Intracellular concentration of ADA2 is a marker for monocyte differentiation and activation

Liang Dong, Bingtai Lu, Wenwen Luo, Xiaoqiong Gu, Chengxiang Wu, Luca Trotta, Mikko Seppanen, Yuxia Zhang, Andrey V. Zavialov

Front. Med. ››

PDF(5266 KB)
PDF(5266 KB)
Front. Med. ›› DOI: 10.1007/s11684-024-1110-6
RESEARCH ARTICLE

Intracellular concentration of ADA2 is a marker for monocyte differentiation and activation

Author information +
History +

Abstract

Adenosine, a critical molecule regulating cellular function both inside and outside cells, is controlled by two human adenosine deaminases: ADA1 and ADA2. While ADA1 primarily resides in the cytoplasm, ADA2 can be transported to lysosomes within cells or secreted outside the cell. Patients with ADA2 deficiency (DADA2) often suffer from systemic vasculitis due to elevated levels of TNF-α in their blood. Monocytes from DADA2 patients exhibit excessive TNF-α secretion and differentiate into pro-inflammatory M1-type macrophages. Our findings demonstrate that ADA2 localizes to endolysosomes within macrophages, and its intracellular concentration decreases in cells secreting TNF-α. This suggests that ADA2 may function as a lysosomal adenosine deaminase, regulating TNF-α expression by the cells. Interestingly, pneumonia patients exhibit higher ADA2 concentrations in their bronchoalveolar lavage (BAL), correlating with elevated pro-inflammatory cytokine levels. Conversely, cord blood has low ADA2 levels, creating a more immunosuppressive environment. Additionally, secreted ADA2 can bind to apoptotic cells, activating immune cells by reducing extracellular adenosine levels. These findings imply that ADA2 release from monocytes during inflammation, triggered by growth factors, may be crucial for cell activation. Targeting intracellular and extracellular ADA2 activities could pave the way for novel therapies in inflammatory and autoimmune disorders.

Keywords

adenosine deaminase 2 (ADA2) / TNF-α / adenosine deaminase 2 deficiency (DADA2) / monocyte subsets / macrophage polarization / pneumonia

Cite this article

Download citation ▾
Liang Dong, Bingtai Lu, Wenwen Luo, Xiaoqiong Gu, Chengxiang Wu, Luca Trotta, Mikko Seppanen, Yuxia Zhang, Andrey V. Zavialov. Intracellular concentration of ADA2 is a marker for monocyte differentiation and activation. Front. Med., https://doi.org/10.1007/s11684-024-1110-6

References

[1]
Boison D, Yegutkin GG. Adenosine metabolism: emerging concepts for cancer therapy. Cancer Cell 2019; 36(6): 582–596
CrossRef Google scholar
[2]
Fredholm BB. Adenosine, an endogenous distress signal, modulates tissue damage and repair. Cell Death Differ 2007; 14(7): 1315–1323
CrossRef Google scholar
[3]
Boswell-Casteel RC, Hays FA. Equilibrative nucleoside transporters—a review. Nucleosides Nucleotides Nucleic Acids 2017; 36(1): 7–30
CrossRef Google scholar
[4]
Zhulai G, Oleinik E, Shibaev M, Ignatev K. Adenosine-metabolizing enzymes, adenosine kinase and adenosine deaminase, in cancer. Biomolecules 2022; 12(3): 418
CrossRef Google scholar
[5]
Xu Y, Wang Y, Yan S, Zhou Y, Yang Q, Pan Y, Zeng X, An X, Liu Z, Wang L, Xu J, Cao Y, Fulton DJ, Weintraub NL, Bagi Z, Hoda MN, Wang X, Li Q, Hong M, Jiang X, Boison D, Weber C, Wu C, Huo Y. Intracellular adenosine regulates epigenetic programming in endothelial cells to promote angiogenesis. EMBO Mol Med 2017; 9(9): 1263–1278
CrossRef Google scholar
[6]
Antonioli L, Colucci R, La Motta C, Tuccori M, Awwad O, Da Settimo F, Blandizzi C, Fornai M. Adenosine deaminase in the modulation of immune system and its potential as a novel target for treatment of inflammatory disorders. Curr Drug Targets 2012; 13(6): 842–862
CrossRef Google scholar
[7]
Delemarre EM, van Hoorn L, Bossink AWJ, Drylewicz J, Joosten SA, Ottenhoff THM, Akkerman OW, Goletti D, Petruccioli E, Navarra A, van den Broek BTA, Paardekooper SPA, van Haeften I, Koenderman L, Lammers JWJ, Thijsen SFT, Hofland RW, Nierkens S. Serum biomarker profile including CCL1, CXCL10, VEGF, and adenosine deaminase activity distinguishes active from remotely acquired latent tuberculosis. Front Immunol 2021; 12: 725447
CrossRef Google scholar
[8]
Luo W, Dong L, Chen F, Lei W, He L, Zhou Q, Lamy T, Zavialov AV. ELISA based assays to measure adenosine deaminases concentration in serum and saliva for the diagnosis of ADA2 deficiency and cancer. Front Immunol 2022; 13: 928438
CrossRef Google scholar
[9]
Zavialov AV, Engström Å. Human ADA2 belongs to a new family of growth factors with adenosine deaminase activity. Biochem J 2005; 391(1): 51–57
CrossRef Google scholar
[10]
Driver AG, Kukoly CA, Ali S, Mustafa SJ. Adenosine in bronchoalveolar lavage fluid in asthma. Am Rev Respir Dis 1993; 148(1): 91–97
CrossRef Google scholar
[11]
Sleat DE, Zheng H, Qian M, Lobel P. Identification of sites of mannose 6-phosphorylation on lysosomal proteins. Mol Cell Proteomics 2006; 5(4): 686–701
CrossRef Google scholar
[12]
Zhong XZ, Zou Y, Sun X, Dong G, Cao Q, Pandey A, Rainey JK, Zhu X, Dong XP. Inhibition of transient receptor potential channel mucolipin-1 (TRPML1) by lysosomal adenosine involved in severe combined immunodeficiency diseases. J Biol Chem 2017; 292(8): 3445–3455
CrossRef Google scholar
[13]
Dong L, Luo W, Skaldin M, Robson CS, Zavialov AV. Adenosine deaminase 2 regulates the activation of the Toll-like receptor 9 in response to nucleic acids. Front Med 2024; 18(5): 814–830
CrossRef Google scholar
[14]
Lee PY, Aksentijevich I, Zhou Q. Mechanisms of vascular inflammation in deficiency of adenosine deaminase 2 (DADA2). Semin Immunopathol 2022; 44(3): 269–280
CrossRef Google scholar
[15]
Trotta L, Martelius T, Siitonen T, Hautala T, Hämäläinen S, Juntti H, Taskinen M, Ilander M, Andersson EI, Zavialov A, Kaustio M, Keski-Filppula R, Hershfield M, Mustjoki S, Tapiainen T, Seppänen M, Saarela J. ADA2 deficiency: clonal lymphoproliferation in a subset of patients. J Allergy Clin Immunol 2018; 141(4): 1534–1537.e8
[16]
Zhou Q, Yang D, Ombrello AK, Zavialov AV, Toro C, Zavialov AV, Stone DL, Chae JJ, Rosenzweig SD, Bishop K, Barron KS, Kuehn HS, Hoffmann P, Negro A, Tsai WL, Cowen EW, Pei W, Milner JD, Silvin C, Heller T, Chin DT, Patronas NJ, Barber JS, Lee CCR, Wood GM, Ling A, Kelly SJ, Kleiner DE, Mullikin JC, Ganson NJ, Kong HH, Hambleton S, Candotti F, Quezado MM, Calvo KR, Alao H, Barham BK, Jones A, Meschia JF, Worrall BB, Kasner SE, Rich SS, Goldbach-Mansky R, Abinun M, Chalom E, Gotte AC, Punaro M, Pascual V, Verbsky JW, Torgerson TR, Singer NG, Gershon TR, Ozen S, Karadag O, Fleisher TA, Remmers EF, Burgess SM, Moir SL, Gadina M, Sood R, Hershfield MS, Boehm M, Kastner DL, Aksentijevich I. Early-onset stroke and vasculopathy associated with mutations in ADA2. N Engl J Med 2014; 370(10): 911–920
CrossRef Google scholar
[17]
Deuitch NT, Yang D, Lee PY, Yu X, Moura NS, Schnappauf O, Ombrello AK, Stone D, Kuehn HS, Rosenzweig SD, Hoffmann P, Cudrici C, Levy DM, Kessler E, Soep JB, Hay AD, Dalrymple A, Zhang Y, Sun L, Zhang Q, Tang X, Wu Y, Rao K, Li H, Luo H, Zhang Y, Burnham JM, Boehm M, Barron K, Kastner DL, Aksentijevich I, Zhou Q. TNF inhibition in vasculitis management in adenosine deaminase 2 deficiency (DADA2). J Allergy Clin Immunol 2022; 149(5): 1812–1816.e6
CrossRef Google scholar
[18]
Hong Y, Casimir M, Houghton BC, Zhang F, Jensen B, Omoyinmi E, Torrance R, Papadopoulou C, Cummins M, Roderick M, Thrasher AJ, Brogan PA, Eleftheriou D. Lentiviral mediated ADA2 gene transfer corrects the defects associated with deficiency of adenosine deaminase type 2. Front Immunol 2022; 13: 852830
CrossRef Google scholar
[19]
Zoccolillo M, Brigida I, Barzaghi F, Scala S, Hernández RJ, Basso-Ricci L, Colantuoni M, Pettinato E, Sergi LS, Milardi G, Capasso P, Lombardo A, Gregori S, Sanvito F, Schena F, Cesaro S, Conti F, Pession A, Benedetti F, Gattorno M, Lee PY, Naldini L, Cicalese MP, Aiuti A, Mortellaro A. Lentiviral correction of enzymatic activity restrains macrophage inflammation in adenosine deaminase 2 deficiency. Blood Adv 2021; 5(16): 3174–3187
CrossRef Google scholar
[20]
Kaljas Y, Liu C, Skaldin M, Wu C, Zhou Q, Lu Y, Aksentijevich I, Zavialov AV. Human adenosine deaminases ADA1 and ADA2 bind to different subsets of immune cells. Cell Mol Life Sci 2017; 74(3): 555–570
CrossRef Google scholar
[21]
Wong KL, Tai JJY, Wong WC, Han H, Sem X, Yeap WH, Kourilsky P, Wong SC. Gene expression profiling reveals the defining features of the classical, intermediate, and nonclassical human monocyte subsets. Blood 2011; 118(5): e16–e31
CrossRef Google scholar
[22]
Sampath P, Moideen K, Ranganathan UD, Bethunaickan R. Monocyte subsets: phenotypes and function in tuberculosis infection. Front Immunol 2018; 9: 1726
CrossRef Google scholar
[23]
Zeng T, Ling B, Hu X, Wang S, Qiao W, Gao L, Shen Y, Li D. The value of adenosine deaminase 2 in the detection of tuberculous pleural effusion: a meta-analysis and systematic review. Can Respir J 2022; 2022: 7078652
CrossRef Google scholar
[24]
Pedraza- Sánchez S, Hise AG, Ramachandra L, Arechavaleta-Velasco F, King CL. Reduced frequency of a CD14+CD16+ monocyte subset with high Toll-like receptor 4 expression in cord blood compared to adult blood contributes to lipopolysaccharide hyporesponsiveness in newborns. Clin Vaccine Immunol 2013; 20(7): 962–971
CrossRef Google scholar
[25]
Schneider A, Weier M, Herderschee J, Perreau M, Calandra T, Roger T, Giannoni E. IRF5 is a key regulator of macrophage response to lipopolysaccharide in newborns. Front Immunol 2018; 9: 1597
CrossRef Google scholar
[26]
Kayacan O, Karnak D, Delibalta M, Beder S, Karaca L, Tutkak H. Adenosine deaminase activity in bronchoalveolar lavage in Turkish patients with smear negative pulmonary tuberculosis. Respir Med 2002; 96(7): 536–541
CrossRef Google scholar
[27]
Carmona-Rivera C, Khaznadar SS, Shwin KW, Irizarry-Caro JA, O’Neil LJ, Liu Y, Jacobson KA, Ombrello AK, Stone DL, Tsai WL, Kastner DL, Aksentijevich I, Kaplan MJ, Grayson PC. Deficiency of adenosine deaminase 2 triggers adenosine-mediated NETosis and TNF production in patients with DADA2. Blood 2019; 134(4): 395–406
CrossRef Google scholar
[28]
Puchalowicz K, Tarnowski M, Tkacz M, Chlubek D, Kłos P, Dziedziejko V. Extracellular adenine nucleotides and adenosine modulate the growth and survival of THP-1 leukemia cells. Int J Mol Sci 2020; 21(12): 4425
CrossRef Google scholar
[29]
van Loo G, Bertrand MJM. Death by TNF: a road to inflammation. Nat Rev Immunol 2023; 23(5): 289–303
CrossRef Google scholar
[30]
Lee PY, Huang Y, Zhou Q, Schnappauf O, Hershfield MS, Li Y, Ganson NJ, Sampaio Moura N, Delmonte OM, Stone SS, Rivkin MJ, Pai SY, Lyons T, Sundel RP, Hsu VW, Notarangelo LD, Aksentijevich I, Nigrovic PA. Disrupted N-linked glycosylation as a disease mechanism in deficiency of ADA2. J Allergy Clin Immunol 2018; 142(4): 1363–1365.e8
CrossRef Google scholar
[31]
Zavialov AV, Gracia E, Glaichenhaus N, Franco R, Lauvau G. Human adenosine deaminase 2 induces differentiation of monocytes into macrophages and stimulates proliferation of T helper cells and macrophages. J Leukoc Biol 2010; 88(2): 279–290
CrossRef Google scholar
[32]
Sleat DE, Wang Y, Sohar I, Lackland H, Li Y, Li H, Zheng H, Lobel P. Identification and validation of mannose 6-phosphate glycoproteins in human plasma reveal a wide range of lysosomal and non-lysosomal proteins. Mol Cell Proteomics 2006; 5(10): 1942–1956
CrossRef Google scholar
[33]
Lee PY, Davidson BA, Abraham RS, Alter B, Arostegui JI, Bell K, Belot A, Bergerson JRE, Bernard TJ, Brogan PA, Berkun Y, Deuitch NT, Dimitrova D, Georgin-Lavialle SA, Gattorno M, Grimbacher B, Hashem H, Hershfield MS, Ichord RN, Izawa K, Kanakry JA, Khubchandani RP, Klouwer FCC, Luton EA, Man AW, Meyts I, Van Montfrans JM, Ozen S, Saarela J, Santo GC, Sharma A, Soldatos A, Sparks R, Torgerson TR, Uriarte IL, Youngstein TAB, Zhou Q, Aksentijevich I, Kastner DL, Chambers EP, Ombrello AK, Makley MK, Hayner KL, Kling BE, Cowsert LM, Williams JS. Evaluation and management of deficiency of adenosine deaminase 2: an international consensus statement. JAMA Netw Open 2023; 6(5): e2315894
CrossRef Google scholar
[34]
Sullivan KE, Reddy ABM, Dietzmann K, Suriano AR, Kocieda VP, Stewart M, Bhatia M. Epigenetic regulation of tumor necrosis factor alpha. Mol Cell Biol 2007; 27(14): 5147–5160
CrossRef Google scholar
[35]
Sander J, Schmidt SV, Cirovic B, McGovern N, Papantonopoulou O, Hardt AL, Aschenbrenner AC, Kreer C, Quast T, Xu AM, Schmidleithner LM, Theis H, Thi Huong LD, Sumatoh HRB, Lauterbach MAR, Schulte-Schrepping J, Günther P, Xue J, Baßler K, Ulas T, Klee K, Katzmarski N, Herresthal S, Krebs W, Martin B, Latz E, Händler K, Kraut M, Kolanus W, Beyer M, Falk CS, Wiegmann B, Burgdorf S, Melosh NA, Newell EW, Ginhoux F, Schlitzer A, Schultze JL. Cellular differentiation of human monocytes is regulated by time-dependent interleukin-4 signaling and the transcriptional regulator NCOR2. Immunity 2017; 47(6): 1051–1066.e12
CrossRef Google scholar
[36]
Coutinho MF, Prata MJ, Alves S. Mannose-6-phosphate pathway: a review on its role in lysosomal function and dysfunction. Mol Genet Metab 2012; 105(4): 542–550
CrossRef Google scholar
[37]
Murray PJ. Macrophage polarization. Annu Rev Physiol 2017; 79(1): 541–566
CrossRef Google scholar
[38]
Keng LT, Shu CC, Chen JYP, Liang SK, Lin CK, Chang LY, Chang CH, Wang JY, Yu CJ, Lee LN. Evaluating pleural ADA, ADA2, IFN-γ and IGRA for diagnosing tuberculous pleurisy. J Infect 2013; 67(4): 294–302
CrossRef Google scholar
[39]
Khodadadi I, Abdi M, Ahmadi A, Wahedi MS, Menbari S, Lahoorpour F, Rahbari R. Analysis of serum adenosine deaminase (ADA) and ADA1 and ADA2 isoenzyme activities in HIV positive and HIV-HBV co-infected patients. Clin Biochem 2011; 44(12): 980–983
CrossRef Google scholar
[40]
Belge KU, Dayyani F, Horelt A, Siedlar M, Frankenberger M, Frankenberger B, Espevik T, Ziegler-Heitbrock L. The proinflammatory CD14+CD16+DR++ monocytes are a major source of TNF. J Immunol 2002; 168(7): 3536–3542
CrossRef Google scholar
[41]
Lastrucci C, Bénard A, Balboa L, Pingris K, Souriant S, Poincloux R, Al Saati T, Rasolofo V, González-Montaner P, Inwentarz S, Moraña EJ, Kondova I, Verreck FAW, Sasiain MC, Neyrolles O, Maridonneau-Parini I, Lugo-Villarino G, Cougoule C. Tuberculosis is associated with expansion of a motile, permissive and immunomodulatory CD16+ monocyte population via the IL-10/STAT3 axis. Cell Res 2015; 25(12): 1333–1351
CrossRef Google scholar
[42]
Ancuta P, Liu KY, Misra V, Wacleche V, Gosselin A, Zhou X, Gabuzda D. Transcriptional profiling reveals developmental relationship and distinct biological functions of CD16+ and CD16 monocyte subsets. BMC Genomics 2009; 10(1): 403
CrossRef Google scholar

Acknowledgements

The authors wish to thank the staff of the Institute of Pediatrics for participating in the study. This work was supported by Guangzhou Women and Children’s Hospital, Guangzhou Science and Technology Project (No. 202201011494 to Liang Dong), and a grant (No. 256053 to Andrey V. Zavialov) from the Finnish Academy.

Electronic Supplementary Material

Supplementary material is available in the online version of this article at https://doi.org/10.1007/s11684-024-1110-6 and is accessible to authorized users.

Compliance with ethics guidelines

Conflicts of interest Liang Dong, Bingtai Lu, Wenwen Luo, Xiaoqiong Gu, Chengxiang Wu, Luca Trotta, Mikko Seppanen, Yuxia Zhang, and Andrey V. Zavialov declare that the research was conducted without commercial or financial relationships that could be considered a potential conflict of interest.
The study was undertaken in compliance with the principles of the Helsinki Declaration and was approved by the ethics committee of Helsinki University Central Hospital, Finland. All patients were informed of the study, and they gave written consent before sample collection. The Medical Ethics Committee of Guangzhou Women and Children’s Medical Center (GWCMC) in Guangzhou, China, approved the study of patients with pneumonia under Approval No. 2016111853. The study adhered to ethical standards and guidelines. The serum from cord blood and healthy women was obtained from GWCMC Biobank.

RIGHTS & PERMISSIONS

2025 Higher Education Press
AI Summary AI Mindmap
PDF(5266 KB)

Accesses

Citations

Detail

Sections
Recommended

/