Cardiomyocyte-specific long noncoding RNA Trdn-as induces mitochondrial calcium overload by promoting the m6A modification of calsequestrin 2 in diabetic cardiomyopathy
Xiaohan Li, Ling Liu, Han Lou, Xinxin Dong, Shengxin Hao, Zeqi Sun, Zijia Dou, Huimin Li, Wenjie Zhao, Xiuxiu Sun, Xin Liu, Yong Zhang, Baofeng Yang
Cardiomyocyte-specific long noncoding RNA Trdn-as induces mitochondrial calcium overload by promoting the m6A modification of calsequestrin 2 in diabetic cardiomyopathy
Diabetic cardiomyopathy (DCM) is a medical condition characterized by cardiac remodeling and dysfunction in individuals with diabetes mellitus. Sarcoplasmic reticulum (SR) and mitochondrial Ca2+ overload in cardiomyocytes have been recognized as biological hallmarks in DCM; however, the specific factors underlying these abnormalities remain largely unknown. In this study, we aimed to investigate the role of a cardiac-specific long noncoding RNA, D830005E20Rik (Trdn-as), in DCM. Our results revealed the remarkably upregulation of Trdn-as in the hearts of the DCM mice and cardiomyocytes treated with high glucose (HG). Knocking down Trdn-as in cardiac tissues significantly improved cardiac dysfunction and remodeling in the DCM mice. Conversely, Trdn-as overexpression resulted in cardiac damage resembling that observed in the DCM mice. At the cellular level, Trdn-as induced Ca2+ overload in the SR and mitochondria, leading to mitochondrial dysfunction. RNA-seq and bioinformatics analyses identified calsequestrin 2 (Casq2), a primary calcium-binding protein in the junctional SR, as a potential target of Trdn-as. Further investigations revealed that Trdn-as facilitated the recruitment of METTL14 to the Casq2 mRNA, thereby enhancing the m6A modification of Casq2. This modification increased the stability of Casq2 mRNA and subsequently led to increased protein expression. When Casq2 was knocked down, the promoting effects of Trdn-as on Ca2+ overload and mitochondrial damage were mitigated. These findings provide valuable insights into the pathogenesis of DCM and suggest Trdn-as as a potential therapeutic target for this condition.
Trdn-as / calsequestrin 2 / METTL14 / mitochondrial dysfunction / calcium overload
[1] |
Magliano DJ, Chen L, Islam RM, Carstensen B, Gregg EW, Pavkov ME, Andes LJ, Balicer R, Baviera M, Boersma-van Dam E, Booth GL, Chan JCN, Chua YX, Fosse-Edorh S, Fuentes S, Gulseth HL, Gurevicius R, Ha KH, Hird TR, Jermendy G, Khalangot MD, Kim DJ, Kiss Z, Kravchenko VI, Leventer-Roberts M, Lin CY, Luk AOY, Mata-Cases M, Mauricio D, Nichols GA, Nielen MM, Pang D, Paul SK, Pelletier C, Pildava S, Porath A, Read SH, Roncaglioni MC, Lopez-Doriga Ruiz P, Shestakova M, Vikulova O, Wang KL, Wild SH, Yekutiel N, Shaw JE. Trends in the incidence of diagnosed diabetes: a multicountry analysis of aggregate data from 22 million diagnoses in high-income and middle-income settings. Lancet Diabetes Endocrinol 2021; 9(4): 203–211
CrossRef
Google scholar
|
[2] |
Rooney MR, Fang M, Ogurtsova K, Ozkan B, Echouffo-Tcheugui JB, Boyko EJ, Magliano DJ, Selvin E. Global prevalence of prediabetes. Diabetes Care 2023; 46(7): 1388–1394
CrossRef
Google scholar
|
[3] |
Jin L, Geng L, Ying L, Shu L, Ye K, Yang R, Liu Y, Wang Y, Cai Y, Jiang X, Wang Q, Yan X, Liao B, Liu J, Duan F, Sweeney G, Woo CWH, Wang Y, Xia Z, Lian Q, Xu A. FGF21-Sirtuin 3 axis confers the protective effects of exercise against diabetic cardiomyopathy by governing mitochondrial integrity. Circulation 2022; 146(20): 1537–1557
CrossRef
Google scholar
|
[4] |
Lee CS, Zhai Y, Rodrigues B. Changes in lipoprotein lipase in the heart following diabetes onset. Engineering (Beijing) 2023; 20: 19–25
CrossRef
Google scholar
|
[5] |
Dia M, Gomez L, Thibault H, Tessier N, Leon C, Chouabe C, Ducreux S, Gallo-Bona N, Tubbs E, Bendridi N, Chanon S, Leray A, Belmudes L, Couté Y, Kurdi M, Ovize M, Rieusset J, Paillard M. Reduced reticulum-mitochondria Ca2+ transfer is an early and reversible trigger of mitochondrial dysfunctions in diabetic cardiomyopathy. Basic Res Cardiol 2020; 115(6): 74
CrossRef
Google scholar
|
[6] |
Yuan M, Gong M, He J, Xie B, Zhang Z, Meng L, Tse G, Zhao Y, Bao Q, Zhang Y, Yuan M, Liu X, Luo C, Wang F, Li G, Liu T. IP3R1/GRP75/VDAC1 complex mediates endoplasmic reticulum stress-mitochondrial oxidative stress in diabetic atrial remodeling. Redox Biol 2022; 52: 102289
CrossRef
Google scholar
|
[7] |
Zhang X, Chen X, Qian F, Zhu Y, He G, Yang J, Wu X, Zhang H, Yu X, Liu X. Deubiquitinase USP19 modulates apoptotic calcium release and endoplasmic reticulum stress by deubiquitinating BAG6 in triple negative breast cancer. Clin Transl Med 2023; 13(9): e1398
CrossRef
Google scholar
|
[8] |
Bootman MD, Bultynck G. Fundamentals of cellular calcium signaling: a primer. Cold Spring Harb Perspect Biol 2020; 12(1): a038802
CrossRef
Google scholar
|
[9] |
Berridge MJ, Lipp P, Bootman MD. The versatility and universality of calcium signalling. Nat Rev Mol Cell Biol 2000; 1(1): 11–21
CrossRef
Google scholar
|
[10] |
Li J, Liu C, Li Y, Zheng Q, Xu Y, Liu B, Sun W, Li Y, Ji S, Liu M, Zhang J, Zhao D, Du R, Liu Z, Zhong G, Sun C, Wang Y, Song J, Zhang S, Qin J, Ling S, Wang X, Li Y. TMCO1-mediated Ca2+ leak underlies osteoblast functions via CaMKII signaling. Nat Commun 2019; 10(1): 1589
CrossRef
Google scholar
|
[11] |
Stutzmann GE, Mattson MP. Endoplasmic reticulum Ca2+ handling in excitable cells in health and disease. Pharmacol Rev 2011; 63(3): 700–727
CrossRef
Google scholar
|
[12] |
Hamilton S, Terentyeva R, Martin B, Perger F, Li J, Stepanov A, Bonilla IM, Knollmann BC, Radwański PB, Györke S, Belevych AE, Terentyev D. Increased RyR2 activity is exacerbated by calcium leak-induced mitochondrial ROS. Basic Res Cardiol 2020; 115(4): 38
CrossRef
Google scholar
|
[13] |
Jaquenod De Giusti C, Palomeque J, Mattiazzi A. Ca2+ mishandling and mitochondrial dysfunction: a converging road to prediabetic and diabetic cardiomyopathy. Pflugers Arch 2022; 474(1): 33–61
CrossRef
Google scholar
|
[14] |
Rossi D, Gamberucci A, Pierantozzi E, Amato C, Migliore L, Sorrentino V. Calsequestrin, a key protein in striated muscle health and disease. J Muscle Res Cell Motil 2021; 42(2): 267–279
CrossRef
Google scholar
|
[15] |
Viatchenko-Karpinski S, Terentyev D, Györke I, Terentyeva R, Volpe P, Priori SG, Napolitano C, Nori A, Williams SC, Györke S. Abnormal calcium signaling and sudden cardiac death associated with mutation of calsequestrin. Circ Res 2004; 94(4): 471–477
CrossRef
Google scholar
|
[16] |
Postma AV, Denjoy I, Hoorntje TM, Lupoglazoff JM, Da Costa A, Sebillon P, Mannens MM, Wilde AA, Guicheney P. Absence of calsequestrin 2 causes severe forms of catecholaminergic polymorphic ventricular tachycardia. Circ Res 2002; 91(8): e21–e26
CrossRef
Google scholar
|
[17] |
Jones LR, Suzuki YJ, Wang W, Kobayashi YM, Ramesh V, Franzini-Armstrong C, Cleemann L, Morad M. Regulation of Ca2+ signaling in transgenic mouse cardiac myocytes overexpressing calsequestrin. J Clin Invest 1998; 101(7): 1385–1393
CrossRef
Google scholar
|
[18] |
Shannon TR. Linking calsequestrin to lumenal control of SR Ca2+ release. Circ Res 2007; 101(6): 539–541
CrossRef
Google scholar
|
[19] |
Kohlhaas M, Maack C. Calcium release microdomains and mitochondria. Cardiovasc Res 2013; 98(2): 259–268
CrossRef
Google scholar
|
[20] |
Djebali S, Davis CA, Merkel A, Dobin A, Lassmann T, Mortazavi A, Tanzer A, Lagarde J, Lin W, Schlesinger F, Xue C, Marinov GK, Khatun J, Williams BA, Zaleski C, Rozowsky J, Röder M, Kokocinski F, Abdelhamid RF, Alioto T, Antoshechkin I, Baer MT, Bar NS, Batut P, Bell K, Bell I, Chakrabortty S, Chen X, Chrast J, Curado J, Derrien T, Drenkow J, Dumais E, Dumais J, Duttagupta R, Falconnet E, Fastuca M, Fejes-Toth K, Ferreira P, Foissac S, Fullwood MJ, Gao H, Gonzalez D, Gordon A, Gunawardena H, Howald C, Jha S, Johnson R, Kapranov P, King B, Kingswood C, Luo OJ, Park E, Persaud K, Preall JB, Ribeca P, Risk B, Robyr D, Sammeth M, Schaffer L, See LH, Shahab A, Skancke J, Suzuki AM, Takahashi H, Tilgner H, Trout D, Walters N, Wang H, Wrobel J, Yu Y, Ruan X, Hayashizaki Y, Harrow J, Gerstein M, Hubbard T, Reymond A, Antonarakis SE, Hannon G, Giddings MC, Ruan Y, Wold B, Carninci P, Guigó R, Gingeras TR. Landscape of transcription in human cells. Nature 2012; 489(7414): 101–108
CrossRef
Google scholar
|
[21] |
Bridges MC, Daulagala AC, Kourtidis A. LNCcation: lncRNA localization and function. J Cell Biol 2021; 220(2): e202009045
CrossRef
Google scholar
|
[22] |
Zhang Z, Salisbury D, Sallam T. Long noncoding RNAs in atherosclerosis: JACC review topic of the week. J Am Coll Cardiol 2018; 72(19): 2380–2390
CrossRef
Google scholar
|
[23] |
Li QW, Lei W, Chen C, Guo W. Recent advances of long noncoding RNAs involved in the development of multiple sclerosis. Chin J Nat Med 2020; 18(1): 36–46
CrossRef
Google scholar
|
[24] |
Liu L, Hu L, Long H, Zheng M, Hu Z, He Y, Gao X, Du P, Zhao H, Yu D, Lu Q, Zhao M. LncRNA IL21–AS1 interacts with hnRNPU protein to promote IL21 overexpression and aberrant differentiation of Tfh cells in systemic lupus erythematosus. Clin Transl Med 2022; 12(12): e1117
CrossRef
Google scholar
|
[25] |
Zhang Y, Sun L, Xuan L, Pan Z, Hu X, Liu H, Bai Y, Jiao L, Li Z, Cui L, Wang X, Wang S, Yu T, Feng B, Guo Y, Liu Z, Meng W, Ren H, Zhu J, Zhao X, Yang C, Zhang Y, Xu C, Wang Z, Lu Y, Shan H, Yang B. Long non-coding RNA CCRR controls cardiac conduction via regulating intercellular coupling. Nat Commun 2018; 9(1): 4176
CrossRef
Google scholar
|
[26] |
Zhang Y, Sun L, Xuan L, Pan Z, Li K, Liu S, Huang Y, Zhao X, Huang L, Wang Z, Hou Y, Li J, Tian Y, Yu J, Han H, Liu Y, Gao F, Zhang Y, Wang S, Du Z, Lu Y, Yang B. Reciprocal changes of circulating long non-coding RNAs ZFAS1 and CDR1AS predict acute myocardial infarction. Sci Rep 2016; 6(1): 22384
CrossRef
Google scholar
|
[27] |
Liu X, Bai X, Liu H, Hong Y, Cui H, Wang L, Xu W, Zhao L, Li X, Li H, Li X, Chen H, Meng Z, Lou H, Xu H, Lin Y, Du Z, Kopylov P, Yang B, Zhang Y. LncRNA LOC105378097 inhibits cardiac mitophagy in natural ageing mice. Clin Transl Med 2022; 12(6): e908
CrossRef
Google scholar
|
[28] |
Zhang Y, Jiao L, Sun L, Li Y, Gao Y, Xu C, Shao Y, Li M, Li C, Lu Y, Pan Z, Xuan L, Zhang Y, Li Q, Yang R, Zhuang Y, Zhang Y, Yang B. LncRNA ZFAS1 as a SERCA2a inhibitor to cause intracellular Ca2+ overload and contractile dysfunction in a mouse model of myocardial infarction. Circ Res 2018; 122(10): 1354–1368
CrossRef
Google scholar
|
[29] |
Li HM, Liu X, Meng ZY, Wang L, Zhao LM, Chen H, Wang ZX, Cui H, Tang XQ, Li XH, Han WN, Bai X, Lin Y, Liu H, Zhang Y, Yang BF. Kanglexin delays heart aging by promoting mitophagy. Acta Pharmacol Sin 2022; 43(3): 613–623
CrossRef
Google scholar
|
[30] |
Fan G, Zhou F, Feng C, Wu F, Ye W, Wang C, Lin F, Yan J, Li Y, Chen Y, Bi Y. Lead-induced ER calcium release and inhibitory effects of methionine choline in cultured rat hippocampal neurons. Toxicol In Vitro 2013; 27(1): 387–395
CrossRef
Google scholar
|
[31] |
Smolina N, Bruton J, Sjoberg G, Kostareva A, Sejersen T. Aggregate-prone desmin mutations impair mitochondrial calcium uptake in primary myotubes. Cell Calcium 2014; 56(4): 269–275
CrossRef
Google scholar
|
[32] |
Zhao Y, Riching AS, Knight WE, Chi C, Broadwell LJ, Du Y, Abdel-Hafiz M, Ambardekar AV, Irwin DC, Proenza C, Xu H, Leinwand LA, Walker LA, Woulfe KC, Bristow MR, Buttrick PM, Song K. Cardiomyocyte-specific long noncoding RNA regulates alternative splicing of the triadin gene in the heart. Circulation 2022; 146(9): 699–714
CrossRef
Google scholar
|
[33] |
Zhang L, Salgado-Somoza A, Vausort M, Leszek P, Devaux Y. A heart-enriched antisense long non-coding RNA regulates the balance between cardiac and skeletal muscle triadin. Biochim Biophys Acta Mol Cell Res 2018; 1865(2): 247–258
CrossRef
Google scholar
|
[34] |
Lomax RB, Camello C, Van Coppenolle F, Petersen OH, Tepikin AV. Basal and physiological Ca2+ leak from the endoplasmic reticulum of pancreatic acinar cells. Second messenger-activated channels and translocons. J Biol Chem 2002; 277(29): 26479–26485
CrossRef
Google scholar
|
[35] |
Wuytack F, Raeymaekers L, Missiaen L. Molecular physiology of the SERCA and SPCA pumps. Cell Calcium 2002; 32(5–6): 279–305
CrossRef
Google scholar
|
[36] |
Skobeleva K, Shalygin A, Mikhaylova E, Guzhova I, Ryazantseva M, Kaznacheyeva E. The STIM1/2-regulated calcium homeostasis is impaired in hippocampal neurons of the 5xFAD mouse model of Alzheimer’s disease. Int J Mol Sci 2022; 23(23): 14810
CrossRef
Google scholar
|
[37] |
Patil CS, Li H, Lavine NE, Shi R, Bodalia A, Siddiqui TJ, Jackson MF. ER-resident STIM1/2 couples Ca2+ entry by NMDA receptors to pannexin-1 activation. Proc Natl Acad Sci USA 2022; 119(36): e2112870119
CrossRef
Google scholar
|
[38] |
Giorgi C, Baldassari F, Bononi A, Bonora M, De Marchi E, Marchi S, Missiroli S, Patergnani S, Rimessi A, Suski JM, Wieckowski MR, Pinton P. Mitochondrial Ca2+ and apoptosis. Cell Calcium 2012; 52(1): 36–43
CrossRef
Google scholar
|
[39] |
Liu Y, Ma Y, Xu J, Zhang G, Zhao X, He Z, Wang L, Yin N, Peng M. VMP1 prevents Ca2+ overload in endoplasmic reticulum and maintains naive T cell survival. J Exp Med 2023; 220(6): e20221068
CrossRef
Google scholar
|
[40] |
Rieusset J, Fauconnier J, Paillard M, Belaidi E, Tubbs E, Chauvin MA, Durand A, Bravard A, Teixeira G, Bartosch B, Michelet M, Theurey P, Vial G, Demion M, Blond E, Zoulim F, Gomez L, Vidal H, Lacampagne A, Ovize M. Disruption of calcium transfer from ER to mitochondria links alterations of mitochondria-associated ER membrane integrity to hepatic insulin resistance. Diabetologia 2016; 59(3): 614–623
CrossRef
Google scholar
|
[41] |
Wu S, Lu Q, Ding Y, Wu Y, Qiu Y, Wang P, Mao X, Huang K, Xie Z, Zou MH. Hyperglycemia-driven inhibition of AMP-activated protein kinase α2 induces diabetic cardiomyopathy by promoting mitochondria-associated endoplasmic reticulum membranes in vivo. Circulation 2019; 139(16): 1913–1936
CrossRef
Google scholar
|
[42] |
Xu H, Zhao M, Liang S, Huang Q, Xiao Y, Ye L, Wang Q, He L, Ma L, Zhang H, Zhang L, Jiang H, Ke X, Gu Y. The effects of Puerarin on rat ventricular myocytes and the potential mechanism. Sci Rep 2016; 6(1): 35475
CrossRef
Google scholar
|
[43] |
Rossini M, Filadi R. Sarcoplasmic reticulum-mitochondria kissing in cardiomyocytes: Ca2+, ATP, and undisclosed secrets. Front Cell Dev Biol 2020; 8: 532
CrossRef
Google scholar
|
[44] |
Knollmann BC, Chopra N, Hlaing T, Akin B, Yang T, Ettensohn K, Knollmann BE, Horton KD, Weissman NJ, Holinstat I, Zhang W, Roden DM, Jones LR, Franzini-Armstrong C, Pfeifer K. Casq2 deletion causes sarcoplasmic reticulum volume increase, premature Ca2+ release, and catecholaminergic polymorphic ventricular tachycardia. J Clin Invest 2006; 116(9): 2510–2520
CrossRef
Google scholar
|
[45] |
Wang J, Zha L. RNA modification by M6A methylation in cardiovascular diseases: current trends and future directions. Frigid Zone Med 2022; 2(3): 158
CrossRef
Google scholar
|
[46] |
Wu G, Su J, Zeng L, Deng S, Huang X, Ye Y, Li R, Bai R, Zhuang L, Li M, Zhou Q, Zheng Y, Deng J, Zhang S, Chen R, Lin D, Zhang J, Zheng J. LncRNA BCAN-AS1 stabilizes c-Myc via N6-methyladenosine-mediated binding with SNIP1 to promote pancreatic cancer. Cell Death Differ 2023; 30(10): 2213–2230
CrossRef
Google scholar
|
[47] |
Deng P, Zhang H, Wang L, Jie S, Zhao Q, Chen F, Yue Y, Wang H, Tian L, Xie J, Chen M, Luo Y, Yu Z, Pi H, Zhou Z. Long-term cadmium exposure impairs cognitive function by activating lnc-Gm10532/m6A/FIS1 axis-mediated mitochondrial fission and dysfunction. Sci Total Environ 2023; 858(Pt 3): 159950
CrossRef
Google scholar
|
[48] |
Gao Z, Long Y, Wu Y, Pu Y, Xue F. LncRNA LINC02253 activates KRT18/MAPK/ERK pathway by mediating N6-methyladenosine modification of KRT18 mRNA in gastric cancer. Carcinogenesis 2022; 43(5): 419–429
CrossRef
Google scholar
|
[49] |
Wang Z, Pan Z, Adhikari S, Harada BT, Shen L, Yuan W, Abeywardana T, Al-Hadid Q, Stark JM, He C, Lin L, Yang Y. m6A deposition is regulated by PRMT1-mediated arginine methylation of METTL14 in its disordered C-terminal region. EMBO J 2021; 40(5): e106309
CrossRef
Google scholar
|
[50] |
Hu Y, Lei L, Jiang L, Zeng H, Zhang Y, Fu C, Guo H, Dong Y, Ouyang Y, Zhang X, Huang J, Zeng Q, Chen J. LncRNA UCA1 promotes keratinocyte-driven inflammation via suppressing METTL14 and activating the HIF-1α/NF-κB axis in psoriasis. Cell Death Dis 2023; 14(4): 279
CrossRef
Google scholar
|
[51] |
Sun T, Wu Z, Wang X, Wang Y, Hu X, Qin W, Lu S, Xu D, Wu Y, Chen Q, Ding X, Guo H, Li Y, Wang Y, Fu B, Yao W, Wei M, Wu H. LNC942 promoting METTL14-mediated m6A methylation in breast cancer cell proliferation and progression. Oncogene 2020; 39(31): 5358–5372
CrossRef
Google scholar
|
/
〈 | 〉 |