Gallstones, cholecystectomy, and cancer risk: an observational and Mendelian randomization study
Yuanyue Zhu, Linhui Shen, Yanan Huo, Qin Wan, Yingfen Qin, Ruying Hu, Lixin Shi, Qing Su, Xuefeng Yu, Li Yan, Guijun Qin, Xulei Tang, Gang Chen, Yu Xu, Tiange Wang, Zhiyun Zhao, Zhengnan Gao, Guixia Wang, Feixia Shen, Xuejiang Gu, Zuojie Luo, Li Chen, Qiang Li, Zhen Ye, Yinfei Zhang, Chao Liu, Youmin Wang, Shengli Wu, Tao Yang, Huacong Deng, Lulu Chen, Tianshu Zeng, Jiajun Zhao, Yiming Mu, Weiqing Wang, Guang Ning, Jieli Lu, Min Xu, Yufang Bi, Weiguo Hu
Gallstones, cholecystectomy, and cancer risk: an observational and Mendelian randomization study
This study aimed to comprehensively examine the association of gallstones, cholecystectomy, and cancer risk. Multivariable logistic regressions were performed to estimate the observational associations of gallstones and cholecystectomy with cancer risk, using data from a nationwide cohort involving 239 799 participants. General and gender-specific two-sample Mendelian randomization (MR) analysis was further conducted to assess the causalities of the observed associations. Observationally, a history of gallstones without cholecystectomy was associated with a high risk of stomach cancer (adjusted odds ratio (aOR)=2.54, 95% confidence interval (CI) 1.50–4.28), liver and bile duct cancer (aOR=2.46, 95% CI 1.17–5.16), kidney cancer (aOR=2.04, 95% CI 1.05–3.94), and bladder cancer (aOR=2.23, 95% CI 1.01–5.13) in the general population, as well as cervical cancer (aOR=1.69, 95% CI 1.12–2.56) in women. Moreover, cholecystectomy was associated with high odds of stomach cancer (aOR=2.41, 95% CI 1.29–4.49), colorectal cancer (aOR=1.83, 95% CI 1.18–2.85), and cancer of liver and bile duct (aOR=2.58, 95% CI 1.11–6.02). MR analysis only supported the causal effect of gallstones on stomach, liver and bile duct, kidney, and bladder cancer. This study added evidence to the causal effect of gallstones on stomach, liver and bile duct, kidney, and bladder cancer, highlighting the importance of cancer screening in individuals with gallstones.
gallstone / cholecystectomy / cancer risk / Mendelian randomization
[1] |
Stokes CS, Krawczyk M, Lammert F. Gallstones: environment, lifestyle and genes. Dig Dis 2011; 29(2): 191–201
CrossRef
Google scholar
|
[2] |
Song Y, Ma Y, Xie FC, Jin C, Yang XB, Yang X, Long JY, Wang DX, Sang XT, Li LM, Zhao HT, Ning Y. Age, gender, geographic and clinical differences for gallstones in China: a nationwide study. Ann Transl Med 2022; 10(13): 735
CrossRef
Google scholar
|
[3] |
Su Z, Gong Y, Liang Z. Prevalence of gallstone in the Chinese mainland: a meta-analysis of cross-sectional studies. Clin Res Hepatol Gastroenterol 2020; 44(4): e69–e71
CrossRef
Google scholar
|
[4] |
Fujita N, Yasuda I, Endo I, Isayama H, Iwashita T, Ueki T, Uemura K, Umezawa A, Katanuma A, Katayose Y, Suzuki Y, Shoda J, Tsuyuguchi T, Wakai T, Inui K, Unno M, Takeyama Y, Itoi T, Koike K, Mochida S. Evidence-based clinical practice guidelines for cholelithiasis 2021. J Gastroenterol 2023; 58(9): 801–833
CrossRef
Google scholar
|
[5] |
European Association for the Study of the Liver (EASL). EASL clinical practice guidelines on the prevention. diagnosis and treatment of gallstones. J Hepatol 2016; 65(1): 146–181
CrossRef
Google scholar
|
[6] |
Wang CC, Tseng MH, Wu SW, Yang TW, Chen HY, Sung WW, Su CC, Wang YT, Chen WL, Lai HC, Lin CC, Tsai MC. Symptomatic cholelithiasis patients have an increased risk of pancreatic cancer: a population-based study. J Gastroenterol Hepatol 2021; 36(5): 1187–1196
CrossRef
Google scholar
|
[7] |
Bravi F, Scotti L, Bosetti C, Talamini R, Negri E, Montella M, Franceschi S, La Vecchia C. Self-reported history of hypercholesterolaemia and gallstones and the risk of prostate cancer. Ann Oncol 2006; 17(6): 1014–1017
CrossRef
Google scholar
|
[8] |
Nogueira L, Freedman ND, Engels EA, Warren JL, Castro F, Koshiol J. Gallstones, cholecystectomy, and risk of digestive system cancers. Am J Epidemiol 2014; 179(6): 731–739
CrossRef
Google scholar
|
[9] |
Choi YJ, Jin EH, Lim JH, Shin CM, Kim N, Han K, Lee DH. Increased risk of cancer after cholecystectomy: a nationwide cohort study in the Republic of Korea including 123 295 patients. Gut Liver 2022; 16(3): 465–473
CrossRef
Google scholar
|
[10] |
Fan Y, Hu J, Feng B, Wang W, Yao G, Zhai J, Li X. Increased risk of pancreatic cancer related to gallstones and cholecystectomy: a systematic review and meta-analysis. Pancreas 2016; 45(4): 503–509
CrossRef
Google scholar
|
[11] |
Kharazmi E, Scherer D, Boekstegers F, Liang Q, Sundquist K, Sundquist J, Fallah M, Lorenzo Bermejo J. Gallstones, cholecystectomy, and kidney cancer: observational and Mendelian randomization results based on large cohorts. Gastroenterology 2023; 165(1): 218–27.e8
CrossRef
Google scholar
|
[12] |
Schmidt M, Småstuen MC, Søndenaa K. Increased cancer incidence in some gallstone diseases, and equivocal effect of cholecystectomy: a long-term analysis of cancer and mortality. Scand J Gastroenterol 2012; 47(12): 1467–1474
CrossRef
Google scholar
|
[13] |
Ahn HS, Kim HJ, Kang TU, Park SM. Cholecystectomy reduces the risk of cholangiocarcinoma in patients with complicated gallstones, but has negligible effect on hepatocellular carcinoma. J Gastroenterol Hepatol 2022; 37(4): 669–677
CrossRef
Google scholar
|
[14] |
Pang Y, Lv J, Kartsonaki C, Guo Y, Yu C, Chen Y, Yang L, Bian Z, Millwood IY, Walters RG, Li X, Zou J, Holmes MV, Chen J, Chen Z, Li L. Causal effects of gallstone disease on risk of gastrointestinal cancer in Chinese. Br J Cancer 2021; 124(11): 1864–1872
CrossRef
Google scholar
|
[15] |
Zhao X, Wang N, Sun Y, Zhu G, Wang Y, Wang Z, Zhang Y, Cheng K, Wang G, Wu S, Wang L. Screen-detected gallstone disease and risk of liver and pancreatic cancer: The Kailuan Cohort Study. Liver Int 2020; 40(7): 1744–1755
CrossRef
Google scholar
|
[16] |
Qin Q, Li W, Ren A, Luo R, Luo S. Benign gallbladder disease is a risk factor for colorectal cancer, but cholecystectomy is not: a propensity score matching analysis. Front Oncol 2022; 12: 1008394
CrossRef
Google scholar
|
[17] |
Chiba T, Marusawa H, Ushijima T. Inflammation-associated cancer development in digestive organs: mechanisms and roles for genetic and epigenetic modulation. Gastroenterology 2012; 143(3): 550–563
CrossRef
Google scholar
|
[18] |
Bi Y, Lu J, Wang W, Mu Y, Zhao J, Liu C, Chen L, Shi L, Li Q, Wan Q, Wu S, Yang T, Yan L, Liu Y, Wang G, Luo Z, Tang X, Chen G, Huo Y, Gao Z, Su Q, Ye Z, Wang Y, Qin G, Deng H, Yu X, Shen F, Chen L, Zhao L, Zhang J, Sun J, Dai M, Xu M, Xu Y, Chen Y, Lai S, Bloomgarden ZT, Li D, Ning G. Cohort profile: risk evaluation of cancers in chinese diabetic individuals: a longitudinal (REACTION) study. J Diabetes 2014; 6(2): 147–157
CrossRef
Google scholar
|
[19] |
Emdin CA, Khera AV, Kathiresan S. Mendelian randomization. JAMA 2017; 318(19): 1925–1926
CrossRef
Google scholar
|
[20] |
Skrivankova VW, Richmond RC, Woolf BAR, Yarmolinsky J, Davies NM, Swanson SA, VanderWeele TJ, Higgins JPT, Timpson NJ, Dimou N, Langenberg C, Golub RM, Loder EW, Gallo V, Tybjaerg-Hansen A, Davey Smith G, Egger M, Richards JB. Strengthening the reporting of observational studies in epidemiology using Mendelian randomization: the STROBE-MR statement. JAMA 2021; 326(16): 1614–1621
CrossRef
Google scholar
|
[21] |
Lu J, Li M, He J, Xu Y, Zheng R, Zheng J, Qin G, Qin Y, Chen Y, Tang X, Ye Z, Xu M, Wang T, Shi L, Su Q, Yu X, Yan L, Zhao Z, Wan Q, Chen G, Gao Z, Wang G, Shen F, Gu X, Luo Z, Chen L, Hou X, Huo Y, Li Q, Qiao H, Zhang Y, Zeng T, Hu C, Cao Q, Jia X, Liu C, Wang Y, Wu S, Yang T, Deng H, Qi H, Wu X, Zhang D, Dai M, Li D, Lai S, Chen L, Zhao J, Mu Y, Hu W, Ning G, Hu R, Bi Y, Wang W. Association of social determinants, lifestyle, and metabolic factors with mortality in Chinese adults: a nationwide 10-year prospective cohort study. Cell Rep Med 2024; 5(8): 101656
CrossRef
Google scholar
|
[22] |
Zhao WH, Huang ZP, Zhang X, He L, Willett W, Wang JL, Hasegawa K, Chen JS. Reproducibility and validity of a Chinese food frequency questionnaire. Biomed Environ Sci 2010; 23: 1–38
CrossRef
Google scholar
|
[23] |
Craig CL, Marshall AL, Sjöström M, Bauman AE, Booth ML, Ainsworth B, Pratt M, Ekelund U, Yngve A, Sallis JF, Oja P. International physical activity questionnaire: 12-country reliability and validity. Med Sci Sports Exerc 2003; 35(8): 1381–1395
CrossRef
Google scholar
|
[24] |
Lloyd-Jones DM, Hong Y, Labarthe D, Mozaffarian D, Appel LJ, Van Horn L, Greenlund K, Daniels S, Nichol G, Tomaselli GF, Arnett DK, Fonarow GC, Ho PM, Lauer MS, Masoudi FA, Robertson RM, Roger V, Schwamm LH, Sorlie P, Yancy CW, Rosamond WD. Defining and setting national goals for cardiovascular health promotion and disease reduction: the American Heart Association’s strategic impact goal through 2020 and beyond. Circulation 2010; 121(4): 586–613
CrossRef
Google scholar
|
[25] |
Piercy KL, Troiano RP. Physical activity guidelines for Americans from the US department of health and human services. Circ Cardiovasc Qual Outcomes 2018; 11(11): e005263
CrossRef
Google scholar
|
[26] |
Yan Y, Su L, Huang S, He Q, Lu J, Luo H, Xu K, Yang G, Huang S, Chi H. Circadian rhythms and breast cancer: unraveling the biological clock’s role in tumor microenvironment and ageing. Front Immunol 2024; 15: 1444426
CrossRef
Google scholar
|
[27] |
Dunneram Y, Greenwood DC, Cade JE. Diet, menopause and the risk of ovarian, endometrial and breast cancer. Proc Nutr Soc 2019; 78(3): 438–448
CrossRef
Google scholar
|
[28] |
KarczewskiKJGuptaRKanaiM LuWTsuoK WangYWalters RKTurleyPCallierSShahNN BayaNPalmer DSGoldsteinJISarmaGSolomonson MChengNBryantSChurchhouse CCusickCMPoterbaTCompitello JKingDZhouWSeedC FinucaneHKDaly MJNealeBMAtkinsonEGMartinAR. Pan-UK Biobank GWAS improves discovery, analysis of genetic architecture, and resolution into ancestry-enriched effects. medRxiv 2024: 2024.03.13.24303864
|
[29] |
Hemani G, Zheng J, Elsworth B, Wade KH, Haberland V, Baird D, Laurin C, Burgess S, Bowden J, Langdon R, Tan VY, Yarmolinsky J, Shihab HA, Timpson NJ, Evans DM, Relton C, Martin RM, Davey Smith G, Gaunt TR, Haycock PC. The MR-base platform supports systematic causal inference across the human phenome. eLife 2018; 7: e34408
CrossRef
Google scholar
|
[30] |
Sakaue S, Kanai M, Tanigawa Y, Karjalainen J, Kurki M, Koshiba S, Narita A, Konuma T, Yamamoto K, Akiyama M, Ishigaki K, Suzuki A, Suzuki K, Obara W, Yamaji K, Takahashi K, Asai S, Takahashi Y, Suzuki T, Shinozaki N, Yamaguchi H, Minami S, Murayama S, Yoshimori K, Nagayama S, Obata D, Higashiyama M, Masumoto A, Koretsune Y, Ito K, Terao C, Yamauchi T, Komuro I, Kadowaki T, Tamiya G, Yamamoto M, Nakamura Y, Kubo M, Murakami Y, Yamamoto K, Kamatani Y, Palotie A, Rivas MA, Daly MJ, Matsuda K, Okada Y. A cross-population atlas of genetic associations for 220 human phenotypes. Nat Genet 2021; 53(10): 1415–1424
CrossRef
Google scholar
|
[31] |
Schumacher FR, Al Olama AA, Berndt SI, Benlloch S, Ahmed M, Saunders EJ, Dadaev T, Leongamornlert D, Anokian E, Cieza-Borrella C, Goh C, Brook MN, Sheng X, Fachal L, Dennis J, Tyrer J, Muir K, Lophatananon A, Stevens VL, Gapstur SM, Carter BD, Tangen CM, Goodman PJ, Thompson IM Jr, Batra J, Chambers S, Moya L, Clements J, Horvath L, Tilley W, Risbridger GP, Gronberg H, Aly M, Nordström T, Pharoah P, Pashayan N, Schleutker J, Tammela TLJ, Sipeky C, Auvinen A, Albanes D, Weinstein S, Wolk A, Håkansson N, West CML, Dunning AM, Burnet N, Mucci LA, Giovannucci E, Andriole GL, Cussenot O, Cancel-Tassin G, Koutros S, Beane Freeman LE, Sorensen KD, Orntoft TF, Borre M, Maehle L, Grindedal EM, Neal DE, Donovan JL, Hamdy FC, Martin RM, Travis RC, Key TJ, Hamilton RJ, Fleshner NE, Finelli A, Ingles SA, Stern MC, Rosenstein BS, Kerns SL, Ostrer H, Lu YJ, Zhang HW, Feng N, Mao X, Guo X, Wang G, Sun Z, Giles GG, Southey MC, MacInnis RJ, FitzGerald LM, Kibel AS, Drake BF, Vega A, Gómez-Caamaño A, Szulkin R, Eklund M, Kogevinas M, Llorca J, Castaño-Vinyals G, Penney KL, Stampfer M, Park JY, Sellers TA, Lin HY, Stanford JL, Cybulski C, Wokolorczyk D, Lubinski J, Ostrander EA, Geybels MS, Nordestgaard BG, Nielsen SF, Weischer M, Bisbjerg R, Røder MA, Iversen P, Brenner H, Cuk K, Holleczek B, Maier C, Luedeke M, Schnoeller T, Kim J, Logothetis CJ, John EM, Teixeira MR, Paulo P, Cardoso M, Neuhausen SL, Steele L, Ding YC, De Ruyck K, De Meerleer G, Ost P, Razack A, Lim J, Teo SH, Lin DW, Newcomb LF, Lessel D, Gamulin M, Kulis T, Kaneva R, Usmani N, Singhal S, Slavov C, Mitev V, Parliament M, Claessens F, Joniau S, Van den Broeck T, Larkin S, Townsend PA, Aukim-Hastie C, Gago-Dominguez M, Castelao JE, Martinez ME, Roobol MJ, Jenster G, van Schaik RHN, Menegaux F, Truong T, Koudou YA, Xu J, Khaw KT, Cannon-Albright L, Pandha H, Michael A, Thibodeau SN, McDonnell SK, Schaid DJ, Lindstrom S, Turman C, Ma J, Hunter DJ, Riboli E, Siddiq A, Canzian F, Kolonel LN, Le Marchand L, Hoover RN, Machiela MJ, Cui Z, Kraft P, Amos CI, Conti DV, Easton DF, Wiklund F, Chanock SJ, Henderson BE, Kote-Jarai Z, Haiman CA, Eeles RA. Association analyses of more than 140 000 men identify 63 new prostate cancer susceptibility loci. Nat Genet 2018; 50(7): 928–936
CrossRef
Google scholar
|
[32] |
BurrowsKHaycock P. Genome-wide Association Study of Cancer Risk in UK Biobank. doi:10.5523/bris.aed0u12w0ede20olb0m77p4b9.2021
|
[33] |
Verbanck M, Chen CY, Neale B, Do R. Detection of widespread horizontal pleiotropy in causal relationships inferred from Mendelian randomization between complex traits and diseases. Nat Genet 2018; 50(5): 693–698
CrossRef
Google scholar
|
[34] |
Corbin LJ, Richmond RC, Wade KH, Burgess S, Bowden J, Smith GD, Timpson NJ. BMI as a modifiable risk factor for type 2 diabetes: refining and understanding causal estimates using Mendelian randomization. Diabetes 2016; 65(10): 3002–3007
CrossRef
Google scholar
|
[35] |
Hemani G, Tilling K, Davey Smith G. Orienting the causal relationship between imprecisely measured traits using GWAS summary data. PLoS Genet 2017; 13(11): e1007081
CrossRef
Google scholar
|
[36] |
Burgess S, Davies NM, Thompson SG. Bias due to participant overlap in two-sample Mendelian randomization. Genet Epidemiol 2016; 40(7): 597–608
CrossRef
Google scholar
|
[37] |
Ward HA, Murphy N, Weiderpass E, Leitzmann MF, Aglago E, Gunter MJ, Freisling H, Jenab M, Boutron-Ruault MC, Severi G, Carbonnel F, Kühn T, Kaaks R, Boeing H, Tjønneland A, Olsen A, Overvad K, Merino S, Zamora-Ros R, Rodríguez-Barranco M, Dorronsoro M, Chirlaque MD, Barricarte A, Perez-Cornago A, Trichopoulou A, Bamia C, Lagiou P, Masala G, Grioni S, Tumino R, Sacerdote C, Mattiello A, Bueno-de-Mesquita B, Vermeulen R, Van Gils C, Nyström H, Rutegård M, Aune D, Riboli E, Cross AJ. Gallstones and incident colorectal cancer in a large pan-European cohort study. Int J Cancer 2019; 145(6): 1510–1516
CrossRef
Google scholar
|
[38] |
Chen YK, Yeh JH, Lin CL, Peng CL, Sung FC, Hwang IM, Kao CH. Cancer risk in patients with cholelithiasis and after cholecystectomy: a nationwide cohort study. J Gastroenterol 2014; 49(5): 923–931
CrossRef
Google scholar
|
[39] |
Liu Y, He Y, Li T, Xie L, Wang J, Qin X, Li S. Risk of primary liver cancer associated with gallstones and cholecystectomy: a meta-analysis. PLoS One 2014; 9(10): e109733
CrossRef
Google scholar
|
[40] |
Shabanzadeh DM, Sørensen LT, Jørgensen T. Association between screen-detected gallstone disease and cancer in a cohort study. Gastroenterology 2017; 152(8): 1965–74.e1
CrossRef
Google scholar
|
[41] |
Chaudhary D, Ahluwalia R, Rai A. Synchronous breast cancer and gallbladder diseases-a chromosomal analysis: a pilot study at a tertiary care centre. Indian J Surg 2017; 79(6): 544–548
CrossRef
Google scholar
|
[42] |
Jiang X, Jiang Z, Cheng Q, Sun W, Jiang M, Sun Y. Cholecystectomy promotes the development of colorectal cancer by the alternation of bile acid metabolism and the gut microbiota. Front Med (Lausanne) 2022; 9: 1000563
CrossRef
Google scholar
|
[43] |
Gong Y, Li S, Tang Y, Mai C, Ba M, Jiang P, Tang H. Cholelithiasis and risk of pancreatic cancer: systematic review and meta-analysis of 21 observational studies. Cancer Causes Control 2014; 25(11): 1543–1551
CrossRef
Google scholar
|
[44] |
Huang D, Lee J, Song N, Cho S, Choe S, Shin A. Gallstones, cholecystectomy and the risk of hepatobiliary and pancreatic cancer: a nationwide population-based cohort study in Republic of Korea. J Cancer Prev 2020; 25(3): 164–172
CrossRef
Google scholar
|
[45] |
Chen L, Fan Z, Sun X, Qiu W, Mu W, Chai K, Cao Y, Wang G, Lv G. Associations of cholecystectomy with the risk of colorectal cancer: a Mendelian randomization study. Chin Med J (Engl) 2023; 136(7): 840–847
CrossRef
Google scholar
|
[46] |
Culliford R, Cornish AJ, Law PJ, Farrington SM, Palin K, Jenkins MA, Casey G, Hoffmeister M, Brenner H, Chang-Claude J, Kirac I, Maughan T, Brezina S, Gsur A, Cheadle JP, Aaltonen LA, Dunlop MG, Houlston RS. Lack of an association between gallstone disease and bilirubin levels with risk of colorectal cancer: a Mendelian randomization analysis. Br J Cancer 2021; 124(6): 1169–1174
CrossRef
Google scholar
|
[47] |
Castro J, Amigo L, Miquel JF, Gälman C, Crovari F, Raddatz A, Zanlungo S, Jalil R, Rudling M, Nervi F. Increased activity of hepatic microsomal triglyceride transfer protein and bile acid synthesis in gallstone disease. Hepatology 2007; 45(5): 1261–1266
CrossRef
Google scholar
|
[48] |
Thomas LA, Veysey MJ, Bathgate T, King A, French G, Smeeton NC, Murphy GM, Dowling RH. Mechanism for the transit-induced increase in colonic deoxycholic acid formation in cholesterol cholelithiasis. Gastroenterology 2000; 119(3): 806–815
CrossRef
Google scholar
|
/
〈 | 〉 |