossRef Google scholar
[28]
Han TW, Kato M, Xie S, Wu LC, Mirzaei H, Pei J, Chen M, Xie Y, Allen J, Xiao G, McKnight SL. Cell-free formation of RNA granules: bound RNAs identify features and components of cellular assemblies. Cell 2012; 149(4): 768–779
CrossRef Google scholar
[29]
Banani SF, Lee HO, Hyman AA, Rosen MK. Biomolecular condensates: organizers of cellular biochemistry. Nat Rev Mol Cell Biol 2017; 18(5): 285–298
CrossRef Google scholar
[30]
Alberti S, Gladfelter A, Mittag T. Considerations and challenges in studying liquid-liquid phase separation and biomolecular condensates. Cell 2019; 176(3): 419–434
CrossRef Google scholar
[31]
Alberti S, Dormann D. Liquid–liquid phase separation in disease. Annu Rev Genet 2019; 53(1): 171–194
CrossRef Google scholar
[32]
Mitrea DM, Mittasch M, Gomes BF, Klein IA, Murcko MA. Modulating biomolecular condensates: a novel approach to drug discovery. Nat Rev Drug Discov 2022; 21(11): 841–862
CrossRef Google scholar
[33]
Xiao Q, McAtee CK, Su X. Phase separation in immune signalling. Nat Rev Immunol 2022; 22(3): 188–199
CrossRef Google scholar
[34]
Xie W, Lama L, Adura C, Tomita D, Glickman JF, Tuschl T, Patel DJ. Human cGAS catalytic domain has an additional DNA-binding interface that enhances enzymatic activity and liquid-phase condensation. Proc Natl Acad Sci USA 2019; 116(24): 11946–11955
CrossRef Google scholar
[35]
Civril F, Deimling T, de Oliveira Mann CC, Ablasser A, Moldt M, Witte G, Hornung V, Hopfner KP. Structural mechanism of cytosolic DNA sensing by cGAS. Nature 2013; 498(7454): 332–337
CrossRef Google scholar
[36]
Tao J, Zhang XW, Jin J, Du XX, Lian T, Yang J, Zhou X, Jiang Z, Su XD. Nonspecific DNA binding of cGAS N terminus promotes cGAS activation. J Immunol 2017; 198(9): 3627–3636
CrossRef Google scholar
[37]
Du M, Chen ZJ. DNA-induced liquid phase condensation of cGAS activates innate immune signaling. Science 2018; 361(6403): 704–709
CrossRef Google scholar
[38]
Yao Y, Wang W, Chen C. Mechanisms of phase-separation-mediated cGAS activation revealed by dcFCCS. PNAS Nexus 2022; 1(3): pgac109
CrossRef Google scholar
[39]
Zhou W, Mohr L, Maciejowski J, Kranzusch PJ. cGAS phase separation inhibits TREX1-mediated DNA degradation and enhances cytosolic DNA sensing. Mol Cell 2021; 81(4): 739–755 e7
CrossRef Google scholar
[40]
Gray EE, Treuting PM, Woodward JJ, Stetson DB. Cutting Edge: cGAS is required for lethal autoimmune disease in the Trex1-deficient mouse model of Aicardi–Goutières syndrome. J Immunol 2015; 195(5): 1939–1943
CrossRef Google scholar
[41]
Tao X, Song J, Song Y, Zhang Y, Yang J, Zhang P, Zhang D, Chen D, Sun Q. Ku proteins promote DNA binding and condensation of cyclic GMP-AMP synthase. Cell Rep 2022; 40(10): 111310
CrossRef Google scholar
[42]
Zhang J, Zhou EC, He Y, Chai ZL, Ji BZ, Tu Y, Wang HL, Wu WQ, Liu Y, Zhang XH, Liu Y. ZYG11B potentiates the antiviral innate immune response by enhancing cGAS-DNA binding and condensation. Cell Rep 2023; 42(3): 112278
CrossRef Google scholar
[43]
Kim SS, Pandey KK, Choi HS, Kim SY, Law PY, Wei LN, Loh HH. Poly(C) binding protein family is a transcription factor in mu-opioid receptor gene expression. Mol Pharmacol 2005; 68(3): 729–736
CrossRef Google scholar
[44]
Liao CY, Lei CQ, Shu HB. PCBP1 modulates the innate immune response by facilitating the binding of cGAS to DNA. Cell Mol Immunol 2021; 18(10): 2334–2343
CrossRef Google scholar
[45]
Gu H, Yang J, Zhang J, Song Y, Zhang Y, Xu P, Zhu Y, Wang L, Zhang P, Li L, Chen D, Sun Q. PCBP2 maintains antiviral signaling homeostasis by regulating cGAS enzymatic activity via antagonizing its condensation. Nat Commun 2022; 13(1): 1564
CrossRef Google scholar
[46]
Wang Y, Ning X, Gao P, Wu S, Sha M, Lv M, Zhou X, Gao J, Fang R, Meng G, Su X, Jiang Z. Inflammasome activation triggers caspase-1-mediated cleavage of cGAS to regulate responses to DNA virus. Infect Immun 2017; 46(3): 393–404
[47]
Zheng Y, Liu Q, Wu Y, Ma L, Zhang Z, Liu T, Jin S, She Y, Li YP, Cui J. Zika virus elicits inflammation to evade antiviral response by cleaving cGAS via NS1-caspase-1 axis. EMBO J 2018; 37(18): e99347
CrossRef Google scholar
[48]
Shi C, Yang X, Hou Y, Jin X, Guo L, Zhou Y, Zhang C, Yin H. USP15 promotes cGAS activation through deubiquitylation and liquid condensation. Nucleic Acids Res 2022; 50(19): 11093–11108
CrossRef Google scholar
[49]
Yang P, Mathieu C, Kolaitis RM, Zhang P, Messing J, Yurtsever U, Yang Z, Wu J, Li Y, Pan Q, Yu J, Martin EW, Mittag T, Kim HJ, Taylor JP. G3BP1 is a tunable switch that triggers phase separation to assemble stress granules. Cell 2020; 181(2): 325–345 e28
CrossRef Google scholar
[50]
Guillén -Boixet J, Kopach A, Holehouse AS, Wittmann S, Jahnel M, Schlussler R, Kim K, Trussina I, Wang J, Mateju D, Poser I, Maharana S, Ruer-Gruss M, Richter D, Zhang X, Chang YT, Guck J, Honigmann A, Mahamid J, Hyman AA, Pappu RV, Alberti S, Franzmann TM. RNA-induced conformational switching and clustering of G3BP drive stress granule assembly by condensation. Cell 2020; 181(2): 346–361 e17
CrossRef Google scholar
[51]
Liu ZS, Cai H, Xue W, Wang M, Xia T, Li WJ, Xing JQ, Zhao M, Huang YJ, Chen S, Wu SM, Wang X, Liu X, Pang X, Zhang ZY, Li T, Dai J, Dong F, Xia Q, Li AL, Zhou T, Liu ZG, Zhang XM, Li T. G3BP1 promotes DNA binding and activation of cGAS. Nat Immunol 2019; 20(1): 18–28
CrossRef Google scholar
[52]
Zhao M, Xia T, Xing JQ, Yin LH, Li XW, Pan J, Liu JY, Sun LM, Wang M, Li T, Mao J, Han QY, Xue W, Cai H, Wang K, Xu X, Li T, He K, Wang N, Li AL, Zhou T, Zhang XM, Li WH, Li T. The stress granule protein G3BP1 promotes pre-condensation of cGAS to allow rapid responses to DNA. EMBO Rep 2022; 23(1): e53166
CrossRef Google scholar
[53]
Hu S, Sun H, Yin L, Li J, Mei S, Xu F, Wu C, Liu X, Zhao F, Zhang D, Huang Y, Ren L, Cen S, Wang J, Liang C, Guo F. PKR-dependent cytosolic cGAS foci are necessary for intracellular DNA sensing. Sci Signal 2019; 12(609): eaav7934
CrossRef Google scholar
[54]
Lahaye X, Gentili M, Silvin A, Conrad C, Picard L, Jouve M, Zueva E, Maurin M, Nadalin F, Knott GJ, Zhao B, Du F, Rio M, Amiel J, Fox AH, Li P, Etienne L, Bond CS, Colleaux L, Manel N. NONO detects the nuclear HIV capsid to promote cGAS-mediated innate immune activation. Cell 2018; 175(2): 488–501 e22
CrossRef Google scholar
[55]
Yoh SM, Schneider M, Seifried J, Soonthornvacharin S, Akleh RE, Olivieri KC, De Jesus PD, Ruan C, de Castro E, Ruiz PA, Germanaud D, des Portes V, Garcia-Sastre A, Konig R, Chanda SK. PQBP1 is a proximal sensor of the cGAS-dependent innate response to HIV-1. Cell 2015; 161(6): 1293–1305
CrossRef Google scholar
[56]
Orzalli MH, Broekema NM, Diner BA, Hancks DC, Elde NC, Cristea IM, Knipe DM. cGAS-mediated stabilization of IFI16 promotes innate signaling during herpes simplex virus infection. Proc Natl Acad Sci USA 2015; 112(14): E1773–E1781
CrossRef Google scholar
[57]
Almine JF, O’Hare CA, Dunphy G, Haga IR, Naik RJ, Atrih A, Connolly DJ, Taylor J, Kelsall IR, Bowie AG, Beard PM, Unterholzner L. IFI16 and cGAS cooperate in the activation of STING during DNA sensing in human keratinocytes. Nat Commun 2017; 8(1): 14392
CrossRef Google scholar
[58]
Jønsson KL, Laustsen A, Krapp C, Skipper KA, Thavachelvam K, Hotter D, Egedal JH, Kjolby M, Mohammadi P, Prabakaran T, Sørensen LK, Sun C, Jensen SB, Holm CK, Lebbink RJ, Johannsen M, Nyegaard M, Mikkelsen JG, Kirchhoff F, Paludan SR, Jakobsen MR. IFI16 is required for DNA sensing in human macrophages by promoting production and function of cGAMP. Nat Commun 2017; 8(1): 14391
CrossRef Google scholar
[59]
Lian H, Wei J, Zang R, Ye W, Yang Q, Zhang XN, Chen YD, Fu YZ, Hu MM, Lei CQ, Luo WW, Li S, Shu HB. ZCCHC3 is a co-sensor of cGAS for dsDNA recognition in innate immune response. Nat Commun 2018; 9(1): 3349
CrossRef Google scholar
[60]
Chen S, Rong M, Lv Y, Zhu D, Xiang Y. Regulation of cGAS activity by RNA-modulated phase separation. EMBO Rep 2023; 24(2): e51800
CrossRef Google scholar
[61]
Firpo MR, Mounce BC. Diverse functions of polyamines in virus infection. Biomolecules 2020; 10(4): 628
CrossRef Google scholar
[62]
Ames BN, Dubin DT. The role of polyamines in the neutralization of bacteriophage deoxyribonucleic acid. J Biol Chem 1960; 235(3): 769–775
CrossRef Google scholar
[63]
Gibson W, Roizman B. Compartmentalization of spermine and spermidine in the herpes simplex virion. Proc Natl Acad Sci USA 1971; 68(11): 2818–2821
CrossRef Google scholar
[64]
Huang SL, Felsenfeld G. Solubility of complexes of polynucleotides with spermine. Nature 1960; 188(4747): 301–302
CrossRef Google scholar
[65]
Flink I, Pettijohn DE. Polyamines stabilise DNA folds. Nature 1975; 253(5486): 62–63
CrossRef Google scholar
[66]
Pelta J, Livolant F, Sikorav JL. DNA aggregation induced by polyamines and cobalthexamine. J Biol Chem 1996; 271(10): 5656–5662
CrossRef Google scholar
[67]
Lambert O, Letellier L, Gelbart WM, Rigaud JL. DNA delivery by phage as a strategy for encapsulating toroidal condensates of arbitrary size into liposomes. Proc Natl Acad Sci USA 2000; 97(13): 7248–7253
CrossRef Google scholar
[68]
Lander GC, Johnson JE, Rau DC, Potter CS, Carragher B, Evilevitch A. DNA bending-induced phase transition of encapsidated genome in phage λ. Nucleic Acids Res 2013; 41(8): 4518–4524
CrossRef Google scholar
[69]
Roos WH, Ivanovska IL, Evilevitch A, Wuite GJ. Viral capsids: mechanical characteristics, genome packaging and delivery mechanisms. Cell Mol Life Sci 2007; 64(12): 1484–1497
CrossRef Google scholar
[70]
Wang L, Li S, Wang K, Wang N, Liu Q, Sun Z, Wang L, Wang L, Liu Q, Song C, Yang Q. Spermine enhances antiviral and anticancer responses by stabilizing DNA binding with the DNA sensor cGAS. Immunity 2023; 56(2): 272–288 e7
CrossRef Google scholar
[71]
Wang L, Liu Q, Wang N, Li S, Bian W, Sun Z, Wang L, Wang L, Liu C, Song C, Liu Q, Yang Q. Oleic acid dissolves cGAS-DNA phase separation to inhibit immune surveillance. Adv Sci (Weinh) 2023; 10(14): 2206820
CrossRef Google scholar
[72]
Wu JJ, Li W, Shao Y, Avey D, Fu B, Gillen J, Hand T, Ma S, Liu X, Miley W, Konrad A, Neipel F, Stürzl M, Whitby D, Li H, Zhu F. Inhibition of cGAS DNA sensing by a herpesvirus virion protein. Cell Host Microbe 2015; 18(3): 333–344
CrossRef Google scholar
[73]
Huang J, You H, Su C, Li Y, Chen S, Zheng C. Herpes simplex virus 1 tegument protein VP22 abrogates cGAS/STING-mediated antiviral innate immunity. J Virol 2018; 92(15): e00841–18
CrossRef Google scholar
[74]
Hertzog J, Zhou W, Fowler G, Rigby RE, Bridgeman A, Blest HT, Cursi C, Chauveau L, Davenne T, Warner BE, Kinchington PR, Kranzusch PJ, Rehwinkel J. Varicella-Zoster virus ORF9 is an antagonist of the DNA sensor cGAS. EMBO J 2022; 41(14): e109217
CrossRef Google scholar
[75]
Xu G, Liu C, Zhou S, Li Q, Feng Y, Sun P, Feng H, Gao Y, Zhu J, Luo X, Zhan Q, Liu S, Zhu S, Deng H, Li D, Gao P. Viral tegument proteins restrict cGAS-DNA phase separation to mediate immune evasion. Mol Cell 2021; 81(13): 2823–2837 e9
CrossRef Google scholar
[76]
Bhowmik D, Du M, Tian Y, Ma S, Wu J, Chen Z, Yin Q, Zhu F. Cooperative DNA binding mediated by KicGAS/ORF52 oligomerization allows inhibition of DNA-induced phase separation and activation of cGAS. Nucleic Acids Res 2021; 49(16): 9389–9403
CrossRef Google scholar
[77]
Domizio JD, Gulen MF, Saidoune F, Thacker VV, Yatim A, Sharma K, Nass T, Guenova E, Schaller M, Conrad C, Goepfert C, de Leval L, Garnier CV, Berezowska S, Dubois A, Gilliet M, Ablasser A. The cGAS-STING pathway drives type I IFN immunopathology in COVID-19. Nature 2022; 603(7899): 145–151
CrossRef Google scholar
[78]
Cai S, Zhang C, Zhuang Z, Zhang S, Ma L, Yang S, Zhou T, Wang Z, Xie W, Jin S, Zhao J, Guan X, Wu J, Cui J, Wu Y. Phase-separated nucleocapsid protein of SARS-CoV-2 suppresses cGAS-DNA recognition by disrupting cGAS-G3BP1 complex. Signal Transduct Target Ther 2023; 8(1): 170
CrossRef Google scholar
[79]
Zhang Y, Ma Z, Wang Y, Boyer J, Ni G, Cheng L, Su S, Zhang Z, Zhu Z, Qian J, Su L, Zhang Q, Damania B, Liu P. Streptavidin promotes DNA binding and activation of cGAS to enhance innate immunity. iScience 2020; 23(9): 101463
CrossRef Google scholar
[80]
Liu S, Yang B, Hou Y, Cui K, Yang X, Li X, Chen L, Liu S, Zhang Z, Jia Y, Xie Y, Xue Y, Li X, Yan B, Wu C, Deng W, Qi J, Lu D, Gao GF, Wang P, Shang G. The mechanism of STING autoinhibition and activation. Mol Cell 2023; 83(9): 1502–1518. e10
CrossRef Google scholar
[81]
Shang G, Zhang C, Chen ZJ, Bai XC, Zhang X. Cryo-EM structures of STING reveal its mechanism of activation by cyclic GMP-AMP. Nature 2019; 567(7748): 389–393
CrossRef Google scholar
[82]
Barlowe C, Helenius A. Cargo capture and bulk flow in the early secretory pathway. Annu Rev Cell Dev Biol 2016; 32(1): 197–222
CrossRef Google scholar
[83]
Zhang C, Shang G, Gui X, Zhang X, Bai XC, Chen ZJ. Structural basis of STING binding with and phosphorylation by TBK1. Nature 2019; 567(7748): 394–398
CrossRef Google scholar
[84]
Liu S, Cai X, Wu J, Cong Q, Chen X, Li T, Du F, Ren J, Wu YT, Grishin NV, Chen ZJ. Phosphorylation of innate immune adaptor proteins MAVS, STING, and TRIF induces IRF3 activation. Science 2015; 347(6227): aaa2630
CrossRef Google scholar
[85]
Zhao B, Shu C, Gao X, Sankaran B, Du F, Shelton CL, Herr AB, Ji JY, Li P. Structural basis for concerted recruitment and activation of IRF-3 by innate immune adaptor proteins. Proc Natl Acad Sci USA 2016; 113(24): E3403–E3412
CrossRef Google scholar
[86]
Yu X, Zhang L, Shen J, Zhai Y, Jiang Q, Yi M, Deng X, Ruan Z, Fang R, Chen Z, Ning X, Jiang Z. The STING phase-separator suppresses innate immune signalling. Nat Cell Biol 2021; 23(4): 330–340
CrossRef Google scholar
[87]
Wang C, Guan Y, Lv M, Zhang R, Guo Z, Wei X, Du X, Yang J, Li T, Wan Y, Su X, Huang X, Jiang Z. Manganese increases the sensitivity of the cGAS-STING pathway for double-stranded DNA and is required for the host defense against DNA viruses. Immunity 2018; 48(4): 675–687.e7
CrossRef Google scholar
[88]
Lin R, Mamane Y, Hiscott J. Structural and functional analysis of interferon regulatory factor 3: localization of the transactivation and autoinhibitory domains. Mol Cell Biol 1999; 19(4): 2465–2474
CrossRef Google scholar
[89]
Qin BY, Liu C, Lam SS, Srinath H, Delston R, Correia JJ, Derynck R, Lin K. Crystal structure of IRF-3 reveals mechanism of autoinhibition and virus-induced phosphoactivation. Nat Struct Mol Biol 2003; 10(11): 913–921
CrossRef Google scholar
[90]
Takahasi K, Suzuki NN, Horiuchi M, Mori M, Suhara W, Okabe Y, Fukuhara Y, Terasawa H, Akira S, Fujita T, Inagaki F. X-ray crystal structure of IRF-3 and its functional implications. Nat Struct Mol Biol 2003; 10(11): 922–927
CrossRef Google scholar
[91]
Qin Z, Fang X, Sun W, Ma Z, Dai T, Wang S, Zong Z, Huang H, Ru H, Lu H, Yang B, Lin S, Zhou F, Zhang L. Deactylation by SIRT1 enables liquid-liquid phase separation of IRF3/IRF7 in innate antiviral immunity. Nat Immunol 2022; 23(8): 1193–1207
CrossRef Google scholar
[92]
Xu C, Wang L, Fozouni P, Evjen G, Chandra V, Jiang J, Lu C, Nicastri M, Bretz C, Winkler JD, Amaravadi R, Garcia BA, Adams PD, Ott M, Tong W, Johansen T, Dou Z, Berger SL. SIRT1 is downregulated by autophagy in senescence and ageing. Nat Cell Biol 2020; 22(10): 1170–1179
CrossRef Google scholar
[93]
Pardo PS, Boriek AM. SIRT1 regulation in ageing and obesity. Mech Ageing Dev 2020; 188: 111249
CrossRef Google scholar
[94]
Piroth L, Cottenet J, Mariet AS, Bonniaud P, Blot M, Tubert-Bitter P, Quantin C. Comparison of the characteristics, morbidity, and mortality of COVID-19 and seasonal influenza: a nationwide, population-based retrospective cohort study. Lancet Respir Med 2021; 9(3): 251–259
CrossRef Google scholar
[95]
Bartleson JM, Radenkovic D, Covarrubias AJ, Furman D, Winer DA, Verdin E. SARS-CoV-2, COVID-19 and the ageing immune system. Nat Aging 2021; 1(9): 769–782
CrossRef Google scholar
[96]
Liu Y, Jesus AA, Marrero B, Yang D, Ramsey SE, Sanchez G A M, Tenbrock K, Wittkowski H, Jones OY, Kuehn HS, Lee CR, DiMattia MA, Cowen EW, Gonzalez B, Palmer I, DiGiovanna JJ, Biancotto A, Kim H, Tsai WL, Trier AM, Huang Y, Stone DL, Hill S, Kim HJ, St Hilaire C, Gurprasad S, Plass N, Chapelle D, Horkayne-Szakaly I, Foell D, Barysenka A, Candotti F, Holland SM, Hughes JD, Mehmet H, Issekutz AC, Raffeld M, McElwee J, Fontana JR, Minniti CP, Moir S, Kastner DL, Gadina M, Steven AC, Wingfield PT, Brooks SR, Rosenzweig SD, Fleisher TA, Deng Z, Boehm M, Paller AS, Goldbach-Mansky R. Activated STING in a vascular and pulmonary syndrome. N Engl J Med 2014; 371(6): 507–518
CrossRef Google scholar
[97]
König N, Fiehn C, Wolf C, Schuster M, Cura Costa E, Tüngler V, Alvarez HA, Chara O, Engel K, Goldbach-Mansky R, Günther C, Lee-Kirsch MA. Familial chilblain lupus due to a gain-of-function mutation in STING. Ann Rheum Dis 2017; 76(2): 468–472
CrossRef Google scholar
[98]
Jeremiah N, Neven B, Gentili M, Callebaut I, Maschalidi S, Stolzenberg MC, Goudin N, Frémond ML, Nitschke P, Molina TJ, Blanche S, Picard C, Rice GI, Crow YJ, Manel N, Fischer A, Bader-Meunier B, Rieux-Laucat F. Inherited STING-activating mutation underlies a familial inflammatory syndrome with lupus-like manifestations. J Clin Invest 2014; 124(12): 5516–5520
CrossRef Google scholar
[99]
Meng F, Yu Z, Zhang D, Chen S, Guan H, Zhou R, Wu Q, Zhang Q, Liu S, Venkat Ramani MK, Yang B, Ba XQ, Zhang J, Huang J, Bai X, Qin J, Feng XH, Ouyang S, Zhang YJ, Liang T, Xu P. Induced phase separation of mutant NF2 imprisons the cGAS-STING machinery to abrogate antitumor immunity. Mol Cell 2021; 81(20): 4147–4164 e7
CrossRef Google scholar
[100]
Petrilli AM, Fernández-Valle C. Role of Merlin/NF2 inactivation in tumor biology. Oncogene 2016; 35(5): 537–548
CrossRef Google scholar
[101]
Cooper J, Giancotti FG. Molecular insights into NF2/Merlin tumor suppressor function. FEBS Lett 2014; 588(16): 2743–2752
CrossRef Google scholar
[102]
Wileman T. Aggresomes and pericentriolar sites of virus assembly: cellular defense or viral design?. Annu Rev Microbiol 2007; 61(1): 149–167
CrossRef Google scholar
[103]
Rincheval V, Lelek M, Gault E, Bouillier C, Sitterlin D, Blouquit-Laye S, Galloux M, Zimmer C, Eleouet JF, Rameix-Welti MA. Functional organization of cytoplasmic inclusion bodies in cells infected by respiratory syncytial virus. Nat Commun 2017; 8(1): 563
CrossRef Google scholar
[104]
Nikolic J, Le Bars R, Lama Z, Scrima N, Lagaudrière-Gesbert C, Gaudin Y, Blondel D. Negri bodies are viral factories with properties of liquid organelles. Nat Commun 2017; 8(1): 58
CrossRef Google scholar
[105]
Guseva S, Milles S, Jensen MR, Salvi N, Kleman JP, Maurin D, Ruigrok RWH, Blackledge M. Measles virus nucleo- and phosphoproteins form liquid-like phase-separated compartments that promote nucleocapsid assembly. Sci Adv 2020; 6(14): eaaz7095
CrossRef Google scholar
[106]
Bailly B, Richard CA, Sharma G, Wang L, Johansen L, Cao J, Pendharkar V, Sharma DC, Galloux M, Wang Y, Cui R, Zou G, Guillon P, von Itzstein M, Eléouët JF, Altmeyer R. Targeting human respiratory syncytial virus transcription anti-termination factor M2–1 to inhibit in vivo viral replication. Sci Rep 2016; 6(1): 25806
CrossRef Google scholar
[107]
Risso-Ballester J, Galloux M, Cao J, Le Goffic R, Hontonnou F, Jobart-Malfait A, Desquesnes A, Sake SM, Haid S, Du M, Zhang X, Zhang H, Wang Z, Rincheval V, Zhang Y, Pietschmann T, Eleouet JF, Rameix-Welti MA, Altmeyer R. A condensate-hardening drug blocks RSV replication in vivo. Nature 2021; 595(7868): 596–599
CrossRef Google scholar
[108]
Wang S, Dai T, Qin Z, Pan T, Chu F, Lou L, Zhang L, Yang B, Huang H, Lu H, Zhou F. Targeting liquid-liquid phase separation of SARS-CoV-2 nucleocapsid protein promotes innate antiviral immunity by elevating MAVS activity. Nat Cell Biol 2021; 23(7): 718–732
CrossRef Google scholar
[109]
Shim JH, Su ZY, Chae JI, Kim DJ, Zhu F, Ma WY, Bode AM, Yang CS, Dong Z. Epigallocatechin gallate suppresses lung cancer cell growth through Ras-GTPase-activating protein SH3 domain-binding protein 1. Cancer Prev Res (Phila) 2010; 3(5): 670–679
CrossRef Google scholar
[110]
Jang M, Cai L, Udeani GO, Slowing KV, Thomas CF, Beecher CW, Fong HH, Farnsworth NR, Kinghorn AD, Mehta RG, Moon RC, Pezzuto JM. Cancer chemopreventive activity of resveratrol, a natural product derived from grapes. Science 1997; 275(5297): 218–220
CrossRef Google scholar
[111]
Milne JC, Lambert PD, Schenk S, Carney DP, Smith JJ, Gagne DJ, Jin L, Boss O, Perni RB, Vu CB, Bemis JE, Xie R, Disch JS, Ng PY, Nunes JJ, Lynch AV, Yang H, Galonek H, Israelian K, Choy W, Iffland A, Lavu S, Medvedik O, Sinclair DA, Olefsky JM, Jirousek MR, Elliott PJ, Westphal CH. Small molecule activators of SIRT1 as therapeutics for the treatment of type 2 diabetes. Nature 2007; 450(7170): 712–716
CrossRef Google scholar
[112]
Luo M, Wang H, Wang Z, Cai H, Lu Z, Li Y, Du M, Huang G, Wang C, Chen X, Porembka MR, Lea J, Frankel AE, Fu YX, Chen ZJ, Gao J. A STING-activating nanovaccine for cancer immunotherapy. Nat Nanotechnol 2017; 12(7): 648–654
CrossRef Google scholar
[113]
Li S, Luo M, Wang Z, Feng Q, Wilhelm J, Wang X, Li W, Wang J, Cholka A, Fu YX, Sumer BD, Yu H, Gao J. Prolonged activation of innate immune pathways by a polyvalent STING agonist. Nat Biomed Eng 2021; 5(5): 455–466
CrossRef Google scholar
[114]
Hofweber M, Dormann D. Friend or foe—post-translational modifications as regulators of phase separation and RNP granule dynamics. J Biol Chem 2019; 294(18): 7137–7150
CrossRef Google scholar
[115]
Li J, Zhang M, Ma W, Yang B, Lu H, Zhou F, Zhang L. Post-translational modifications in liquid-liquid phase separation: a comprehensive review. Mol Biomed 2022; 3(1): 13
CrossRef Google scholar

Acknowledgements

This work was supported by grants from National Natural Science Foundation of China (No. 32130057), Beijing Natural Science Foundation (No. Z220018), National Key R&D Program of China (Nos. 2018YFA0507203 and 2018YFA0508000), CAS Project for Young Scientists in Basic Research (No. YSBR-074), Strategic Priority Research Program of the Chinese Academy of Sciences (No. XDB37030203).

Compliance with ethics guidelines

Conflicts of interest Quanjin Li and Pu Gao declare that they have no conflict of interest.
This manuscript is a review article and does not involve a research protocol requiring approval by the relevant institutional review board or ethics committee.

RIGHTS & PERMISSIONS

2023 Higher Education Press
AI Summary AI Mindmap
PDF(1968 KB)

Accesses

Citations

Detail

Sections
Recommended

/