Recurrent eosinophilia with a novel homozygous ARPC1B mutation
Gamze Sonmez, Baris Ulum, Ates Kutay Tenekeci, Canan Caka, Ali Şahin, Alp Kazancıoğlu, Begum Ozbek, İsmail Yaz, Saliha Esenboğa, Deniz Çağdaş
Recurrent eosinophilia with a novel homozygous ARPC1B mutation
Cytoskeletal network dysregulation is a pivotal determinant in various immunodeficiencies and autoinflammatory conditions. This report reviews the significance of actin remodeling in disease pathogenesis, focusing on the Arp2/3 complex and its regulatory subunit actin related protein 2/3 complex subunit 1B (ARPC1B). A spectrum of cellular dysfunctions associated with ARPC1B deficiency, impacting diverse immune cell types, is elucidated. The study presents a patient featuring recurrent and persistent eosinophilia attributed to homozygous ARPC1B mutation alongside concomitant compound heterozygous cystic fibrosis transmembrane conductance regulator (CFTR) gene mutations. We used ARPC1B antibody to stain the patient’s peripheral blood lymphocytes and those of the control. The defect in the ARPC1B gene in the present patient caused absent/low expression by immunofluorescence microscopy. The intricate interplay between cytoskeletal defects and immunological manifestations underscores the complexity of disease phenotypes, warranting further exploration for targeted therapeutic strategies.
actin cytoskeleton defects / ARPC1B deficiency / hypereosinophilia / primary immunodeficiency / cystic fibrosis
[1] |
Papa R, Penco F, Volpi S, Gattorno M. Actin remodeling defects leading to autoinflammation and immune dysregulation. Front Immunol 2021; 11: 604206
CrossRef
Google scholar
|
[2] |
Randzavola LO, Strege K, Juzans M, Asano Y, Stinchcombe JC, Gawden-Bone CM, Seaman MN, Kuijpers TW, Griffiths GM. Loss of ARPC1B impairs cytotoxic T lymphocyte maintenance and cytolytic activity. J Clin Invest 2019; 129(12): 5600–5614
CrossRef
Google scholar
|
[3] |
Leung G, Zhou Y, Ostrowski P, Mylvaganam S, Boroumand P, Mulder DJ, Guo C, Muise AM, Freeman SA. ARPC1B binds WASP to control actin polymerization and curtail tonic signaling in B cells. JCI Insight 2021; 6(23): e149376
CrossRef
Google scholar
|
[4] |
Kuijpers TW, Tool ATJ, van der Bijl I, de Boer M, van Houdt M, de Cuyper IM, Roos D, van Alphen F, van Leeuwen K, Cambridge EL, Arends MJ, Dougan G, Clare S, Ramirez-Solis R, Pals ST, Adams DJ, Meijer AB, van den Berg TK. Combined immunodeficiency with severe inflammation and allergy caused by ARPC1B deficiency. J Allergy Clin Immunol 2017; 140(1): 273–277.e10
CrossRef
Google scholar
|
[5] |
Tkemaladze T, Kvaratskhelia E, Ghughunishvili M, Lentze MJ, Abzianidze E, Skrahina V, Rolfs A. Genotype-phenotype correlations of cystic fibrosis in siblings compound heterozygotes for rare variant combinations: review of literature and case report. Respir Med Case Rep 2022; 40: 101750
CrossRef
Google scholar
|
[6] |
Sosnay PR, Siklosi KR, Van Goor F, Kaniecki K, Yu H, Sharma N, Ramalho AS, Amaral MD, Dorfman R, Zielenski J, Masica DL, Karchin R, Millen L, Thomas PJ, Patrinos GP, Corey M, Lewis MH, Rommens JM, Castellani C, Penland CM, Cutting GR. Defining the disease liability of variants in the cystic fibrosis transmembrane conductance regulator gene. Nat Genet 2013; 45(10): 1160–1167
CrossRef
Google scholar
|
[7] |
Salinas DB, Sosnay PR, Azen C, Young S, Raraigh KS, Keens TG, Kharrazi M. Benign and deleterious cystic fibrosis transmembrane conductance regulator mutations identified by sequencing in positive cystic fibrosis newborn screen children from California. PLoS One 2016; 11(5): e0155624
CrossRef
Google scholar
|
[8] |
Papadatou I, Marinakis N, Botsa E, Tzanoudaki M, Kanariou M, Orfanou I, Kanaka-Gantenbein C, Traeger-Synodinos J, Spoulou V. Case report: a novel synonymous ARPC1B gene mutation causes a syndrome of combined immunodeficiency, asthma, and allergy with significant intrafamilial clinical heterogeneity. Front Immunol 2021; 12: 634313
CrossRef
Google scholar
|
[9] |
Giardino S, Volpi S, Lucioni F, Caorsi R, Schneiderman J, Lang A, Khojah A, Kuijpers T, Papadatou I, Paisiou A, Alonso L, Schulz A, Marcus N, Gattorno M, Faraci M. Hematopoietic stem cell transplantation in ARPC1B deficiency. J Clin Immunol 2022; 42(7): 1535–1544
CrossRef
Google scholar
|
[10] |
Schubach M, Maass T, Nazaretyan L, Röner S, Kircher M. CADD v1.7: using protein language models, regulatory CNNs and other nucleotide-level scores to improve genome-wide variant predictions. Nucleic Acids Res 2024; 52(D1): D1143–D1154
CrossRef
Google scholar
|
[11] |
Jaganathan K, Kyriazopoulou Panagiotopoulou S, McRae JF, Darbandi SF, Knowles D, Li YI, Kosmicki JA, Arbelaez J, Cui W, Schwartz GB, Chow ED, Kanterakis E, Gao H, Kia A, Batzoglou S, Sanders SJ, Farh KK. Predicting splicing from primary sequence with deep learning. Cell 2019; 176(3): 535–548.e24
CrossRef
Google scholar
|
[12] |
Venegas-Montoya E, Staines-Boone AT, Sánchez-Sánchez LM, García-Campos JA, Córdova-Gurrola RA, Salazar-Galvez Y, Múzquiz-Zermeño D, González-Serrano ME, Lugo Reyes SO. Case Report: DOCK8 deficiency without hyper-IgE in a child with a large deletion. Front Pediatr 2021; 9: 635322
CrossRef
Google scholar
|
[13] |
Biggs CM, Keles S, Chatila TA. DOCK8 deficiency: insights into pathophysiology, clinical features and management. Clin Immunol 2017; 181: 75–82
CrossRef
Google scholar
|
[14] |
Lévy R, Gothe F, Momenilandi M, Magg T, Materna M, Peters P, Raedler J, Philippot Q, Rack-Hoch AL, Langlais D, Bourgey M, Lanz AL, Ogishi M, Rosain J, Martin E, Latour S, Vladikine N, Distefano M, Khan T, Rapaport F, Schulz MS, Holzer U, Fasth A, Sogkas G, Speckmann C, Troilo A, Bigley V, Roppelt A, Dinur-Schejter Y, Toker O, Bronken Martinsen KH, Sherkat R, Somekh I, Somech R, Shouval DS, Kühl JS, Ip W, McDermott EM, Cliffe L, Ozen A, Baris S, Rangarajan HG, Jouanguy E, Puel A, Bustamante J, Alyanakian MA, Fusaro M, Wang Y, Kong XF, Cobat A, Boutboul D, Castelle M, Aguilar C, Hermine O, Cheminant M, Suarez F, Yildiran A, Bousfiha A, Al-Mousa H, Alsohime F, Cagdas D, Abraham RS, Knutsen AP, Fevang B, Bhattad S, Kiykim A, Erman B, Arikoglu T, Unal E, Kumar A, Geier CB, Baumann U, Neven B; CARMIL2 Consortium; Rohlfs M, Walz C, Abel L, Malissen B, Marr N, Klein C, Casanova JL, Hauck F, Béziat V. Human CARMIL2 deficiency underlies a broader immunological and clinical phenotype than CD28 deficiency. J Exp Med 2023; 220(2): e20220275
CrossRef
Google scholar
|
[15] |
Giardino S, Volpi S, Lucioni F, Caorsi R, Schneiderman J, Lang A, Khojah A, Kuijpers T, Papadatou I, Paisiou A, Alonso L, Schulz A, Marcus N, Gattorno M, Faraci M. Hematopoietic stem cell transplantation in ARPC1B deficiency. J Clin Immunol 2022; 42(7): 1535–1544
CrossRef
Google scholar
|
[16] |
Vásquez-Echeverri E, Yamazaki-Nakashimada MA, Venegas Montoya E, Scheffler Mendoza SC, Castano-Jaramillo LM, Medina-Torres EA, González-Serrano ME, Espinosa-Navarro M, Bustamante Ogando JC, González-Villarreal MG, Ortega Cisneros M, Valencia Mayoral PF, Consuelo Sanchez A, Varela-Fascinetto G, Ramírez-Uribe RMN, Salazar Gálvez Y, Bonifaz Alonzo LC, Fuentes-Pananá EM, Gómez Hernández N, Rojas Maruri CM, Casanova JL, Espinosa-Padilla SE, Staines Boone AT, López-Velázquez G, Boisson B, Lugo Reyes SO. Is your kid actin out? A series of six patients with inherited actin-related protein 2/3 complex subunit 1B deficiency and review of the literature. J Allergy Clin Immunol Pract 2023; 11(4): 1261–1280.e8
CrossRef
Google scholar
|
[17] |
Fan Z, Ley K. Leukocyte adhesion deficiency IV. Monocyte integrin activation deficiency in cystic fibrosis. Am J Respir Crit Care Med 2016; 193(10): 1075–1077
CrossRef
Google scholar
|
[18] |
Yaz I, Ozbek B, Bildik HN, Tan C, Oskay Halacli S, Soyak Aytekin E, Esenboga S, Cekic S, Kilic SS, Keskin O, van Leeuwen K, Roos D, Cagdas D, Tezcan I. Clinical and laboratory findings in patients with leukocyte adhesion deficiency type I: a multicenter study in Turkey. Clin Exp Immunol 2021; 206(1): 47–55
CrossRef
Google scholar
|
[19] |
Derichs N, Schuster A, Grund I, Ernsting A, Stolpe C, Körtge-Jung S, Gallati S, Stuhrmann M, Kozlowski P, Ballmann M. Homozygosity for L997F in a child with normal clinical and chloride secretory phenotype provides evidence that this cystic fibrosis transmembrane conductance regulator mutation does not cause cystic fibrosis. Clin Genet 2005; 67(6): 529–531
CrossRef
Google scholar
|
[20] |
Puéchal X, Bienvenu T, Génin E, Berthelot JM, Sibilia J, Gaudin P, Marcelli C, Lasbleiz S, Michou L, Cornélis F, Kahan A, Dusser DJ. Mutations of the cystic fibrosis gene in patients with bronchiectasis associated with rheumatoid arthritis. Ann Rheum Dis 2011; 70(4): 653–659
CrossRef
Google scholar
|
[21] |
Onay T, Topaloglu O, Zielenski J, Gokgoz N, Kayserili H, Camcioglu Y, Cokugras H, Akcakaya N, Apak M, Tsui LC, Kirdar B. Analysis of the CFTR gene in Turkish cystic fibrosis patients: identification of three novel mutations (3172delAC, P1013L and M1028I). Hum Genet 1998; 102(2): 224–230
CrossRef
Google scholar
|
[22] |
Lakeman P, Gille JJ, Dankert-Roelse JE, Heijerman HG, Munck A, Iron A, Grasemann H, Schuster A, Cornel MC, Ten Kate LP. CFTR mutations in Turkish and North African cystic fibrosis patients in Europe: implications for screening. Genet Test 2008; 12(1): 25–35
CrossRef
Google scholar
|
[23] |
Borish L, Noonan E, Zhang L, Patrie J, Albon D. Eosinophilic cystic fibrosis is associated with increased health care utilization. J Allergy Clin Immunol 2023; 151(2): AB69
CrossRef
Google scholar
|
[24] |
Başaran AE, Karataş-Torun N, Maslak İC, Bingöl A, Alper ÖM. Normal sweat chloride test does not rule out cystic fibrosis. Turk J Pediatr 2017; 59(1): 68–70
CrossRef
Google scholar
|
/
〈 | 〉 |