Immunological face of megakaryocytes

Yueying Li, Kunying Chen, Qian-Fei Wang

PDF(2664 KB)
PDF(2664 KB)
Front. Med. ›› DOI: 10.1007/s11684-024-1087-1
REVIEW

Immunological face of megakaryocytes

Author information +
History +

Abstract

Megakaryocytes (MKs), which are traditionally known for their role in platelet production, are now emerging as unique immune cells with diverse capabilities. They express immune receptors, participate in pathogen recognition and response, phagocytose pathogens, contribute to antigen presentation, and interact with various immune cell types. When encountering inflammatory challenges, MKs exhibit intricate immune functions that can either promote or inhibit inflammation. These responses are mediated through mechanisms, such as the secretion of either anti-inflammatory or pro-inflammatory cytokines and release of immunomodulatory platelets according to specific conditions. This intricate array of responses necessitates a detailed exploration to determine whether the immune functions of MKs are carried out by the entire MK population or by a specific subpopulation. Breakthroughs in single-cell RNA sequencing have uncovered a unique “immune MK” subpopulation, revealing its distinct characteristics and immunoregulatory functions. This review provides latest insights into MKs’ immune attributes and their roles in physiological and pathological contexts and emphasizes the discovery and functions of “immune MKs”.

Keywords

megakaryocyte / platelet / immune / inflammation / heterogeneity

Cite this article

Download citation ▾
Yueying Li, Kunying Chen, Qian-Fei Wang. Immunological face of megakaryocytes. Front. Med., https://doi.org/10.1007/s11684-024-1087-1

References

[1]
Machlus KR, Italiano JE Jr. The incredible journey: from megakaryocyte development to platelet formation. J Cell Biol 2013; 201(6): 785–796
CrossRef Google scholar
[2]
de Gaetano G. Historical overview of the role of platelets in hemostasis and thrombosis. Haematologica 2001; 86(4): 349–356
[3]
Ni H, Freedman J. Platelets in hemostasis and thrombosis: role of integrins and their ligands. Transfus Apher Sci 2003; 28(3): 257–264
CrossRef Google scholar
[4]
Jurk K, Kehrel BE. Platelets: physiology and biochemistry. Semin Thromb Hemost 2005; 31(4): 381–392
CrossRef Google scholar
[5]
Periayah MH, Halim AS, Mat Saad AZ. Mechanism action of platelets and crucial blood coagulation pathways in hemostasis. Int J Hematol Oncol Stem Cell Res 2017; 11(4): 319–327
[6]
Chen L, Liu J, Chen K, Su Y, Chen Y, Lei Y, Si J, Zhang J, Zhang Z, Zou W, Zhang X, Rondina MT, Wang QF, Li Y. SET domain containing 2 promotes megakaryocyte polyploidization and platelet generation through methylation of α-tubulin. J Thromb Haemost 2024; 22(6): 1727–1741
CrossRef Google scholar
[7]
Gelon L, Fromont L, Lefrançais E. Occurrence and role of lung megakaryocytes in infection and inflammation. Front Immunol 2022; 13: 1029223
CrossRef Google scholar
[8]
Slayton WB, Georgelas A, Pierce LJ, Elenitoba-Johnson KS, Perry SS, Marx M, Spangrude GJ. The spleen is a major site of megakaryopoiesis following transplantation of murine hematopoietic stem cells. Blood 2002; 100(12): 3975–3982
CrossRef Google scholar
[9]
Zingariello M, Rosti V, Vannucchi AM, Guglielmelli P, Mazzarini M, Barosi G, Genova ML, Migliaccio AR. Shared and distinctive ultrastructural abnormalities expressed by megakaryocytes in bone marrow and spleen from patients with myelofibrosis. Front Oncol 2020; 10: 584541
CrossRef Google scholar
[10]
Jenne CN, Wong CH, Zemp FJ, McDonald B, Rahman MM, Forsyth PA, McFadden G, Kubes P. Neutrophils recruited to sites of infection protect from virus challenge by releasing neutrophil extracellular traps. Cell Host Microbe 2013; 13(2): 169–180
CrossRef Google scholar
[11]
Yeaman MR. Platelets: at the nexus of antimicrobial defence. Nat Rev Microbiol 2014; 12(6): 426–437
CrossRef Google scholar
[12]
Xu XR, Zhang D, Oswald BE, Carrim N, Wang X, Hou Y, Zhang Q, Lavalle C, McKeown T, Marshall AH, Ni H. Platelets are versatile cells: new discoveries in hemostasis, thrombosis, immune responses, tumor metastasis and beyond. Crit Rev Clin Lab Sci 2016; 53(6): 409–430
CrossRef Google scholar
[13]
Cunin P, Nigrovic PA. Megakaryocytes as immune cells. J Leukoc Biol 2019; 105(6): 1111–1121
CrossRef Google scholar
[14]
Sun S, Jin C, Li Y, Si J, Cui Y, Rondina MT, Tang F, Wang QF. Transcriptional and spatial heterogeneity of mouse megakaryocytes at single-cell resolution. Blood 2019; 134: 275
CrossRef Google scholar
[15]
Liu C, Wu D, Xia M, Li M, Sun Z, Shen B, Liu Y, Jiang E, Wang H, Su P, Shi L, Xiao Z, Zhu X, Zhou W, Wang Q, Gao X, Cheng T, Zhou J. Characterization of cellular heterogeneity and an immune subpopulation of human megakaryocytes. Adv Sci (Weinh) 2021; 8(15): e2100921
CrossRef Google scholar
[16]
Sun S, Jin C, Si J, Lei Y, Chen K, Cui Y, Liu Z, Liu J, Zhao M, Zhang X, Tang F, Rondina MT, Li Y, Wang QF. Single-cell analysis of ploidy and the transcriptome reveals functional and spatial divergency in murine megakaryopoiesis. Blood 2021; 138(14): 1211–1224
CrossRef Google scholar
[17]
Wang J, Xie J, Wang D, Han X, Chen M, Shi G, Jiang L, Zhao M. CXCR4high megakaryocytes regulate host-defense immunity against bacterial pathogens. Elife 2022; 11: e78662
CrossRef Google scholar
[18]
Howell WH. Observations upon the occurrence, structure, and function of the giant cells of the marrow. J Morphol 1890; 4(1): 117–130
CrossRef Google scholar
[19]
Wright JH. Die Entstehung der Blutplättchen. Virchows Arch Pathol Anat Physiol Klin Med 1906; 186(1): 55–63
[20]
Rabellino EM, Nachman RL, Williams N, Winchester RJ, Ross GD. Human megakaryocytes. I. Characterization of the membrane and cytoplasmic components of isolated marrow megakaryocytes. J Exp Med 1979; 149(6): 1273–1287
[21]
Cramer EM, Norol F, Guichard J, Breton-Gorius J, Vainchenker W, Massé JM, Debili N. Ultrastructure of platelet formation by human megakaryocytes cultured with the Mpl ligand. Blood 1997; 89(7): 2336–2346
CrossRef Google scholar
[22]
Kang HK, Chiang MY, Ecklund D, Zhang L, Ramsey-Goldman R, Datta SK. Megakaryocyte progenitors are the main APCs inducing Th17 response to lupus autoantigens and foreign antigens. J Immunol 2012; 188(12): 5970–5980
CrossRef Google scholar
[23]
Lefrançais E, Ortiz-Muñoz G, Caudrillier A, Mallavia B, Liu F, Sayah DM, Thornton EE, Headley MB, David T, Coughlin SR, Krummel MF, Leavitt AD, Passegué E, Looney MR. The lung is a site of platelet biogenesis and a reservoir for haematopoietic progenitors. Nature 2017; 544(7648): 105–109
CrossRef Google scholar
[24]
Zufferey A, Speck ER, Machlus KR, Aslam R, Guo L, McVey MJ, Kim M, Kapur R, Boilard E, Italiano JE Jr, Semple JW. Mature murine megakaryocytes present antigen-MHC class I molecules to T cells and transfer them to platelets. Blood Adv 2017; 1(20): 1773–1785
CrossRef Google scholar
[25]
Campbell RA, Schwertz H, Hottz ED, Rowley JW, Manne BK, Washington AV, Hunter-Mellado R, Tolley ND, Christensen M, Eustes AS, Montenont E, Bhatlekar S, Ventrone CH, Kirkpatrick BD, Pierce KK, Whitehead SS, Diehl SA, Bray PF, Zimmerman GA, Kosaka Y, Bozza PT, Bozza FA, Weyrich AS, Rondina MT. Human megakaryocytes possess intrinsic antiviral immunity through regulated induction of IFITM3. Blood 2019; 133(19): 2013–2026
CrossRef Google scholar
[26]
Bernardes JP, Mishra N, Tran F, Bahmer T, Best L, Blase JI, Bordoni D, Franzenburg J, Geisen U, Josephs-Spaulding J, Köhler P, Künstner A, Rosati E, Aschenbrenner AC, Bacher P, Baran N, Boysen T, Brandt B, Bruse N, Dörr J, Dräger A, Elke G, Ellinghaus D, Fischer J, Forster M, Franke A, Franzenburg S, Frey N, Friedrichs A, Fuß J, Glück A, Hamm J, Hinrichsen F, Hoeppner MP, Imm S, Junker R, Kaiser S, Kan YH, Knoll R, Lange C, Laue G, Lier C, Lindner M, Marinos G, Markewitz R, Nattermann J, Noth R, Pickkers P, Rabe KF, Renz A, Röcken C, Rupp J, Schaffarzyk A, Scheffold A, Schulte-Schrepping J, Schunk D, Skowasch D, Ulas T, Wandinger KP, Wittig M, Zimmermann J, Busch H, Hoyer BF, Kaleta C, Heyckendorf J, Kox M, Rybniker J, Schreiber S, Schultze JL, Rosenstiel P; HCA Lung Biological Network; Deutsche COVID-19 Omics Initiative (DeCOI). Longitudinal multi-omics analyses identify responses of megakaryocytes, erythroid cells, and plasmablasts as hallmarks of severe COVID-19. Immunity 2020; 53(6): 1296–1314.e9
[27]
Wang H, He J, Xu C, Chen X, Yang H, Shi S, Liu C, Zeng Y, Wu D, Bai Z, Wang M, Wen Y, Su P, Xia M, Huang B, Ma C, Bian L, Lan Y, Cheng T, Shi L, Liu B, Zhou J. Decoding human megakaryocyte development. Cell Stem Cell 2021; 28(3): 535–549.e8
[28]
Valet C, Magnen M, Qiu L, Cleary SJ, Wang KM, Ranucci S, Grockowiak E, Boudra R, Conrad C, Seo Y, Calabrese DR, Greenland JR, Leavitt AD, Passegué E, Méndez-Ferrer S, Swirski FK, Looney MR. Sepsis promotes splenic production of a protective platelet pool with high CD40 ligand expression. J Clin Invest 2022; 132(7): e153920
CrossRef Google scholar
[29]
D’Atri LP, Etulain J, Rivadeneyra L, Lapponi MJ, Centurion M, Cheng K, Yin H, Schattner M. Expression and functionality of toll-like receptor 3 in the megakaryocytic lineage. J Thromb Haemost 2015; 13(5): 839–850
CrossRef Google scholar
[30]
Beaulieu LM, Lin E, Morin KM, Tanriverdi K, Freedman JE. Regulatory effects of TLR2 on megakaryocytic cell function. Blood 2011; 117(22): 5963–5974
CrossRef Google scholar
[31]
Undi RB, Sarvothaman S, Narasaiah K, Gutti U, Gutti RK. Toll-like receptor 2 signalling: significance in megakaryocyte development through wnt signalling cross-talk and cytokine induction. Cytokine 2016; 83: 245–249
CrossRef Google scholar
[32]
Shiraki R, Inoue N, Kawasaki S, Takei A, Kadotani M, Ohnishi Y, Ejiri J, Kobayashi S, Hirata K, Kawashima S, Yokoyama M. Expression of toll-like receptors on human platelets. Thromb Res 2004; 113(6): 379–385
CrossRef Google scholar
[33]
Markovic B, Wu Z, Chesterman CN, Chong BH. Quantitation of soluble and membrane-bound Fc gamma RIIA (CD32A) mRNA in platelets and megakaryoblastic cell line (Meg-01). Br J Haematol 1995; 91(1): 37–42
CrossRef Google scholar
[34]
Cunin P, Penke LR, Thon JN, Monach PA, Jones T, Chang MH, Chen MM, Melki I, Lacroix S, Iwakura Y, Ware J, Gurish MF, Italiano JE, Boilard E, Nigrovic PA. Megakaryocytes compensate for kit insufficiency in murine arthritis. J Clin Invest 2017; 127(5): 1714–1724
CrossRef Google scholar
[35]
Crist SA, Sprague DL, Ratliff TL. Nuclear factor of activated T cells (NFAT) mediates CD154 expression in megakaryocytes. Blood 2008; 111(7): 3553–3561
CrossRef Google scholar
[36]
Crist SA, Elzey BD, Ahmann MT, Ratliff TL. Early growth response-1 (EGR-1) and nuclear factor of activated T cells (NFAT) cooperate to mediate CD40L expression in megakaryocytes and platelets. J Biol Chem 2013; 288(47): 33985–33996
CrossRef Google scholar
[37]
Yeung AK, Villacorta-Martin C, Hon S, Rock JR, Murphy GJ. Lung megakaryocytes display distinct transcriptional and phenotypic properties. Blood Adv 2020; 4(24): 6204–6217
CrossRef Google scholar
[38]
Pariser DN, Hilt ZT, Ture SK, Blick-Nitko SK, Looney MR, Cleary SJ, Roman-Pagan E, Saunders J 2nd, Georas SN, Veazey J, Madere F, Santos LT, Arne A, Huynh NP, Livada AC, Guerrero-Martin SM, Lyons C, Metcalf-Pate KA, McGrath KE, Palis J, Morrell CN. Lung megakaryocytes are immune modulatory cells. J Clin Invest 2021; 131(1): e137377
CrossRef Google scholar
[39]
Yang M, Li K, Chui CM, Yuen PM, Chan PK, Chuen CK, Li CK, Fok TF. Expression of interleukin (IL) 1 type I and type II receptors in megakaryocytic cells and enhancing effects of IL-1beta on megakaryocytopoiesis and NF-E2 expression. Br J Haematol 2000; 111(1): 371–380
[40]
Navarro S, Debili N, Le Couedic JP, Klein B, Breton-Gorius J, Doly J, Vainchenker W. Interleukin-6 and its receptor are expressed by human megakaryocytes: in vitro effects on proliferation and endoreplication. Blood 1991; 77(3): 461–471
CrossRef Google scholar
[41]
Wickenhauser C, Lorenzen J, Thiele J, Hillienhof A, Jungheim K, Schmitz B, Hansmann ML, Fischer R. Secretion of cytokines (interleukins-1 alpha, -3, and -6 and granulocyte-macrophage colony-stimulating factor) by normal human bone marrow megakaryocytes. Blood 1995; 85(3): 685–691
CrossRef Google scholar
[42]
Benbarche S, Strassel C, Angénieux C, Mallo L, Freund M, Gachet C, Lanza F, de la Salle H. Dual role of IL-21 in megakaryopoiesis and platelet homeostasis. Haematologica 2017; 102(4): 637–646
CrossRef Google scholar
[43]
Negrotto S, J De Giusti C, Lapponi MJ, Etulain J, Rivadeneyra L, Pozner RG, Gomez RM, Schattner M. Expression and functionality of type I interferon receptor in the megakaryocytic lineage. J Thromb Haemost 2011; 9(12): 2477–2485
CrossRef Google scholar
[44]
Muraoka K, Tsuji K, Yoshida M, Ebihara Y, Yamada K, Sui X, Tanaka R, Nakahata T. Thrombopoietin-independent effect of interferon-gamma on the proliferation of human megakaryocyte progenitors. Br J Haematol 1997; 98(2): 265–273
CrossRef Google scholar
[45]
Finkielsztein A, Schlinker AC, Zhang L, Miller WM, Datta SK. Human megakaryocyte progenitors derived from hematopoietic stem cells of normal individuals are MHC class II-expressing professional APC that enhance Th17 and Th1/Th17 responses. Immunol Lett 2015; 163(1): 84–95
CrossRef Google scholar
[46]
Wang JF, Liu ZY, Groopman JE. The alpha-chemokine receptor CXCR4 is expressed on the megakaryocytic lineage from progenitor to platelets and modulates migration and adhesion. Blood 1998; 92(3): 756–764
CrossRef Google scholar
[47]
Maratheftis CI, Andreakos E, Moutsopoulos HM, Voulgarelis M. Toll-like receptor-4 is up-regulated in hematopoietic progenitor cells and contributes to increased apoptosis in myelodysplastic syndromes. Clin Cancer Res 2007; 13(4): 1154–1160
CrossRef Google scholar
[48]
Andonegui G, Kerfoot SM, McNagny K, Ebbert KV, Patel KD, Kubes P. Platelets express functional toll-like receptor-4. Blood 2005; 106(7): 2417–2423
CrossRef Google scholar
[49]
Ward JR, Bingle L, Judge HM, Brown SB, Storey RF, Whyte MK, Dower SK, Buttle DJ, Sabroe I. Agonists of toll-like receptor (TLR)2 and TLR4 are unable to modulate platelet activation by adenosine diphosphate and platelet activating factor. Thromb Haemost 2005; 94(4): 831–838
[50]
Avraham H, Vannier E, Chi SY, Dinarello CA, Groopman JE. Cytokine gene expression and synthesis by human megakaryocytic cells. Int J Cell Cloning 1992; 10(2): 70–79
CrossRef Google scholar
[51]
Jiang S, Levine JD, Fu Y, Deng B, London R, Groopman JE, Avraham H. Cytokine production by primary bone marrow megakaryocytes. Blood 1994; 84(12): 4151–4156
CrossRef Google scholar
[52]
Winter O, Moser K, Mohr E, Zotos D, Kaminski H, Szyska M, Roth K, Wong DM, Dame C, Tarlinton DM, Schulze H, MacLennan IC, Manz RA. Megakaryocytes constitute a functional component of a plasma cell niche in the bone marrow. Blood 2010; 116(11): 1867–1875
CrossRef Google scholar
[53]
Takeda T, Unno H, Morita H, Futamura K, Emi-Sugie M, Arae K, Shoda T, Okada N, Igarashi A, Inoue E, Kitazawa H, Nakae S, Saito H, Matsumoto K, Matsuda A. Platelets constitutively express IL-33 protein and modulate eosinophilic airway inflammation. J Allergy Clin Immunol 2016; 138(5): 1395–1403.e6
[54]
Bonci D, Hahne M, Felli N, Peschle C, De Maria R. Potential role of APRIL as autocrine growth factor for megakaryocytopoiesis. Blood 2004; 104(10): 3169–3172
CrossRef Google scholar
[55]
Köhler A, De Filippo K, Hasenberg M, van den Brandt C, Nye E, Hosking MP, Lane TE, Männ L, Ransohoff RM, Hauser AE, Winter O, Schraven B, Geiger H, Hogg N, Gunzer M. G-CSF-mediated thrombopoietin release triggers neutrophil motility and mobilization from bone marrow via induction of Cxcr2 ligands. Blood 2011; 117(16): 4349–4357
CrossRef Google scholar
[56]
Bruns I, Lucas D, Pinho S, Ahmed J, Lambert MP, Kunisaki Y, Scheiermann C, Schiff L, Poncz M, Bergman A, Frenette PS. Megakaryocytes regulate hematopoietic stem cell quiescence through CXCL4 secretion. Nat Med 2014; 20(11): 1315–1320
CrossRef Google scholar
[57]
McLaren KM, Pepper DS. Immunological localisation of beta-thromboglobulin and platelet factor 4 in human megakaryocytes and platelets. J Clin Pathol 1982; 35(11): 1227–1231
CrossRef Google scholar
[58]
Zhao M, Perry JM, Marshall H, Venkatraman A, Qian P, He XC, Ahamed J, Li L. Megakaryocytes maintain homeostatic quiescence and promote post-injury regeneration of hematopoietic stem cells. Nat Med 2014; 20(11): 1321–1326
CrossRef Google scholar
[59]
Ferry JA, Pettit CK, Rosenberg AE, Harris NL. Fungi in megakaryocytes. An unusual manifestation of fungal infection of the bone marrow. Am J Clin Pathol 1991; 96(5): 577–581
[60]
Boilard E, Machlus KR. Location is everything when it comes to megakaryocyte function. J Clin Invest 2021; 131(1): e144964
CrossRef Google scholar
[61]
Greenbaum A, Link DC. CXCR2 is the Tpo of the iceberg. Blood 2011; 117(16): 4166–4167
CrossRef Google scholar
[62]
Larsen TE. Emperipolesis of granular leukocytes within megakaryocytes in human hemopoietic bone marrow. Am J Clin Pathol 1970; 53(4): 485–489
CrossRef Google scholar
[63]
Sahebekhitiari HA, Tavassoli M. Marrow cell uptake by megakaryocytes in routine bone marrow smears during blood loss. Scand J Haematol 1976; 16(1): 13–17
CrossRef Google scholar
[64]
Tanaka M, Aze Y, Fujita T. Megakaryocytic emperipolesis in the rat bone marrow induced by lipopolysaccharide. J Vet Med Sci 1994; 56(6): 1173–1175
CrossRef Google scholar
[65]
Bobik R, Dabrowski Z. Emperipolesis of marrow cells within megakaryocytes in the bone marrow of sublethally irradiated mice. Ann Hematol 1995; 70(2): 91–95
CrossRef Google scholar
[66]
de Pasquale A, Paterlini P, Quaglino D, Quaglino D. Emperipolesis of granulocytes within megakaryocytes. Br J Haematol 1985; 60(2): 384–386
CrossRef Google scholar
[67]
Dziecioł J, Lemancewicz D, Kłoczko J, Bogusłowicz W, Lebelt A. Megakaryocytes emperipolesis in bone marrow of the patients with non-Hodgkin’s lymphoma. Folia Histochem Cytobiol 2001; 39(Suppl 2): 142–143
[68]
CuninPBouslama RMachlusKRMartínez-BonetMLee PYWactorANelson-ManeyNMorrisA GuoLWeyrichA Sola-VisnerMBoilardEItalianoJE NigrovicPA. Megakaryocyte emperipolesis mediates membrane transfer from intracytoplasmic neutrophils to platelets. Elife 2019; 8: 8: e44031
[69]
Cunin P, Nigrovic PA. Megakaryocyte emperipolesis: a new frontier in cell-in-cell interaction. Platelets 2020; 31(6): 700–706
CrossRef Google scholar
[70]
Huang FY, Cunin P, Radtke FA, Darbousset R, Grieshaber-Bouyer R, Nigrovic PA. Neutrophil transit time and localization within the megakaryocyte define morphologically distinct forms of emperipolesis. Blood Adv 2022; 6(7): 2081–2091
CrossRef Google scholar
[71]
Field DJ, Aggrey-Amable AA, Blick SK, Ture SK, Johanson A, Cameron SJ, Roy S, Morrell CN. Platelet factor 4 increases bone marrow B cell development and differentiation. Immunol Res 2017; 65(5): 1089–1094
CrossRef Google scholar
[72]
Jiang J, Woulfe DS, Papoutsakis ET. Shear enhances thrombopoiesis and formation of microparticles that induce megakaryocytic differentiation of stem cells. Blood 2014; 124(13): 2094–2103
CrossRef Google scholar
[73]
Chattapadhyaya S, Haldar S, Banerjee S. Microvesicles promote megakaryopoiesis by regulating DNA methyltransferase and methylation of Notch1 promoter. J Cell Physiol 2020; 235(3): 2619–2630
CrossRef Google scholar
[74]
Wang W, Zuo B, Wang Y, Li X, Weng Z, Zhai J, Wu Q, He Y. Megakaryocyte- and platelet-derived microparticles as novel diagnostic and prognostic biomarkers for immune thrombocytopenia. J Clin Med 2022; 11(22): 6776
CrossRef Google scholar
[75]
Jiang J, Kao CY, Papoutsakis ET. How do megakaryocytic microparticles target and deliver cargo to alter the fate of hematopoietic stem cells? J Control Release 2017; 247: 1–18
[76]
Italiano JE Jr, Mairuhu AT, Flaumenhaft R. Clinical relevance of microparticles from platelets and megakaryocytes. Curr Opin Hematol 2010; 17(6): 578–584
CrossRef Google scholar
[77]
Park K. Megakaryocytic microparticles for targeted delivery to hematopoietic stem cells. J Control Release 2017; 247: 206
CrossRef Google scholar
[78]
Flaumenhaft R, Mairuhu AT, Italiano JE. Platelet- and megakaryocyte-derived microparticles. Semin Thromb Hemost 2010; 36(8): 881–887
CrossRef Google scholar
[79]
Kao CY, Papoutsakis ET. Engineering human megakaryocytic microparticles for targeted delivery of nucleic acids to hematopoietic stem and progenitor cells. Sci Adv 2018; 4(11): eaau6762
CrossRef Google scholar
[80]
Rozmyslowicz T, Majka M, Kijowski J, Murphy SL, Conover DO, Poncz M, Ratajczak J, Gaulton GN, Ratajczak MZ. Platelet- and megakaryocyte-derived microparticles transfer CXCR4 receptor to CXCR4-null cells and make them susceptible to infection by X4-HIV. AIDS 2003; 17(1): 33–42
CrossRef Google scholar
[81]
Sahler J, Woeller CF, Phipps RP. Microparticles engineered to highly express peroxisome proliferator-activated receptor-γ decreased inflammatory mediator production and increased adhesion of recipient monocytes. PLoS One 2014; 9(11): e113189
CrossRef Google scholar
[82]
Puhm F, Laroche A, Boilard E. Diversity of megakaryocytes. Arterioscler Thromb Vasc Biol 2023; 43(11): 2088–2098
CrossRef Google scholar
[83]
Medlar EM, Sasano KT. The significance of lesions resembling Hodgkin’s disease in tuberculosis. Am J Pathol 1931; 7(5): 491–498
[84]
Smith EB, Butcher J. The incidence, distribution and significance of megakaryocytes in normal and diseased human tissues. Blood 1952; 7(2): 214–224
CrossRef Google scholar
[85]
Sharnoff JG, Kim ES. Evaluation of pulmonary megakaryocytes. AMA Arch Pathol 1958; 66(2): 176–182
[86]
Sharnoff JG. Increased pulmonary megakaryocytes; probable role in postoperative thromboembolism. J Am Med Assoc 1959; 169(7): 688–691
CrossRef Google scholar
[87]
Kaufman RM, Airo R, Pollack S, Crosby WH. Circulating megakaryocytes and platelet release in the lung. Blood 1965; 26(6): 720–731
CrossRef Google scholar
[88]
Aabo K, Hansen KB. Megakaryocytes in pulmonary blood vessels. I. Incidence at autopsy, clinicopathological relations especially to disseminated intravascular coagulation. Acta Pathol Microbiol Scand A 1978; 86(4): 285–291
[89]
Hasleton PS. Adult respiratory distress syndrome-a review. Histopathology 1983; 7(3): 307–332
CrossRef Google scholar
[90]
Sharma GK, Talbot IC. Pulmonary megakaryocytes: “missing link” between cardiovascular and respiratory disease? J Clin Pathol 1986; 39(9): 969–976
[91]
Huang DY, Wang GM, Ke ZR, Zhou Y, Yang HH, Ma TL, Guan CX. Megakaryocytes in pulmonary diseases. Life Sci 2022; 301: 120602
CrossRef Google scholar
[92]
Livada AC, Pariser DN, Morrell CN. Megakaryocytes in the lung: history and future perspectives. Res Pract Thromb Haemost 2023; 7(2): 100053
CrossRef Google scholar
[93]
Puhm F, Boilard E. Megakaryocytes and platelets embrace diversity in face of adversity. J Thromb Haemost 2022; 20(9): 1947–1950
CrossRef Google scholar
[94]
Boilard E, Machlus KR. Peripheral megakaryocytes sound the alarm in COVID-19. Blood Adv 2023; 7(15): 4197–4199
CrossRef Google scholar
[95]
Fortmann SD, Patton MJ, Frey BF, Tipper JL, Reddy SB, Vieira CP, Hanumanthu VS, Sterrett S, Floyd JL, Prasad R, Zucker JD, Crouse AB, Huls F, Chkheidze R, Li P, Erdmann NB, Harrod KS, Gaggar A, Goepfert PA, Grant MB, Might M. Circulating SARS-CoV-2+ megakaryocytes are associated with severe viral infection in COVID-19. Blood Adv 2023; 7(15): 4200–4214
CrossRef Google scholar
[96]
Liu C, Zheng C, Shen X, Liang L, Li Q. Serum CRP interacts with SPARC and regulate immune response in severe cases of COVID-19 infection. Front Immunol 2023; 14: 1259381
CrossRef Google scholar
[97]
Nersisyan S, Montenont E, Loher P, Middleton EA, Campbell R, Bray P, Rigoutsos I. Characterization of all small RNAs in and comparisons across cultured megakaryocytes and platelets of healthy individuals and COVID-19 patients. J Thromb Haemost 2023; 21(11): 3252–3267
CrossRef Google scholar
[98]
Spinello I, Saulle E, Quaranta MT, Pelosi E, Castelli G, Cerio A, Pasquini L, Morsilli O, Dupuis ML, Labbaye C. AC-73 and syrosingopine inhibit SARS-CoV-2 entry into megakaryocytes by targeting CD147 and MCT4. Viruses 2024; 16(1): 82
CrossRef Google scholar
[99]
Brass AL, Huang IC, Benita Y, John SP, Krishnan MN, Feeley EM, Ryan BJ, Weyer JL, van der Weyden L, Fikrig E, Adams DJ, Xavier RJ, Farzan M, Elledge SJ. The IFITM proteins mediate cellular resistance to influenza A H1N1 virus, West Nile virus, and dengue virus. Cell 2009; 139(7): 1243–1254
CrossRef Google scholar
[100]
Feeley EM, Sims JS, John SP, Chin CR, Pertel T, Chen LM, Gaiha GD, Ryan BJ, Donis RO, Elledge SJ, Brass AL. IFITM3 inhibits influenza A virus infection by preventing cytosolic entry. PLoS Pathog 2011; 7(10): e1002337
CrossRef Google scholar
[101]
Everitt AR, Clare S, Pertel T, John SP, Wash RS, Smith SE, Chin CR, Feeley EM, Sims JS, Adams DJ, Wise HM, Kane L, Goulding D, Digard P, Anttila V, Baillie JK, Walsh TS, Hume DA, Palotie A, Xue Y, Colonna V, Tyler-Smith C, Dunning J, Gordon SB; GenISIS Investigators; MOSAIC Investigators; Smyth RL, Openshaw PJ, Dougan G, Brass AL, Kellam P. IFITM3 restricts the morbidity and mortality associated with influenza. Nature 2012; 484(7395): 519–523
CrossRef Google scholar
[102]
Boilard E, Flamand L. The role of the megakaryocyte in immunity has gone viral. Blood 2019; 133(19): 2001–2002
CrossRef Google scholar
[103]
Stephenson E, Reynolds G, Botting RA, Calero-Nieto FJ, Morgan MD, Tuong ZK, Bach K, Sungnak W, Worlock KB, Yoshida M, Kumasaka N, Kania K, Engelbert J, Olabi B, Spegarova JS, Wilson NK, Mende N, Jardine L, Gardner LCS, Goh I, Horsfall D, McGrath J, Webb S, Mather MW, Lindeboom RGH, Dann E, Huang N, Polanski K, Prigmore E, Gothe F, Scott J, Payne RP, Baker KF, Hanrath AT, Schim van der Loeff ICD, Barr AS, Sanchez-Gonzalez A, Bergamaschi L, Mescia F, Barnes JL, Kilich E, de Wilton A, Saigal A, Saleh A, Janes SM, Smith CM, Gopee N, Wilson C, Coupland P, Coxhead JM, Kiselev VY, van Dongen S, Bacardit J, King HW; Cambridge Institute of Therapeutic Immunology, Infectious Disease-National Institute of Health Research (CITIID-NIHR) COVID-19 BioResource Collaboration; Rostron AJ, Simpson AJ, Hambleton S, Laurenti E, Lyons PA, Meyer KB, Nikolić MZ, Duncan CJA, Smith KGC, Teichmann SA, Clatworthy MR, Marioni JC, Göttgens B, Haniffa M. Single-cell multi-omics analysis of the immune response in COVID-19. Nat Med 2021; 27(5): 904–916
CrossRef Google scholar
[104]
Ren X, Wen W, Fan X, Hou W, Su B, Cai P, Li J, Liu Y, Tang F, Zhang F, Yang Y, He J, Ma W, He J, Wang P, Cao Q, Chen F, Chen Y, Cheng X, Deng G, Deng X, Ding W, Feng Y, Gan R, Guo C, Guo W, He S, Jiang C, Liang J, Li YM, Lin J, Ling Y, Liu H, Liu J, Liu N, Liu SQ, Luo M, Ma Q, Song Q, Sun W, Wang G, Wang F, Wang Y, Wen X, Wu Q, Xu G, Xie X, Xiong X, Xing X, Xu H, Yin C, Yu D, Yu K, Yuan J, Zhang B, Zhang P, Zhang T, Zhao J, Zhao P, Zhou J, Zhou W, Zhong S, Zhong X, Zhang S, Zhu L, Zhu P, Zou B, Zou J, Zuo Z, Bai F, Huang X, Zhou P, Jiang Q, Huang Z, Bei JX, Wei L, Bian XW, Liu X, Cheng T, Li X, Zhao P, Wang FS, Wang H, Su B, Zhang Z, Qu K, Wang X, Chen J, Jin R, Zhang Z. COVID-19 immune features revealed by a large-scale single-cell transcriptome atlas. Cell 2021; 184(23): 5838
CrossRef Google scholar
[105]
Zhu A, Real F, Capron C, Rosenberg AR, Silvin A, Dunsmore G, Zhu J, Cottoignies-Callamarte A, Massé JM, Moine P, Bessis S, Godement M, Geri G, Chiche JD, Valdebenito S, Belouzard S, Dubuisson J, Lorin de la Grandmaison G, Chevret S, Ginhoux F, Eugenin EA, Annane D, Bordé EC, Bomsel M. Infection of lung megakaryocytes and platelets by SARS-CoV-2 anticipate fatal COVID-19. Cell Mol Life Sci 2022; 79(7): 365
CrossRef Google scholar
[106]
Agrati C, Carsetti R, Bordoni V, Sacchi A, Quintarelli C, Locatelli F, Ippolito G, Capobianchi MR. The immune response as a double-edged sword: the lesson learnt during the COVID-19 pandemic. Immunology 2022; 167(3): 287–302
CrossRef Google scholar
[107]
Garcia C, Compagnon B, Poëtte M, Gratacap MP, Lapébie FX, Voisin S, Minville V, Payrastre B, Vardon-Bounes F, Ribes A. Platelet versus megakaryocyte: who is the real bandleader of thromboinflammation in sepsis? Cells 2022; 11(9): 1507
[108]
Frydman GH, Ellett F, Jorgensen J, Marand AL, Zukerberg L, Selig MK, Tessier SN, Wong KHK, Olaleye D, Vanderburg CR, Fox JG, Tompkins RG, Irimia D. Megakaryocytes respond during sepsis and display innate immune cell behaviors. Front Immunol 2023; 14: 1083339
CrossRef Google scholar
[109]
Wang Y, Sun Q, Zhang Y, Li X, Liang Q, Guo R, Zhang L, Han X, Wang J, Shao L, Xue Y, Yang Y, Li H, Nie L, Shi W, Liu Q, Zhang J, Duan H, Huang H, Luu LDW, Tai J, Yang X, Wang G. Systemic immune dysregulation in severe tuberculosis patients revealed by a single-cell transcriptome atlas. J Infect 2023; 86(5): 421–438
CrossRef Google scholar
[110]
Campbell RA, Manne BK, Banerjee M, Middleton EA, Ajanel A, Schwertz H, Denorme F, Stubben C, Montenont E, Saperstein S, Page L, Tolley ND, Lim DL, Brown SM, Grissom CK, Sborov DW, Krishnan A, Rondina MT. IFITM3 regulates fibrinogen endocytosis and platelet reactivity in nonviral sepsis. J Clin Invest 2022; 132(23): e153014
CrossRef Google scholar
[111]
Dan K, Gomi S, Inokuchi K, Ogata K, Yamada T, Ohki I, Hasegawa S, Nomura T. Effects of interleukin-1 and tumor necrosis factor on megakaryocytopoiesis: mechanism of reactive thrombocytosis. Acta Haematol 1995; 93(2–4): 67–72
CrossRef Google scholar
[112]
Ishibashi T, Kimura H, Uchida T, Kariyone S, Friese P, Burstein SA. Human interleukin 6 is a direct promoter of maturation of megakaryocytes in vitro. Proc Natl Acad Sci USA 1989; 86(15): 5953–5957
CrossRef Google scholar
[113]
Nishimura S, Nagasaki M, Kunishima S, Sawaguchi A, Sakata A, Sakaguchi H, Ohmori T, Manabe I, Italiano JE Jr, Ryu T, Takayama N, Komuro I, Kadowaki T, Eto K, Nagai R. IL-1α induces thrombopoiesis through megakaryocyte rupture in response to acute platelet needs. J Cell Biol 2015; 209(3): 453–466
CrossRef Google scholar
[114]
Kimura H, Ishibashi T, Shikama Y, Okano A, Akiyama Y, Uchida T, Maruyama Y. Interleukin-1 beta (IL-1 beta) induces thrombocytosis in mice: possible implication of IL-6. Blood 1990; 76(12): 2493–2500
CrossRef Google scholar
[115]
French SL, Butov KR, Allaeys I, Canas J, Morad G, Davenport P, Laroche A, Trubina NM, Italiano JE, Moses MA, Sola-Visner M, Boilard E, Panteleev MA, Machlus KR. Platelet-derived extracellular vesicles infiltrate and modify the bone marrow during inflammation. Blood Adv 2020; 4(13): 3011–3023
CrossRef Google scholar
[116]
Xie X, Shi Q, Wu P, Zhang X, Kambara H, Su J, Yu H, Park SY, Guo R, Ren Q, Zhang S, Xu Y, Silberstein LE, Cheng T, Ma F, Li C, Luo HR. Single-cell transcriptome profiling reveals neutrophil heterogeneity in homeostasis and infection. Nat Immunol 2020; 21(9): 1119–1133
CrossRef Google scholar
[117]
Shalek AK, Satija R, Adiconis X, Gertner RS, Gaublomme JT, Raychowdhury R, Schwartz S, Yosef N, Malboeuf C, Lu D, Trombetta JJ, Gennert D, Gnirke A, Goren A, Hacohen N, Levin JZ, Park H, Regev A. Single-cell transcriptomics reveals bimodality in expression and splicing in immune cells. Nature 2013; 498(7453): 236–240
CrossRef Google scholar
[118]
Shalek AK, Satija R, Shuga J, Trombetta JJ, Gennert D, Lu D, Chen P, Gertner RS, Gaublomme JT, Yosef N, Schwartz S, Fowler B, Weaver S, Wang J, Wang X, Ding R, Raychowdhury R, Friedman N, Hacohen N, Park H, May AP, Regev A. Single-cell RNA-seq reveals dynamic paracrine control of cellular variation. Nature 2014; 510(7505): 363–369
CrossRef Google scholar
[119]
Moignard V, Woodhouse S, Haghverdi L, Lilly AJ, Tanaka Y, Wilkinson AC, Buettner F, Macaulay IC, Jawaid W, Diamanti E, Nishikawa SI, Piterman N, Kouskoff V, Theis FJ, Fisher J, Göttgens B. Decoding the regulatory network of early blood development from single-cell gene expression measurements. Nat Biotechnol 2015; 33(3): 269–276
CrossRef Google scholar
[120]
Björklund AK, Forkel M, Picelli S, Konya V, Theorell J, Friberg D, Sandberg R, Mjösberg J. The heterogeneity of human CD127+ innate lymphoid cells revealed by single-cell RNA sequencing. Nat Immunol 2016; 17(4): 451–460
CrossRef Google scholar
[121]
Zhang F, Wei K, Slowikowski K, Fonseka CY, Rao DA, Kelly S, Goodman SM, Tabechian D, Hughes LB, Salomon-Escoto K, Watts GFM, Jonsson AH, Rangel-Moreno J, Meednu N, Rozo C, Apruzzese W, Eisenhaure TM, Lieb DJ, Boyle DL, Mandelin AM 2nd; Accelerating Medicines Partnership Rheumatoid Arthritis, Systemic Lupus Erythematosus (AMP RA/SLE) Consortium; Boyce BF, DiCarlo E, Gravallese EM, Gregersen PK, Moreland L, Firestein GS, Hacohen N, Nusbaum C, Lederer JA, Perlman H, Pitzalis C, Filer A, Holers VM, Bykerk VP, Donlin LT, Anolik JH, Brenner MB, Raychaudhuri S. Defining inflammatory cell states in rheumatoid arthritis joint synovial tissues by integrating single-cell transcriptomics and mass cytometry. Nat Immunol 2019; 20(7): 928–942
CrossRef Google scholar
[122]
Noetzli LJ, French SL, Machlus KR. New insights into the differentiation of megakaryocytes from hematopoietic progenitors. Arterioscler Thromb Vasc Biol 2019; 39(7): 1288–1300
CrossRef Google scholar
[123]
Mazur EM, Lindquist DL, de Alarcon PA, Cohen JL. Evaluation of bone marrow megakaryocyte ploidy distributions in persons with normal and abnormal platelet counts. J Lab Clin Med 1988; 111(2): 194–202
[124]
Yagi M, Roth GJ. Megakaryocyte polyploidization is associated with decreased expression of polo-like kinase (PLK). J Thromb Haemost 2006; 4(9): 2028–2034
CrossRef Google scholar
[125]
Thon JN, Italiano JE. Platelets: production, morphology and ultrastructure. Handb Exp Pharmacol 2012; (210): 3–22
[126]
Junt T, Schulze H, Chen Z, Massberg S, Goerge T, Krueger A, Wagner DD, Graf T, Italiano JE Jr, Shivdasani RA, von Andrian UH. Dynamic visualization of thrombopoiesis within bone marrow. Science 2007; 317(5845): 1767–1770
CrossRef Google scholar
[127]
Thon JN, Italiano JE. Platelet formation. Semin Hematol 2010; 47(3): 220–226
CrossRef Google scholar
[128]
Thon JN, Montalvo A, Patel-Hett S, Devine MT, Richardson JL, Ehrlicher A, Larson MK, Hoffmeister K, Hartwig JH, Italiano JE Jr. Cytoskeletal mechanics of proplatelet maturation and platelet release. J Cell Biol 2010; 191(4): 861–874
CrossRef Google scholar
[129]
Kowata S, Isogai S, Murai K, Ito S, Tohyama K, Ema M, Hitomi J, Ishida Y. Platelet demand modulates the type of intravascular protrusion of megakaryocytes in bone marrow. Thromb Haemost 2014; 112(4): 743–756
[130]
Li L, Dong J, Yan L, Yong J, Liu X, Hu Y, Fan X, Wu X, Guo H, Wang X, Zhu X, Li R, Yan J, Wei Y, Zhao Y, Wang W, Ren Y, Yuan P, Yan Z, Hu B, Guo F, Wen L, Tang F, Qiao J. Single-cell RNA-seq analysis maps development of human germline cells and gonadal niche interactions. Cell Stem Cell 2017; 20(6): 858–873.e4
[131]
Qin J, Zhang J, Jiang J, Zhang B, Li J, Lin X, Wang S, Zhu M, Fan Z, Lv Y, He L, Chen L, Yue W, Li Y, Pei X. Direct chemical reprogramming of human cord blood erythroblasts to induced megakaryocytes that produce platelets. Cell Stem Cell 2022; 29(8): 1229–1245.e7
[132]
Rodríguez CS, Charó N, Tatti S, Gómez RM, D’Atri LP, Schattner M. Regulation of megakaryo/thrombopoiesis by endosomal toll-like receptor 7 and 8 activation of CD34+ cells in a viral infection model. Res Pract Thromb Haemost 2023; 7(4): 100184
CrossRef Google scholar
[133]
Davenport P, Liu ZJ, Sola-Visner M. Fetal vs adult megakaryopoiesis. Blood 2022; 139(22): 3233–3244
CrossRef Google scholar
[134]
D’Ambrosi S, Nilsson RJ, Wurdinger T. Platelets and tumor-associated RNA transfer. Blood 2021; 137(23): 3181–3191
CrossRef Google scholar
[135]
Sharygin D, Koniaris LG, Wells C, Zimmers TA, Hamidi T. Role of CD14 in human disease. Immunology 2023; 169(3): 260–270
CrossRef Google scholar
[136]
Heazlewood SY, Williams B, Storan MJ, Nilsson SK. The prospective isolation of viable, high ploidy megakaryocytes from adult murine bone marrow by fluorescence activated cell sorting. Methods Mol Biol 2013; 1035: 121–133
[137]
Li JJ, Liu J, Li YE, Chen LV, Cheng H, Li Y, Cheng T, Wang QF, Zhou BO. Differentiation route determines the functional outputs of adult megakaryopoiesis. Immunity 2024; 57(3): 478–494.e6
[138]
Guo K, Machlus KR, Camacho V. The many faces of the megakaryocytes and their biological implications. Curr Opin Hematol 2024; 31(1): 1–5
CrossRef Google scholar
[139]
Gaertner F, Ahmad Z, Rosenberger G, Fan S, Nicolai L, Busch B, Yavuz G, Luckner M, Ishikawa-Ankerhold H, Hennel R, Benechet A, Lorenz M, Chandraratne S, Schubert I, Helmer S, Striednig B, Stark K, Janko M, Böttcher RT, Verschoor A, Leon C, Gachet C, Gudermann T, Mederos Y Schnitzler M, Pincus Z, Iannacone M, Haas R, Wanner G, Lauber K, Sixt M, Massberg S. Migrating platelets are mechano-scavengers that collect and bundle bacteria. Cell 2017; 171(6): 1368–1382.e23
[140]
Maouia A, Rebetz J, Kapur R, Semple JW. The immune nature of platelets revisited. Transfus Med Rev 2020; 34(4): 209–220
CrossRef Google scholar
[141]
Roweth HG, Battinelli EM. Lessons to learn from tumor-educated platelets. Blood 2021; 137(23): 3174–3180
CrossRef Google scholar
[142]
Best MG, Sol N, In ’t Veld SGJG, Vancura A, Muller M, Niemeijer AN, Fejes AV, Tjon Kon Fat LA, Huis In ’t Veld AE, Leurs C, Le Large TY, Meijer LL, Kooi IE, Rustenburg F, Schellen P, Verschueren H, Post E, Wedekind LE, Bracht J, Esenkbrink M, Wils L, Favaro F, Schoonhoven JD, Tannous J, Meijers-Heijboer H, Kazemier G, Giovannetti E, Reijneveld JC, Idema S, Killestein J, Heger M, de Jager SC, Urbanus RT, Hoefer IE, Pasterkamp G, Mannhalter C, Gomez-Arroyo J, Bogaard HJ, Noske DP, Vandertop WP, van den Broek D, Ylstra B, Nilsson RJA, Wesseling P, Karachaliou N, Rosell R, Lee-Lewandrowski E, Lewandrowski KB, Tannous BA, de Langen AJ, Smit EF, van den Heuvel MM, Wurdinger T. Swarm intelligence-enhanced detection of non-small-cell lung cancer using tumor-educated platelets. Cancer Cell 2017; 32(2): 238–252.e9
[143]
Best MG, Sol N, Kooi I, Tannous J, Westerman BA, Rustenburg F, Schellen P, Verschueren H, Post E, Koster J, Ylstra B, Ameziane N, Dorsman J, Smit EF, Verheul HM, Noske DP, Reijneveld JC, Nilsson RJA, Tannous BA, Wesseling P, Wurdinger T. RNA-seq of tumor-educated platelets enables blood-based pan-cancer, multiclass, and molecular pathway cancer diagnostics. Cancer Cell 2015; 28(5): 666–676
CrossRef Google scholar
[144]
Jacobsen SEW, Nerlov C. Haematopoiesis in the era of advanced single-cell technologies. Nat Cell Biol 2019; 21(1): 2–8
CrossRef Google scholar
[145]
Watcham S, Kucinski I, Gottgens B. New insights into hematopoietic differentiation landscapes from single-cell RNA sequencing. Blood 2019; 133(13): 1415–1426
CrossRef Google scholar
[146]
Rodriguez-Fraticelli AE, Wolock SL, Weinreb CS, Panero R, Patel SH, Jankovic M, Sun J, Calogero RA, Klein AM, Camargo FD. Clonal analysis of lineage fate in native haematopoiesis. Nature 2018; 553(7687): 212–216
CrossRef Google scholar
[147]
Sanjuan-Pla A, Macaulay IC, Jensen CT, Woll PS, Luis TC, Mead A, Moore S, Carella C, Matsuoka S, Bouriez Jones T, Chowdhury O, Stenson L, Lutteropp M, Green JC, Facchini R, Boukarabila H, Grover A, Gambardella A, Thongjuea S, Carrelha J, Tarrant P, Atkinson D, Clark SA, Nerlov C, Jacobsen SE. Platelet-biased stem cells reside at the apex of the haematopoietic stem-cell hierarchy. Nature 2013; 502(7470): 232–236
CrossRef Google scholar
[148]
Carrelha J, Meng Y, Kettyle LM, Luis TC, Norfo R, Alcolea V, Boukarabila H, Grasso F, Gambardella A, Grover A, Högstrand K, Lord AM, Sanjuan-Pla A, Woll PS, Nerlov C, Jacobsen SEW. Hierarchically related lineage-restricted fates of multipotent haematopoietic stem cells. Nature 2018; 554(7690): 106–111
CrossRef Google scholar
[149]
Rommel MGE, Walz L, Fotopoulou F, Kohlscheen S, Schenk F, Miskey C, Botezatu L, Krebs Y, Voelker IM, Wittwer K, Holland-Letz T, Ivics Z, von Messling V, Essers MAG, Milsom MD, Pfaller CK, Modlich U. Influenza A virus infection instructs hematopoiesis to megakaryocyte-lineage output. Cell Rep 2022; 41(1): 111447
CrossRef Google scholar
[150]
Vainchenker W, Raslova H. The megakaryocyte: a cell with 3 faces as a mythic god? Blood 2021; 138(14): 1199–1200

Acknowledgements

This study was supported by Beijing Natural Science Foundation (No. JQ21024); the National Natural Science Foundation of China (Nos. 82350004, 82130008 and 82170125); and the Youth Innovation Promotion Association, Chinese Academy of Sciences (No. Y2021037); Scientific and Technological Innovation Project of China Academy of Chinese Medical Sciences (No. CI2023C027YL).

Compliance with ethics guidelines

Conflicts of interest Yueying Li, Kunying Chen, and Qian-Fei Wang declare that they have no conflict of interest.
This manuscript is a review article and does not involve a research protocol requiring approval by a relevant institutional review board or ethics committee.

RIGHTS & PERMISSIONS

2024 Higher Education Press
AI Summary AI Mindmap
PDF(2664 KB)

Accesses

Citations

Detail

Sections
Recommended

/