
Preclinical and clinical studies on Qin-Zhu-Liang-Xue decoction: insights from network pharmacology and implications for atopic dermatitis treatment
Keke Huang, Qingkai Liu, Ruoxi Zhang, Hua Nian, Ying Luo, Yue Luo, Xiaoya Fei, Le Kuai, Bin Li, Yimei Tan, Su Li, Xin Ma
Front. Med. ›› 2025, Vol. 19 ›› Issue (1) : 134-148.
Preclinical and clinical studies on Qin-Zhu-Liang-Xue decoction: insights from network pharmacology and implications for atopic dermatitis treatment
To investigate the protective effects and underlying mechanisms of Qin-Zhu-Liang-Xue decoction (QZLX) in atopic dermatitis (AD) and glucocorticoid resistance, we conducted a single-blinded, randomized controlled clinical trial to evaluate the efficacy and safety of this concoction. Network pharmacology analysis was performed and validated through clinical studies. The efficacy, safety, and mechanism of action of QZLX and glucocorticoid receptor (GR) α recombinant protein were assessed in AD mice induced by 2,4-dinitrofluorobenzene (DNFB). Correlation analysis was performed to determine the clinical relevance of GRα. The trial demonstrated that patients who received QZLX showed considerable improvements in their Scoring Atopic Dermatitis (SCORAD) and Dermatology Life Quality Index (DLQI) scores compared with those who received mizolastine at week 4. Network pharmacological analysis identified GRα as a key target for QZLX in AD treatment. QZLX administration increased the serum GRα expression in AD patients, alleviated AD symptoms in mice, decreased inflammatory cytokine expression, and increased GRα expression without affecting liver or kidney function. In addition, GRα recombinant protein improved AD-like skin lesions in DNFB-induced mice. A negative correlation was observed between GRα expression and clinical parameters, including SCORAD, DLQI, and serum IgE levels. QZLX alleviates AD symptoms through the upregulation of GRα and thus presents a novel therapeutic strategy for the prevention of glucocorticoid resistance in AD management.
Qin-Zhu-Liang-Xue decoction / atopic dermatitis / glucocorticoid receptor α / traditional Chinese medicine / network pharmacology
[1] |
Langan SM, Irvine AD, Weidinger S. Atopic dermatitis. Lancet 2020; 396(10247): 345–360
CrossRef
Google scholar
|
[2] |
Barbarot S, Auziere S, Gadkari A, Girolomoni G, Puig L, Simpson EL, Margolis DJ, de Bruin-Weller M, Eckert L. Epidemiology of atopic dermatitis in adults: results from an international survey. Allergy 2018; 73(6): 1284–1293
CrossRef
Google scholar
|
[3] |
Silverberg JI, Barbarot S, Gadkari A, Simpson EL, Weidinger S, Mina-Osorio P, Rossi AB, Brignoli L, Saba G, Guillemin I, Fenton MC, Auziere S, Eckert L. Atopic dermatitis in the pediatric population. Ann Allergy Asthma Immunol 2021; 126(4): 417–428.e2
CrossRef
Google scholar
|
[4] |
Yang X, Kambe N, Takimoto-Ito R, Kabashima K. Advances in the pathophysiology of atopic dermatitis revealed by novel therapeutics and clinical trials. Pharmacol Ther 2021; 224: 107830
CrossRef
Google scholar
|
[5] |
Ratchataswan T, Banzon TM, Thyssen JP, Weidinger S, Guttman-Yassky E, Phipatanakul W. Biologics for treatment of atopic dermatitis: current status and future prospect. J Allergy Clin Immunol Pract 2021; 9(3): 1053–1065
CrossRef
Google scholar
|
[6] |
HenggeURRuzicka TSchwartzRACorkMJ. Adverse effects of topical glucocorticosteroids. J Am Acad Dermatol 2006; 54(1): 1–15, quiz 1–15
|
[7] |
Cain DW, Cidlowski JA. Immune regulation by glucocorticoids. Nat Rev Immunol 2017; 17(4): 233–247
CrossRef
Google scholar
|
[8] |
Vandewalle J, Luypaert A, De Bosscher K, Libert C. Therapeutic mechanisms of glucocorticoids. Trends Endocrinol Metab 2018; 29(1): 42–54
CrossRef
Google scholar
|
[9] |
Inui S, Sumikawa Y, Asada H, Itami S. Glucocorticoid resistance in atopic dermatitis associated with decreased expression of glucocorticoid receptor-α in peripheral blood mononuclear cells: glucocorticoid receptor in atopic dermatitis. J Dermatol 2010; 37(5): 496–499
CrossRef
Google scholar
|
[10] |
Clayton M, Leung D, Surs W, Szefler S. Altered glucocorticoid receptor binding in atopic dermatitis. J Allergy Clin Immunol 1995; 96(3): 421–423
CrossRef
Google scholar
|
[11] |
Webster JC, Oakley RH, Jewell CM, Cidlowski JA. Proinflammatory cytokines regulate human glucocorticoid receptor gene expression and lead to the accumulation of the dominant negative β isoform: a mechanism for the generation of glucocorticoid resistance. Proc Natl Acad Sci USA 2001; 98(12): 6865–6870
CrossRef
Google scholar
|
[12] |
Kubin ME, Hägg PM, Kokkonen N, Väyrynen JP, Haapasaari KM, Moilanen J, Kallioinen M, Hurskainen T, Tasanen K. Glucocorticoid receptors GRα and GRβ are expressed in inflammatory dermatoses. Eur J Dermatol 2016; 26(1): 21–27
CrossRef
Google scholar
|
[13] |
Yan F, Li F, Liu J, Ye S, Zhang Y, Jia J, Li H, Chen D, Mo X. The formulae and biologically active ingredients of Chinese herbal medicines for the treatment of atopic dermatitis. Biomed Pharmacother 2020; 127: 110142
CrossRef
Google scholar
|
[14] |
Li S, Chen J, Li B, Li F, Wang Y, Miao X. Efficacy of Qinzhu Liangxue decoction on subacute eczema treatment. World Clin Drugs 2016; 37: 173–176
CrossRef
Google scholar
|
[15] |
Ma T, Chai Y, Li S, Sun X, Wang Y, Xu R, Chen J, Zhou M, Zhou M, Li B, Xu W, Li X. Efficacy and safety of Qinzhuliangxue decoction for treating atopic eczema: a randomized controlled trial. Ann Palliat Med 2020; 9(3): 12
CrossRef
Google scholar
|
[16] |
Qu K, Luo Y, Yan X, Kuai L, Ru Y, Luo Y, Song J, Ji W, Li B, Xing M. Qinzhuliangxue mixture alleviates psoriasis-like skin lesions via inhibiting the IL6/STAT3 axis. J Ethnopharmacol 2021; 274: 114041
CrossRef
Google scholar
|
[17] |
Wang L. Baicalin ameliorates 2, 4-dinitrochlorobenzene-induced atopic dermatitis-like skin lesions in mice through modulating skin barrier function, gut microbiota and JAK/STAT pathway. Bioorganic Chem 2022; 119: 105538
CrossRef
Google scholar
|
[18] |
Hou DD, Wang XX, Li SJ, Wang DC, Niu Y, Xu ZR, Jin ZQ. Glycyrrhizic acid suppresses atopic dermatitis-like symptoms by regulating the immune balance. J Cosmet Dermatol 2022; 21(12): 7090–7099
CrossRef
Google scholar
|
[19] |
Zhang R, Zhu X, Bai H, Ning K. Network pharmacology databases for traditional Chinese medicine: review and assessment. Front Pharmacol 2019; 10: 123
CrossRef
Google scholar
|
[20] |
Lin H, Wang X, Liu M, Huang M, Shen Z, Feng J, Yang H, Li Z, Gao J, Ye X. Exploring the treatment of COVID-19 with Yinqiao powder based on network pharmacology. Phytother Res 2021; 35(5): 2651–2664
CrossRef
Google scholar
|
[21] |
Chopra R, Vakharia PP, Sacotte R, Patel N, Immaneni S, White T, Kantor R, Hsu DY, Silverberg JI. Severity strata for Eczema Area and Severity Index (EASI), modified EASI, Scoring Atopic Dermatitis (SCORAD), objective SCORAD, Atopic Dermatitis Severity Index and body surface area in adolescents and adults with atopic dermatitis. Br J Dermatol 2017; 177(5): 1316–1321
CrossRef
Google scholar
|
[22] |
Finlay AY, Khan GK. Dermatology Life Quality Index (DLQI)—a simple practical measure for routine clinical use. Clin Exp Dermatol 1994; 19(3): 210–216
CrossRef
Google scholar
|
[23] |
Zhang Y, Song J, Jiang J, Yin S, Luo Y, Luo Y, Ding X, Ru Y, Liu L, Li W, Kuai L, Li B. Modular pharmacology-based approach to identify hub genes and kernel pathways of taodan granules treated psoriasis. J Ethnopharmacol 2021; 280: 114485
CrossRef
Google scholar
|
[24] |
Zheng BW, Wang BY, Xiao WL, Sun YJ, Yang C, Zhao BT. Different molecular weight hyaluronic acid alleviates inflammation response in DNFB-induced mice atopic dermatitis and LPS-induced RAW 264.7 cells. Life Sci 2022; 301: 120591
CrossRef
Google scholar
|
[25] |
Qiu Z, Zhu Z, Liu X, Chen B, Yin H, Gu C, Fang X, Zhu R, Yu T, Mi W, Zhou H, Zhou Y, Yao X, Li W. A dysregulated sebum–microbial metabolite–IL-33 axis initiates skin inflammation in atopic dermatitis. J Exp Med 2022; 219(10): e20212397
CrossRef
Google scholar
|
[26] |
Luo Y, Ru Y, Zhao H, Liu L, Hong S, Sun X, Kuai L, Lu Y, Xing M, Chen X, Song J, Luo Y, Fei X, Zhou Y, Li H, Li B, Li X. Establishment of mouse models of psoriasis with blood stasis syndrome complicated with glucose and lipid metabolism disorders. Evid Based Complement Alternat Med 2019; 2019: 1–10
CrossRef
Google scholar
|
[27] |
Kuai L, Song J, Zhang R, Xing M, Luo Y, Ru Y, Ding X, Liu L, Lu Y, Sun X, Nian H, Li X, Li B. Uncovering the mechanism of Jueyin granules in the treatment of psoriasis using network pharmacology. J Ethnopharmacol 2020; 262: 113214
CrossRef
Google scholar
|
[28] |
Wollenberg A, Christen-Zäch S, Taieb A, Paul C, Thyssen JP, de Bruin-Weller M, Vestergaard C, Seneschal J, Werfel T, Cork MJ, Kunz B, Fölster-Holst R, Trzeciak M, Darsow U, Szalai Z, Deleuran M, von Kobyletzki L, Barbarot S, Heratizadeh A, Gieler U, Hijnen DJ, Weidinger S, De Raeve L, SvenssonÅ, Simon D, Stalder JF, Ring J; European Task Force on Atopic Dermatitis/EADV Eczema Task Force. ETFAD/EADV Eczema task force 2020 position paper on diagnosis and treatment of atopic dermatitis in adults and children. J Eur Acad Dermatol Venereol 2020; 34(12): 2717–2744
CrossRef
Google scholar
|
[29] |
Tan HY, Zhang AL, Chen D, Xue CC, Lenon GB. Chinese herbal medicine for atopic dermatitis: a systematic review. J Am Acad Dermatol 2013; 69(2): 295–304
CrossRef
Google scholar
|
[30] |
Noda S, Suárez-Fariñas M, Ungar B, Kim SJ, de Guzman Strong C, Xu H, Peng X, Estrada YD, Nakajima S, Honda T, Shin JU, Lee H, Krueger JG, Lee KH, Kabashima K, Guttman-Yassky E. The Asian atopic dermatitis phenotype combines features of atopic dermatitis and psoriasis with increased TH17 polarization. J Allergy Clin Immunol 2015; 136(5): 1254–1264
CrossRef
Google scholar
|
[31] |
Choi EJ, Debnath T, Tang Y, Ryu YB, Moon SH, Kim EK. Topical application of Moringa oleifera leaf extract ameliorates experimentally induced atopic dermatitis by the regulation of Th1/Th2/Th17 balance. Biomed Pharmacother 2016; 84: 870–877
CrossRef
Google scholar
|
[32] |
Boguniewicz M, Beck LA, Sher L, Guttman-Yassky E, Thaçi D, Blauvelt A, Worm M, Corren J, Soong W, Lio P, Rossi AB, Lu Y, Chao J, Eckert L, Gadkari A, Hultsch T, Ruddy M, Mannent LP, Graham NMH, Pirozzi G, Chen Z, Ardeleanu M. Dupilumab improves asthma and sinonasal outcomes in adults with moderate to Severe Atopic Dermatitis. J Allergy Clin Immunol Pract 2021; 9(3): 1212–1223.e6
CrossRef
Google scholar
|
[33] |
Kulthanan K, Tuchinda P, Nitiyarom R, Chunharas A, Chantaphakul H, Aunhachoke K, Chularojanamontri L, Rajatanavin N, Jirapongsananuruk O, Vichyanond P, Chatchatee P, Sangsupawanich P, Wananukul S, Singalavanija S, Trakanwittayarak S, Rerkpattanapipat T, Thongngarm T, Wisuthsarewong W, Limpongsanurak W, Kamchaisatian W, Noppakun N. Clinical practice guidelines for the diagnosis and management of atopic dermatitis. Asian Pac J Allergy Immunol 2021; 39: 145–155
CrossRef
Google scholar
|
[34] |
Ghiciuc CM, Vicovan AG, Stafie CS, Antoniu SA, Postolache P. Marine-derived compounds for the potential treatment of glucocorticoid resistance in severe Asthma. Mar Drugs 2021; 19(11): 586
CrossRef
Google scholar
|
[35] |
Goleva E, Li L, Eves PT, Strand MJ, Martin RJ, Leung DYM. Increased glucocorticoid receptor β alters steroid response in glucocorticoid-insensitive asthma. Am J Respir Crit Care Med 2006; 173(6): 607–616
CrossRef
Google scholar
|
[36] |
De Bosscher K, Haegeman G. Minireview: latest perspectives on antiinflammatory actions of glucocorticoids. Mol Endocrinol 2009; 23(3): 281–291
CrossRef
Google scholar
|
[37] |
Adcock IM, Ford PA, Bhavsar P, Ahmad T, Chung KF. Steroid resistance in asthma: mechanisms and treatment options. Curr Allergy Asthma Rep 2008; 8(2): 171–178
CrossRef
Google scholar
|
[38] |
Quax RA, Manenschijn L, Koper JW, Hazes JM, Lamberts SWJ, van Rossum EFC, Feelders RA. Glucocorticoid sensitivity in health and disease. Nat Rev Endocrinol 2013; 9(11): 670–686
CrossRef
Google scholar
|
[39] |
Hägg PM, Hurskainen T, Palatsi R, Ilves M, Oikarinen A. Increased expression of glucocorticoid receptor β in lymphocytes of patients with severe atopic dermatitis unresponsive to topical corticosteroid. Br J Dermatol 2010; 162(2): 318–324
CrossRef
Google scholar
|
[40] |
Rupprecht M, Rupprecht R, Kornhuber J, Wodarz N, Koch HU, Riederer P, Hornstein OP. Elevated glucocorticoid receptor concentrations before and after glucocorticoid therapy in peripheral mononuclear leukocytes of patients with atopic dermatitis. Dermatology 1991; 183(2): 100–105
CrossRef
Google scholar
|
[41] |
Kino T, Manoli I, Kelkar S, Wang Y, Su YA, Chrousos GP. Glucocorticoid receptor (GR) β has intrinsic, GRα-independent transcriptional activity. Biochem Biophys Res Commun 2009; 381(4): 671–675
CrossRef
Google scholar
|
[42] |
Smoak KA, Cidlowski JA. Mechanisms of glucocorticoid receptor signaling during inflammation. Mech Ageing Dev 2004; 125(10–11): 697–706
CrossRef
Google scholar
|
[43] |
De Bosscher K, Beck IM, Dejager L, Bougarne N, Gaigneaux A, Chateauvieux S, Ratman D, Bracke M, Tavernier J, Vanden Berghe W, Libert C, Diederich M, Haegeman G. Selective modulation of the glucocorticoid receptor can distinguish between transrepression of NF-κB and AP-1. Cell Mol Life Sci 2014; 71(1): 143–163
CrossRef
Google scholar
|
[44] |
Dorrington MG, Fraser IDC. NF-κB signaling in macrophages: dynamics, crosstalk, and signal integration. Front Immunol 2019; 10: 705
CrossRef
Google scholar
|
[45] |
Sung YY, Kim HK. Crocin ameliorates atopic dermatitis symptoms by down regulation of Th2 response via blocking of NF-κB/STAT6 signaling pathways in mice. Nutrients 2018; 10(11): 1625
CrossRef
Google scholar
|
[46] |
Li G, Wu H, Sun L, Cheng K, Lv Z, Chen K, Qian F, Li Y. (-)-α-bisabolol alleviates atopic dermatitis by inhibiting MAPK and NF-κB signaling in mast cell. Molecules 2022; 27(13): 3985
CrossRef
Google scholar
|
[47] |
Choi DW, Jung SY, Lee SY, Shon DH, Shin HS. Rosae multiflorae fructus extract improves trimellitic anhydride-induced atopic dermatitis-like symptoms. J Med Food 2020; 23(12): 1287–1295
CrossRef
Google scholar
|
[48] |
Moon PD, Han NR, Lee JS, Kim HM, Jeong HJ. p-coumaric acid, an active ingredient of Panax ginseng, ameliolates atopic dermatitis-like skin lesions through inhibition of thymic stromal lymphopoietin in mice. J Ginseng Res 2021; 45(1): 176–182
CrossRef
Google scholar
|
[49] |
Fang F, Xie Z, Quan J, Wei X, Wang L, Yang L. Baicalin suppresses Propionibacterium acnes-induced skin inflammation by downregulating the NF-κB/MAPK signaling pathway and inhibiting activation of NLRP3 inflammasome. Braz J Med Biol Res 2020; 53(12): e9949
CrossRef
Google scholar
|
[50] |
Gao C, Du Q, Li W, Deng R, Wang Q, Xu A, Shen J. Baicalin modulates APPL2/glucocorticoid receptor signaling cascade, promotes neurogenesis, and attenuates emotional and olfactory dysfunctions in chronic corticosterone-induced depression. Mol Neurobiol 2018; 55(12): 9334–9348
CrossRef
Google scholar
|
[51] |
Baradaran Rahimi V, Askari VR, Hosseinzadeh H. Promising influences of Scutellaria baicalensis and its two active constituents, baicalin, and baicalein, against metabolic syndrome: a review. Phytother Res 2021; 35(7): 3558–3574
CrossRef
Google scholar
|
[52] |
Austin JR, Kirkpatrick BJ, Rodríguez RR, Johnson ME, Lantvit DD, Burdette JE. Baicalein is a phytohormone that signals through the progesterone and glucocorticoid receptors. Horm Cancer 2020; 11(2): 97–110
CrossRef
Google scholar
|
[53] |
Pegoraro NS, Camponogara C, Cruz L, Oliveira SM. Oleic acid exhibits an expressive anti-inflammatory effect in croton oil-induced irritant contact dermatitis without the occurrence of toxicological effects in mice. J Ethnopharmacol 2021; 1(267): 113486
|
[54] |
Khwaza V, Oyedeji OO, Aderibigbe BA. Ursolic acid-based derivatives as potential anti-cancer agents: an update. Int J Mol Sci 2020; 21(16): 5920
CrossRef
Google scholar
|
[55] |
Junco JJ, Cho J, Mancha A, Malik G, Wei SJ, Kim DJ, Liang H, DiGiovanni J, Slaga TJ. Role of AMPK and PPARα in the anti-skin cancer effects of ursolic acid. Mol Carcinog 2018; 57(12): 1698–1706
CrossRef
Google scholar
|
Supplementary files
FMD-24043-of-MX_suppl_1 (1183 KB)
FMD-24043-of-MX_suppl_1 (457 KB)
FMD-24043-of-MX_suppl_2 (118 KB)
FMD-24043-of-MX_suppl_3 (90 KB)
FMD-24043-of-MX_suppl_4 (84 KB)
/
〈 |
|
〉 |