Exogenous spexin aggravates renal ischemia reperfusion injury and triggers toxicity in healthy kidneys

Kadri Kulualp , Meltem Kumaş Kulualp , Zeynep Semen , Gökçen Güvenç Bayram , Aslı Çelik , Melek Yeşim Ak , Osman Yilmaz

Front. Med. ›› 2025, Vol. 19 ›› Issue (5) : 842 -854.

PDF (3237KB)
Front. Med. ›› 2025, Vol. 19 ›› Issue (5) : 842 -854. DOI: 10.1007/s11684-025-1159-x
RESEARCH ARTICLE

Exogenous spexin aggravates renal ischemia reperfusion injury and triggers toxicity in healthy kidneys

Author information +
History +
PDF (3237KB)

Abstract

Renal ischemia–reperfusion injury (IRI) is a major contributor to acute kidney injury (AKI), leading to substantial morbidity and mortality. Spexin (SPX), a 14-amino acid endogenous peptide involved in metabolic regulation and immune modulation, has not yet been studied in the context of chronic treatment and renal IRI. This study evaluated the effects of exogenous SPX on renal function, histopathological changes, and molecular pathways in both IRI-induced injured and healthy kidneys. Twenty-eight male BALB/c mice were divided into four groups: control, SPX, IRI, and SPX+IRI. IRI was induced by 30 minutes of bilateral renal ischemia followed by 6 hours of reperfusion. Renal injury markers, histopathological changes, inflammatory mediators, apoptotic markers, and fibrosis-related proteins were analyzed. SPX significantly exacerbated IRI-induced kidney injury by activating the Wnt/β-catenin signaling pathway and promoting the upregulation of pro-inflammatory, pro-apoptotic, and pro-fibrotic mediators. It is noteworthy that SPX exerted more severe deleterious nephrotoxic effects in the healthy kidney compared to those observed in the IRI-induced injured kidney. These findings indicate that chronic treatment with SPX administration may have intrinsic pro-inflammatory, pro-apoptotic and fibrotic properties, raising concerns about its therapeutic potential. Further research is needed to clarify its physiological role and therapeutic implications in kidney diseases.

Keywords

renal ischemia–reperfusion injury / spexin / inflammation / apoptosis / Wnt/β-catenin signaling / mice (BALB/c)

Cite this article

Download citation ▾
Kadri Kulualp, Meltem Kumaş Kulualp, Zeynep Semen, Gökçen Güvenç Bayram, Aslı Çelik, Melek Yeşim Ak, Osman Yilmaz. Exogenous spexin aggravates renal ischemia reperfusion injury and triggers toxicity in healthy kidneys. Front. Med., 2025, 19(5): 842-854 DOI:10.1007/s11684-025-1159-x

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Lameire NH , Bagga A , Cruz D , Maeseneer J , Endre Z , Kellum JA , Liu KD , Mehta RL , Pannu N , Van Biesen W , Vanholder R . Acute kidney injury: an increasing global concern. Lancet 2013; 382(9887): 170–179

[2]

Lan TY , Dun RL , Yao DS , Wu F , Qian YL , Zhou Y , Zhan TT , Shao MH , Gao JD , Wang C . Effects of resveratrol on renal ischemia-reperfusion injury: a systematic review and meta-analysis. Front Nutr 2023; 9: 1064507

[3]

Dun RL , Lan TY , Tsai J , Mao JM , Shao YQ , Hu XH , Zhu WJ , Qi GC , Peng Y . Protective effect of melatonin for renal ischemia-reperfusion injury: a systematic review and meta-analysis. Front Physiol 2022; 12: 791036

[4]

Kumaş M , Eşrefoğlu M , Karataş E , Duymac N , Kanbay S , Ergün IS , Üyüklü M , Koçyiğit A . Investigation of dose-dependent effects of berberine against renal ischemia/reperfusion injury in experimental diabetic rats. Nefrologia 2019; 39(4): 411–423

[5]

Melin J , Hellberg O , Akyürek LM , Källskog O , Larsson E , Fellström BC . Ischemia causes rapidly progressive nephropathy in the diabetic rat. Kidney Int 1997; 52(4): 985–991

[6]

Malek M , Nematbakhsh M . Renal ischemia/reperfusion injury: from pathophysiology to treatment. J Renal Inj Prev 2015; 4(2): 20–27

[7]

Patschan D , Patschan S , Müller GA . Inflammation and microvasculopathy in renal ischemia-reperfusion injury. J Transplant 2012; 2012: 764154

[8]

Isenberg JS , Roberts DD . The role of CD47 in pathogenesis and treatment of renal ischemia-reperfusion injury. Pediatr Nephrol 2019; 34(12): 2479–2494

[9]

Yang N , Luo M , Li R , Huang Y , Zhang R , Wu Q , Wong F , Li Y , Yu X . Blockage of JAK/STAT signaling attenuates renal ischemia-reperfusion injury in rats. Nephrol Dial Transplant 2008; 23(1): 91–100

[10]

Schunk SJ , Floege J , Fliser D , Speer T . WNT-β-catenin signaling—a versatile player in kidney injury and repair. Nat Rev Nephrol 2021; 17(3): 172–184

[11]

Tan RJ , Zhou D , Zhou L , Liu Y . Wnt/β-catenin signaling and kidney fibrosis. Kidney Int Suppl (2011) 2014; 4(1): 84–90

[12]

Xiao L , Zhou D , Tan RJ , Fu H , Zhou L , Hou FF , Liu Y . Sustained activation of Wnt/β-catenin signaling drives AKI to CKD progression. J Am Soc Nephrol 2016; 27(6): 1727–1740

[13]

Zhou D , Li Y , Lin L , Zhou L , Igarashi P , Liu Y . Tubule-derived Wnt ligands are required for fibroblast activation and kidney fibrosis. J Am Soc Nephrol 2017; 28(8): 2322–2336

[14]

Zhou D , Tan RJ , Fu H , Liu Y . Wnt/β-catenin signaling in kidney injury and repair: a double-edged sword. Lab Invest 2016; 96(2): 156–167

[15]

Gewin LS . Renal tubule repair: Is Wnt/β-catenin a friend or foe. Genes (Basel) 2018; 9(2): 58

[16]

Shi M , Tian P , Liu Z , Zhang F , Zhang Y , Qu L , Liu X , Wang Y , Zhou X , Xiao Y , Guo B . MicroRNA-27a targets Sfrp1 to induce renal fibrosis in diabetic nephropathy by activating Wnt/β-catenin signalling. Biosci Rep 2020; 40(6): BSR20192794

[17]

Franzin R , Stasi A , Fiorentino M , Stallone G , Cantaluppi V , Gesualdo L , Castellano G . Inflammaging and complement system: a link between acute kidney injury and chronic graft damage. Front Immunol 2020; 11: 734

[18]

Dong Q , Jie Y , Ma J , Li C , Xin T , Yang D . Wnt/β-catenin signaling pathway promotes renal ischemia-reperfusion injury through inducing oxidative stress and inflammation response. J Recept Signal Transduct Res 2021; 41(1): 15–18

[19]

Liu Y , Li S , Qi X , Zhou W , Liu X , Lin H , Zhang Y , Cheng CH . A novel neuropeptide in suppressing luteinizing hormone release in goldfish, Carassius auratus. Mol Cell Endocrinol 2013; 374(1–2): 65–72

[20]

Lv SY , Zhou YC , Zhang XM , Chen WD , Wang YD . Emerging roles of NPQ/spexin in physiology and pathology. Front Pharmacol 2019; 10: 457

[21]

Kim DK , Yun S , Son GH , Hwang JI , Park CR , Kim JI , Kim K , Vaudry H , Seong JY . Coevolution of the spexin/galanin/kisspeptin family: spexin activates galanin receptor type II and III. Endocrinology 2014; 155(5): 1864–1873

[22]

Lu L , Zou YC , Wang M , Huang YF , Chen DX , Wei LB . Neuropeptide Y levels are associated with nutritional status and cardiovascular events in adults with chronic kidney disease. Eur J Clin Nutr 2015; 69(6): 717–721

[23]

Zoccali C , Ortiz A , Blumbyte IA , Rudolf S , Beck-Sickinger AG , Malyszko J , Spasovski G , Carriazo S , Viggiano D , Kurganaite J , Sarkeviciene V , Rastenyte D , Figurek A , Rroji M , Mayer C , Arici M , Martino G , Tedeschi G , Bruchfeld A , Spoto B , Rychlik I , Wiecek A , Okusa M , Remuzzi G , Mallamaci F , CONNECT Action (Cognitive Decline in Nephro-Neurology European Cooperative Target) . Neuropeptide Y as a risk factor for cardiorenal disease and cognitive dysfunction in chronic kidney disease: Translational opportunities and challenges. Nephrol Dial Transplant 2021; 37(Suppl 2): ii14–ii23

[24]

Badr EAE , El-Aleem HA , El-Ghlban S , Swelm AA , Emara M . Relation of neuropeptide Y gene expression and genotyping with hypertension in chronic kidney disease. Biochem Biophys Rep 2019; 19: 100666

[25]

Harwood R , Bridge J , Ressel L , Scarfe L , Sharkey J , Czanner G , Kalra PA , Odudu A , Kenny S , Wilm B , Murray P . Murine models of renal ischemia-reperfusion injury: an opportunity for refinement using noninvasive monitoring methods. Physiol Rep 2022; 10(5): e15211

[26]

Said MA , Nafeh NY , Abdallah HA . Spexin alleviates hypertension, hyperuricemia, dyslipidemia and insulin resistance in high fructose diet-induced metabolic syndrome in rats by enhancing PPAR-γ and AMPK and inhibiting IL-6 and TNF-α. Arch Physiol Biochem 2023; 129(5): 1111–1116

[27]

El-Saka MH , Abo El Gheit RE , El Saadany A , Alghazaly GM , Marea KE , Madi NM . Effect of spexin on renal dysfunction in experimentally obese rats: Potential mitigating mechanisms via galanin receptor-2. Arch Physiol Biochem 2023; 129(4): 933–942

[28]

Yu M , Wang M , Han S , Han L , Kan Y , Zhao J , Yu X , Yan J , Jin Y , Zhang Z , Shang W , Fang P . Spexin ameliorates skeletal muscle insulin resistance through activation of GAL2 receptor. Eur J Pharmacol. 2022; 15; 917: 174731

[29]

Sharfuddin AA , Molitoris BA . Pathophysiology of ischemic acute kidney injury. Nat Rev Nephrol 2011; 7(4): 189–200

[30]

Yang ZN , Cao KQ , Xu CQ , He YY , Hong GL , Lu ZQ . Study on the protective effect and mechanism of somatostatin on renal injury in paraquat intoxicated mice. Chin J Ind Hyg Occup Dis (Zhonghua Lao Dong Wei Sheng Zhi Ye Bing Za Zhi) 2020; 38(6): 410–415

[31]

Wang W , Bansal S , Falk S , Ljubanovic D , Schrier R . Ghrelin protects mice against endotoxemia-induced acute kidney injury. Am J Physiol Renal Physiol 2009; 297(4): F1032–F1037

[32]

Yazgan B , Avcı F , Memi G , Taştekin E . Inflammatory response and matrix metalloproteinases in chronic kidney failure: Modulation by adropin and spexin. Exp Biol Med (Maywood) 2021; 246: 1917–1927

[33]

Cha JJ , Park BY , Yoon SG , Park HJ , Yoo JA , Ghee JY , Cha DR , Seong JY , Kang YS . Spexin-based galanin receptor 2 agonist improves renal injury in mice with type 2 diabetes. Anim Cells Syst 2023; 27(1): 187–196

[34]

Ostermann M , Philips BJ , Forni LG . Clinical review: Biomarkers of acute kidney injury: Where are we now. Crit Care 2012; 16(5): 233

[35]

Romejko K , Markowska M , Niemczyk S . The review of current knowledge on neutrophil gelatinase-associated lipocalin (NGAL). Int J Mol Sci 2023; 24(13): 10470

[36]

Ichimura T , Bonventre JV , Bailly V , Wei H , Hession CA , Cate RL , Sanicola M . Kidney injury molecule-1 (KIM-1), a putative epithelial cell adhesion molecule containing a novel immunoglobulin domain, is upregulated in renal cells after injury. J Biol Chem 1998; 273(7): 4135–4142

[37]

Linas SL , Whittenburg D , Parsons PE , Repine JE . Mild renal ischemia activates primed neutrophils to cause acute renal failure. Kidney Int 1992; 42(3): 610–616

[38]

Black LM , Lever JM , Agarwal A . Renal inflammation and fibrosis: A double-edged sword. J Histochem Cytochem 2019; 67(9): 663–681

[39]

Zhou D , Li Y , Lin L , Zhou L , Igarashi P , Liu Y . Tubule-specific ablation of endogenous β-catenin aggravates acute kidney injury in mice. Kidney Int 2012; 82(5): 537–547

[40]

He W , Dai C , Li Y , Zeng G , Monga SP , Liu Y . Wnt/β-catenin signaling promotes renal interstitial fibrosis. J Am Soc Nephrol 2009; 20(4): 765–776

[41]

Terada Y , Tanaka H , Okado T , Shimamura H , Inoshita S , Kuwahara M , Sasaki S . Expression and function of the developmental gene Wnt-4 during experimental acute renal failure in rats. J Am Soc Nephrol 2003; 14(5): 1223–1233

[42]

Lin SL , Li B , Rao S , Yeo EJ , Hudson TE , Nowlin BT , Pei H , Chen L , Zheng JJ , Carroll TJ , Pollard JW , McMahon AP , Lang RA , Duffield JS . Macrophage Wnt7b is critical for kidney repair and regeneration. Proc Natl Acad Sci USA 2010; 107(9): 4194–4199

[43]

Wang Z , Havasi A , Gall JM , Mao H , Schwartz JH , Borkan SC . Beta-catenin promotes survival of renal epithelial cells by inhibiting Bax. J Am Soc Nephrol 2009; 20(9): 1919–1928

[44]

Mao H , Li Z , Zhou Y , Li Z , Zhuang S , An X , Zhang B , Chen W , Nie J , Wang Z , Borkan SC , Wang Y , Yu X . HSP72 attenuates renal tubular cell apoptosis and interstitial fibrosis in obstructive nephropathy. Am J Physiol Renal Physiol 2008; 295(1): F202–F214

[45]

Lieberthal W , Triaca V , Koh JS , Pagano PJ , Levine JS . Role of superoxide in apoptosis induced by growth factor withdrawal. Am J Physiol 1998; 275(5): F691–F702

[46]

Supavekin S , Zhang W , Kucherlapati R , Kaskel FJ , Moore LC , Devarajan P . Differential gene expression following early renal ischemia/reperfusion. Kidney Int 2003; 63(5): 1714–1724

[47]

Bonegio R , Lieberthal W . Role of apoptosis in the pathogenesis of acute renal failure. Curr Opin Nephrol Hypertens 2002; 11(3): 301–308

[48]

Liu Y . Cellular and molecular mechanisms of renal fibrosis. Nat Rev Nephrol 2011; 7(12): 684–696

RIGHTS & PERMISSIONS

Higher Education Press

AI Summary AI Mindmap
PDF (3237KB)

280

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/