The Warburg effect, originally discovered by Otto Warburg, refers to the metabolic reprogramming of tumor cells from aerobic oxidation to glycolysis, enabling rapid energy production to support their growth and metastasis. This process is accompanied by the massive production and accumulation of lactate both intracellularly and extracellularly. The resulting acidic microenvironment impairs the normal physiological functions of immune cells and promotes tumor progression. An increasing number of studies indicate that lactate, a key metabolite in the tumor microenvironment (TME), acts as a pivotal immunosuppressive signaling molecule that modulates immune cell function. This review aims to comprehensively examine lactate’s role as an immunosuppressive molecule in TME. It focuses on mechanisms such as membrane receptor binding, functional reshaping of immune cells via lactate shuttle transport, epigenetic regulation of gene expression through histone lactylation, and modulation of protein structure and function through nonhistone lactylation, emphasizing lactate’s importance in immune regulation within the TME. Ultimately, this review offers novel insights into immunosuppressive therapies aimed at targeting lactate function.
The introduction of PD-1 blockades to chemotherapy and radiotherapy has shown promising outcomes in patients with nasopharyngeal carcinoma, but anti-PD-1 therapies are only effective in a small proportion of patients, indicating the need for reliable predictive biomarkers of benefit from immunotherapy. Here, we summarized recent advances in immunotherapy for nasopharyngeal carcinoma and studies on potential predictors that correlated with treatment response or long-term survival after immunotherapy, including biomarkers in both the tumor microenvironment and the tumor macroenvironment. Some of these biomarkers have been validated as truly predictive of immunotherapy benefit using cohorts from randomized controlled trials, while others still require further validation of their predictive value. We also summarized the challenges and future directions of biomarker studies, hopefully facilitating the development of predictive biomarkers for immunotherapy that can eventually enter clinical practice.
Biliary tract cancer (BTC) is a rare group of malignancies that develop from the epithelial lining of the biliary tree and have a poor prognosis. Although chemotherapy is the standard of care for patients with advanced BTC in China, its clinical benefits are moderate. In recent years, the approval of targeted therapies and immunotherapies has provided new avenues for the management of advanced BTC. Nonetheless, the increasing number of personalized medicine approaches has created a challenge for clinicians choosing individualized treatment strategies based on tumor characteristics. In this article, we discuss recent progress in implementing precision medicine approaches for advanced BTC in China and examine genomic profiling studies in Chinese patients with advanced BTC. We also discuss the challenges and opportunities of using precision medicine approaches, as well as the importance of considering population-specific factors and tailoring treatment approaches to improve outcomes for patients with BTC. In addition to providing a comprehensive overview of current and emerging precision medicine approaches for the management of advanced BTC in China, this review article will support clinicians outside of China by serving as a reference regarding the role of patient- and population-specific factors in clinical decision-making for patients with this rare malignancy.
The primary clinical manifestation of osteoarthritis (OA) is pain, yet considerable variability exists in the pain experience among OA patients. This narrative review aims to explore the mechanisms driving OA pain heterogeneity to inform the development of targeted interventions that improve treatment efficacy and patient outcomes. A comprehensive literature search was conducted across multiple databases (PubMed, Scopus, and Google Scholar) for papers published between January 1, 2020, and December 31, 2024. Inclusion criteria focused on studies addressing pain mechanisms and therapeutic interventions in OA. This review identifies key mechanisms of OA pain, including joint alterations, angiogenesis, nervous system involvement, peripheral and central sensitization, and psychosocial factors. It highlights the underlying distinct mechanisms in OA pain, which contribute to the variability in individuals’ responses to treatment. It was suggested that interactions between neuroimmune and neurovascular systems are key contributors to chronic pain in OA. This narrative review emphasizes the complexity of OA pain, highlighting the importance of thoroughly understanding the underlying mechanisms for developing personalized and effective pain management strategies. Additional research is required to refine treatment approaches and explore long-term effects.
Acute ischemic stroke (AIS) is a cerebrovascular disease characterized by high morbidity, disability, and mortality, posing a significant threat to human health. Endovascular treatment has now been established as a key method for AIS management, in which stent retrievers that can mechanically remove blood clots play a key role in this technique. In recent years, stent retrievers have evolved in complexity and functionality to improve the ability of clot removing and surgical safety. However, the present instruments still have limitations on treatment efficiency, vascular adaptability, and operational precision, posing an urgent need for innovation in the design of stent retrievers. This paper systematically reviewed the structural features and working principles of AIS stent retrievers from the perspective of efficacy evaluation metrics, historical development, recent advancements in stent retrieval technology, and future prospects.
Congenital musculoskeletal and limb deformities (CMLD) seriously affect the physical and mental health of patients, and pose great challenges to healthcare systems worldwide. We explored the specific situation and changes of incidence, prevalence, disability-adjusted life years rates, and mortality of CMLD in under-5 children from 1990 to 2021 in different groups, including different regions, periods, genders and socio-demographic indices (SDI), through corresponding analytical models. Overall, the global disease burden of CMLD in under-5 children has decreased from 1990 to 2021. The disease burden of CMLD in under-5 children varied significantly among different regions and countries, and there was a strong correlation between the corresponding burden of disease and the level of SDI. In addition, cross-country inequality analysis showed that while absolute inequalities in the disease burden of CMLD in under-5 children have improved, relative inequalities have worsened. It is essential to reduce the global health impact of CMLD by implementing targeted interventions to improve health care in underdeveloped areas.
This study aimed to evaluate the efficacy and safety of combining albumin-bound paclitaxel (ab-paclitaxel) and anlotinib for ovarian cancer. In this study, 44 patients diagnosed with platinum-resistant ovarian cancer were enrolled. Patients received ab-paclitaxel along with anlotinib until disease progression or intolerable toxicity. Efficacy was assessed according to RECIST 1.1 criteria or Rustin’s criteria. The primary endpoint was the investigator-evaluated objective response rate (ORR). 44 patients were enrolled between January 2021 and March 2023 with a median age of 49 years. Twenty-nine had measurable lesions and 15 had non-measurable lesions. Overall, the investigator-evaluated ORR was 56.8% (25/44; 95% CI 0.411–0.713) in intention-to-treat population and 58.1% (25/43; 95% CI 0.422–0.726) in per-protocol population. The median progression-free survival was 9.8 months, and the median duration of response was 7.4 months. For safety, grade 3/4 adverse events (AEs) included leukopenia, gum pain, hypertension, and hand-foot syndrome. The response rates were 55.0% (11/20) in patients with previous use of antiangiogenic reagents and who had previous use of PARP inhibitors. The combination of ab-paclitaxel and anlotinib showed promising anti-tumor activity and a manageable safety profile in platinum-resistant ovarian cancer. Patients with previous use of antiangiogenic drugs or PARP inhibitors still benefited from this protocol.
Trophoblast cells serve as the foundation for placental development. We analyzed published multi-omics sequencing data and found that trophoblast cells highly expressed RRS1 compared to primitive endoderm and epiblast. We used HTR-8/SVneo cells for further investigation, and Western blot and immunofluorescence staining confirmed that HTR-8/SVneo cells highly expressed RRS1. RRS1 was successfully knocked down in HTR-8/SVneo cells using siRNA. Using IncuCyte S3 live-cell analysis system based on continuous live-cell imaging and real-time data, we observed that proliferation, migration, and invasion abilities were all significantly decreased in RRS1-knockdown cells. RNA-seq revealed that knockdown of RRS1 affected the gene transcription, and upregulated pathways in extracellular matrix organization, DNA damage response, and intrinsic apoptotic signaling, downregulated pathways in embryo implantation, trophoblast cell migration, and wound healing. Differentially expressed genes were enriched in diseases related to placental development. Consistent with these findings, human chorionic villus samples collected from spontaneous abortion cases exhibited significantly reduced RRS1 expression compared to normal controls. Our results highlight the functional importance of RRS1 in human trophoblasts and suggest that its deficiency contributes to early pregnancy loss.
Renal ischemia–reperfusion injury (IRI) is a major contributor to acute kidney injury (AKI), leading to substantial morbidity and mortality. Spexin (SPX), a 14-amino acid endogenous peptide involved in metabolic regulation and immune modulation, has not yet been studied in the context of chronic treatment and renal IRI. This study evaluated the effects of exogenous SPX on renal function, histopathological changes, and molecular pathways in both IRI-induced injured and healthy kidneys. Twenty-eight male BALB/c mice were divided into four groups: control, SPX, IRI, and SPX+IRI. IRI was induced by 30 minutes of bilateral renal ischemia followed by 6 hours of reperfusion. Renal injury markers, histopathological changes, inflammatory mediators, apoptotic markers, and fibrosis-related proteins were analyzed. SPX significantly exacerbated IRI-induced kidney injury by activating the Wnt/β-catenin signaling pathway and promoting the upregulation of pro-inflammatory, pro-apoptotic, and pro-fibrotic mediators. It is noteworthy that SPX exerted more severe deleterious nephrotoxic effects in the healthy kidney compared to those observed in the IRI-induced injured kidney. These findings indicate that chronic treatment with SPX administration may have intrinsic pro-inflammatory, pro-apoptotic and fibrotic properties, raising concerns about its therapeutic potential. Further research is needed to clarify its physiological role and therapeutic implications in kidney diseases.
Long-term exposure to particulate matter has been increasingly implicated in the progression of chronic kidney disease (CKD). However, its impact on IgA nephropathy (IgAN), a leading cause of end-stage renal disease (ESRD), remains unclear. A total of 1768 IgAN patients, confirmed by renal biopsy were included in this cohort study. Long-term exposure to PM2.5 and PM10 was assessed using high-resolution satellite-based data from the China High Air Pollutants (CHAP) dataset. Cox proportional hazards models were used to estimate the associations between PM2.5 or PM10 and ESRD risk, adjusting for demographic, clinical, and biochemical covariates. Over a median follow-up of 3.63 years, 209 participants progressed to ESRD. Higher exposure to both PM2.5 and PM10 was significantly associated with an increased risk, with hazard ratios of 1.62 and 1.36 per 10 μg/m3 increase, respectively. A nonlinear dose-response relationship was observed, with risk increasing markedly beyond threshold levels. Trajectory modeling of prebaseline exposure identified a subgroup with persistently high and fluctuating particulate matter exposure that showed the highest risk. This study provides strong evidence that prolonged exposure to ambient particulate matter contributes to renal disease progression in individuals with IgAN.