Artificial intelligence methods available for cancer research

Ankita Murmu, Balázs Győrffy

PDF(4546 KB)
PDF(4546 KB)
Front. Med. ›› 2024, Vol. 18 ›› Issue (5) : 778-797. DOI: 10.1007/s11684-024-1085-3
REVIEW

Artificial intelligence methods available for cancer research

Author information +
History +

Abstract

Cancer is a heterogeneous and multifaceted disease with a significant global footprint. Despite substantial technological advancements for battling cancer, early diagnosis and selection of effective treatment remains a challenge. With the convenience of large-scale datasets including multiple levels of data, new bioinformatic tools are needed to transform this wealth of information into clinically useful decision-support tools. In this field, artificial intelligence (AI) technologies with their highly diverse applications are rapidly gaining ground. Machine learning methods, such as Bayesian networks, support vector machines, decision trees, random forests, gradient boosting, and K-nearest neighbors, including neural network models like deep learning, have proven valuable in predictive, prognostic, and diagnostic studies. Researchers have recently employed large language models to tackle new dimensions of problems. However, leveraging the opportunity to utilize AI in clinical settings will require surpassing significant obstacles—a major issue is the lack of use of the available reporting guidelines obstructing the reproducibility of published studies. In this review, we discuss the applications of AI methods and explore their benefits and limitations. We summarize the available guidelines for AI in healthcare and highlight the potential role and impact of AI models on future directions in cancer research.

Keywords

machine learning / artificial neural network / deep learning / natural language processing / prediction / guideline / diagnosis

Cite this article

Download citation ▾
Ankita Murmu, Balázs Győrffy. Artificial intelligence methods available for cancer research. Front. Med., 2024, 18(5): 778‒797 https://doi.org/10.1007/s11684-024-1085-3

References

[1]
Morrow M, Waters J, Morris E. MRI for breast cancer screening, diagnosis, and treatment. Lancet 2011; 378(9805): 1804–1811
CrossRef Google scholar
[2]
Boiselle PM. Computed tomography screening for lung cancer. JAMA 2013; 309(11): 1163–1170
CrossRef Google scholar
[3]
Gøtzsche PC, Jørgensen KJ. Screening for breast cancer with mammography. Cochrane Database Syst Rev 2013; 2013(6): CD001877
CrossRef Google scholar
[4]
Nair M, Sandhu SS, Sharma AK. Cancer molecular markers: a guide to cancer detection and management. Semin Cancer Biol 2018; 52(Pt 1): 39–55
CrossRef Google scholar
[5]
Győrffy B. Discovery and ranking of the most robust prognostic biomarkers in serous ovarian cancer. Geroscience 2023; 45(3): 1889–1898
CrossRef Google scholar
[6]
Kovács SA, Fekete JT, Győrffy B. Predictive biomarkers of immunotherapy response with pharmacological applications in solid tumors. Acta Pharmacol Sin 2023; 44(9): 1879–1889
CrossRef Google scholar
[7]
Seebacher NA, Stacy AE, Porter GM, Merlot AM. Clinical development of targeted and immune based anti-cancer therapies. J Exp Clin Cancer Res 2019; 38(1): 156
CrossRef Google scholar
[8]
Liang G, Fan W, Luo H, Zhu X. The emerging roles of artificial intelligence in cancer drug development and precision therapy. Biomed Pharmacother 2020; 128: 110255
CrossRef Google scholar
[9]
Kumar Y, Gupta S, Singla R, Hu YC. A systematic review of artificial intelligence techniques in cancer prediction and diagnosis. Arch Comput Methods Eng 2022; 29(4): 2043–2070
CrossRef Google scholar
[10]
Pavlopoulou A, Spandidos DA, Michalopoulos I. Human cancer databases (review). Oncol Rep 2015; 33(1): 3–18
CrossRef Google scholar
[11]
Rios Velazquez E, Parmar C, Liu Y, Coroller TP, Cruz G, Stringfield O, Ye Z, Makrigiorgos M, Fennessy F, Mak RH, Gillies R, Quackenbush J, Aerts HJWL. Somatic mutations drive distinct imaging phenotypes in lung cancer. Cancer Res 2017; 77(14): 3922–3930
CrossRef Google scholar
[12]
Hou Q, Bing ZT, Hu C, Li MY, Yang KH, Mo Z, Xie XW, Liao JL, Lu Y, Horie S, Lou MW. RankProd combined with genetic algorithm optimized artificial neural network establishes a diagnostic and prognostic prediction model that revealed C1QTNF3 as a biomarker for prostate cancer. EBioMedicine 2018; 32: 234–244
CrossRef Google scholar
[13]
Carter SM, Rogers W, Win KT, Frazer H, Richards B, Houssami N. The ethical, legal and social implications of using artificial intelligence systems in breast cancer care. Breast 2020; 49: 25–32
CrossRef Google scholar
[14]
Kaul V, Enslin S, Gross SA. History of artificial intelligence in medicine. Gastrointest Endosc 2020; 92(4): 807–812
CrossRef Google scholar
[15]
Fekete JT, Győrffy B. ROCplot. org: validating predictive biomarkers of chemotherapy/hormonal therapy/anti-HER2 therapy using transcriptomic data of 3, 104 breast cancer patients. Int J Cancer 2019; 145(11): 3140–3151
CrossRef Google scholar
[16]
Quinlan JR. Induction of decision trees. Mach Learn 1986; 1(1): 81–106
CrossRef Google scholar
[17]
Kingsford C, Salzberg SL. What are decision trees. Nat Biotechnol 2008; 26(9): 1011–1013
CrossRef Google scholar
[18]
Talhouk A, McConechy MK, Leung S, Yang W, Lum A, Senz J, Boyd N, Pike J, Anglesio M, Kwon JS, Karnezis AN, Huntsman DG, Gilks CB, McAlpine JN. Confirmation of ProMisE: a simple, genomics-based clinical classifier for endometrial cancer. Cancer 2017; 123(5): 802–813
CrossRef Google scholar
[19]
Selman TJ, Mann C, Zamora J, Appleyard TL, Khan K. Diagnostic accuracy of tests for lymph node status in primary cervical cancer: a systematic review and meta-analysis. CMAJ 2008; 178(7): 855–862
CrossRef Google scholar
[20]
Lambin P, Rios-Velazquez E, Leijenaar R, Carvalho S, van Stiphout RGPM, Granton P, Zegers CM, Gillies R, Boellard R, Dekker A, Aerts HJ. Radiomics: extracting more information from medical images using advanced feature analysis. Eur J Cancer Oxf Engl 2012; 48(4): 441–446
CrossRef Google scholar
[21]
Wu Q, Wang S, Chen X, Wang Y, Dong L, Liu Z, Tian J, Wang M. Radiomics analysis of magnetic resonance imaging improves diagnostic performance of lymph node metastasis in patients with cervical cancer. Radiother Oncol 2019; 138: 141–148
CrossRef Google scholar
[22]
Gevaert O, Echegaray S, Khuong A, Hoang CD, Shrager JB, Jensen KC, Berry GJ, Guo HH, Lau C, Plevritis SK, Rubin DL, Napel S, Leung AN. Predictive radiogenomics modeling of EGFR mutation status in lung cancer. Sci Rep 2017; 7(1): 41674
CrossRef Google scholar
[23]
Hu LS, Ning S, Eschbacher JM, Baxter LC, Gaw N, Ranjbar S, Plasencia J, Dueck AC, Peng S, Smith KA, Nakaji P, Karis JP, Quarles CC, Wu T, Loftus JC, Jenkins RB, Sicotte H, Kollmeyer TM, O’Neill BP, Elmquist W, Hoxworth JM, Frakes D, Sarkaria J, Swanson KR, Tran NL, Li J, Mitchell JR. Radiogenomics to characterize regional genetic heterogeneity in glioblastoma. Neuro-oncol 2017; 19(1): 128–137
CrossRef Google scholar
[24]
Tahmassebi A, Wengert GJ, Helbich TH, Bago-Horvath Z, Alaei S, Bartsch R, Dubsky P, Baltzer P, Clauser P, Kapetas P, Morris EA, Meyer-Baese A, Pinker K. Impact of machine learning with multiparametric magnetic resonance imaging of the breast for early prediction of response to neoadjuvant chemotherapy and survival outcomes in breast cancer patients. Invest Radiol 2019; 54(2): 110–117
CrossRef Google scholar
[25]
Wang Y, Wang D, Geng N, Wang Y, Yin Y, Jin Y. Stacking-based ensemble learning of decision trees for interpretable prostate cancer detection. Appl Soft Comput 2019; 77: 188–204
CrossRef Google scholar
[26]
Ghiasi MM, Zendehboudi S. Application of decision tree-based ensemble learning in the classification of breast cancer. Comput Biol Med 2021; 128: 104089
CrossRef Google scholar
[27]
De Felice F, Crocetti D, Parisi M, Maiuri V, Moscarelli E, Caiazzo R, Bulzonetti N, Musio D, Tombolini V. Decision tree algorithm in locally advanced rectal cancer: an example of over-interpretation and misuse of a machine learning approach. J Cancer Res Clin Oncol 2020; 146(3): 761–765
CrossRef Google scholar
[28]
Breiman L. Random forests. Mach Learn 2001; 45(1): 5–32
CrossRef Google scholar
[29]
Tibor Fekete J, Győrffy B. A unified platform enabling biomarker ranking and validation for 1562 drugs using transcriptomic data of 1250 cancer cell lines. Comput Struct Biotechnol J 2022; 20: 2885–2894
CrossRef Google scholar
[30]
Cohen JD, Li L, Wang Y, Thoburn C, Afsari B, Danilova L, Douville C, Javed AA, Wong F, Mattox A, Hruban RH, Wolfgang CL, Goggins MG, Dal Molin M, Wang TL, Roden R, Klein AP, Ptak J, Dobbyn L, Schaefer J, Silliman N, Popoli M, Vogelstein JT, Browne JD, Schoen RE, Brand RE, Tie J, Gibbs P, Wong HL, Mansfield AS, Jen J, Hanash SM, Falconi M, Allen PJ, Zhou S, Bettegowda C, Diaz LA Jr, Tomasetti C, Kinzler KW, Vogelstein B, Lennon AM, Papadopoulos N. Detection and localization of surgically resectable cancers with a multi-analyte blood test. Science 2018; 359(6378): 926–930
CrossRef Google scholar
[31]
Toth R, Schiffmann H, Hube-Magg C, Büscheck F, Höflmayer D, Weidemann S, Lebok P, Fraune C, Minner S, Schlomm T, Sauter G, Plass C, Assenov Y, Simon R, Meiners J, Gerhäuser C. Random forest-based modelling to detect biomarkers for prostate cancer progression. Clin Epigenetics 2019; 11(1): 148
CrossRef Google scholar
[32]
Kawakami E, Tabata J, Yanaihara N, Ishikawa T, Koseki K, Iida Y, Saito M, Komazaki H, Shapiro JS, Goto C, Akiyama Y, Saito R, Saito M, Takano H, Yamada K, Okamoto A. Application of artificial intelligence for preoperative diagnostic and prognostic prediction in epithelial ovarian cancer based on blood biomarkers. Clin Cancer Res 2019; 25(10): 3006–3015
CrossRef Google scholar
[33]
Zhang Z, Huang L, Li J, Wang P. Bioinformatics analysis reveals immune prognostic markers for overall survival of colorectal cancer patients: a novel machine learning survival predictive system. BMC Bioinformatics 2022; 23(1): 124
CrossRef Google scholar
[34]
Lin J, Yin M, Liu L, Gao J, Yu C, Liu X, Xu C, Zhu J. The development of a prediction model based on random survival forest for the postoperative prognosis of pancreatic cancer: a SEER-based study. Cancers (Basel) 2022; 14(19): 4667
CrossRef Google scholar
[35]
Zhang H, Chi M, Su D, Xiong Y, Wei H, Yu Y, Zuo Y, Yang L. A random forest-based metabolic risk model to assess the prognosis and metabolism-related drug targets in ovarian cancer. Comput Biol Med 2023; 153: 106432
CrossRef Google scholar
[36]
Lee JY, Lee KS, Seo BK, Cho KR, Woo OH, Song SE, Kim EK, Lee HY, Kim JS, Cha J. Radiomic machine learning for predicting prognostic biomarkers and molecular subtypes of breast cancer using tumor heterogeneity and angiogenesis properties on MRI. Eur Radiol 2022; 32(1): 650–660
CrossRef Google scholar
[37]
Horvat N, Veeraraghavan H, Khan M, Blazic I, Zheng J, Capanu M, Sala E, Garcia-Aguilar J, Gollub MJ, Petkovska I. MR imaging of rectal cancer: radiomics analysis to assess treatment response after neoadjuvant therapy. Radiology 2018; 287(3): 833–843
CrossRef Google scholar
[38]
Deist TM, Dankers FJWM, Valdes G, Wijsman R, Hsu IC, Oberije C, Lustberg T, van Soest J, Hoebers F, Jochems A, El Naqa I, Wee L, Morin O, Raleigh DR, Bots W, Kaanders JH, Belderbos J, Kwint M, Solberg T, Monshouwer R, Bussink J, Dekker A, Lambin P. Machine learning algorithms for outcome prediction in (chemo)radiotherapy: an empirical comparison of classifiers. Med Phys 2018; 45(7): 3449–3459
CrossRef Google scholar
[39]
Paul D, Su R, Romain M, Sébastien V, Pierre V, Isabelle G. Feature selection for outcome prediction in oesophageal cancer using genetic algorithm and random forest classifier. Comput Med Imaging Graph 2017; 60: 42–49
CrossRef Google scholar
[40]
Wang S, Wang Y, Wang D, Yin Y, Wang Y, Jin Y. An improved random forest-based rule extraction method for breast cancer diagnosis. Appl Soft Comput 2020; 86: 105941
CrossRef Google scholar
[41]
Singh H, Singh S, Singla D, Agarwal SM, Raghava GPS. QSAR based model for discriminating EGFR inhibitors and non-inhibitors using Random forest. Biol Direct 2015; 10: 10
CrossRef Google scholar
[42]
Li X, Xu Y, Cui H, Huang T, Wang D, Lian B, Li W, Qin G, Chen L, Xie L. Prediction of synergistic anti-cancer drug combinations based on drug target network and drug induced gene expression profiles. Artif Intell Med 2017; 83: 35–43
CrossRef Google scholar
[43]
Sidorov P, Naulaerts S, Ariey-Bonnet J, Pasquier E, Ballester PJ. Predicting synergism of cancer drug combinations using NCI-ALMANAC data. Front Chem 2019; 7: 509
CrossRef Google scholar
[44]
Yang C, Huang X, Li Y, Chen J, Lv Y, Dai S. Prognosis and personalized treatment prediction in TP53-mutant hepatocellular carcinoma: an in silico strategy towards precision oncology. Brief Bioinform 2021; 22(3): bbaa164
CrossRef Google scholar
[45]
Hu C, Steingrimsson JA. Personalized risk prediction in clinical oncology research: applications and practical issues using survival trees and random forests. J Biopharm Stat 2018; 28(2): 333–349
CrossRef Google scholar
[46]
Natekin A, Knoll A. Gradient boosting machines, a tutorial. Front Neurorobot 2013; 7: 21
CrossRef Google scholar
[47]
Friedman JH. Greedy function approximation: a gradient boosting machine. Ann Stat 2001; 29(5): 1189–1232
CrossRef Google scholar
[48]
ChenTGuestrin C. XGBoost: a scalable tree boosting system. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (Pages 785–794). 2016; arXiv: 1603.02754
[49]
Mallett S, Royston P, Waters R, Dutton S, Altman DG. Reporting performance of prognostic models in cancer: a review. BMC Med 2010; 8(1): 21
CrossRef Google scholar
[50]
Moncada-Torres A, van Maaren MC, Hendriks MP, Siesling S, Geleijnse G. Explainable machine learning can outperform Cox regression predictions and provide insights in breast cancer survival. Sci Rep 2021; 11(1): 6968
CrossRef Google scholar
[51]
Nazari M, Shiri I, Zaidi H. Radiomics-based machine learning model to predict risk of death within 5-years in clear cell renal cell carcinoma patients. Comput Biol Med 2021; 129: 104135
CrossRef Google scholar
[52]
Arrieta O, Cardona AF, Martín C, Más-López L, Corrales-Rodríguez L, Bramuglia G, Castillo-Fernandez O, Meyerson M, Amieva-Rivera E, Campos-Parra AD, Carranza H, Gómez de la Torre JC, Powazniak Y, Aldaco-Sarvide F, Vargas C, Trigo M, Magallanes-Maciel M, Otero J, Sánchez-Reyes R, Cuello M. Updated frequency of EGFR and KRAS mutations in non-small-cell lung cancer in Latin America: the Latin-American Consortium for the Investigation of Lung Cancer (CLICaP). J Thorac Oncol 2015; 10(5): 838–843
CrossRef Google scholar
[53]
Le NQK, Kha QH, Nguyen VH, Chen YC, Cheng SJ, Chen CY. Machine learning-based radiomics signatures for EGFR and KRAS mutations prediction in non-small-cell lung cancer. Int J Mol Sci 2021; 22(17): 9254
CrossRef Google scholar
[54]
Li Q, Yang H, Wang P, Liu X, Lv K, Ye M. XGBoost-based and tumor-immune characterized gene signature for the prediction of metastatic status in breast cancer. J Transl Med 2022; 20(1): 177
CrossRef Google scholar
[55]
Liu X, Yuan P, Li R, Zhang D, An J, Ju J, Liu C, Ren F, Hou R, Li Y, Yang J. Predicting breast cancer recurrence and metastasis risk by integrating color and texture features of histopathological images and machine learning technologies. Comput Biol Med 2022; 146: 105569
CrossRef Google scholar
[56]
Bomane A, Gonçalves A, Ballester PJ. Paclitaxel response can be predicted with interpretable multi-variate classifiers exploiting DNA-methylation and miRNA data. Front Genet 2019; 10: 1041
CrossRef Google scholar
[57]
Polano M, Chierici M, Dal Bo M, Gentilini D, Di Cintio F, Baboci L, Gibbs DL, Furlanello C, Toffoli G. A pan-cancer approach to predict responsiveness to immune checkpoint inhibitors by machine learning. Cancers (Basel) 2019; 11(10): 1562
CrossRef Google scholar
[58]
Ji GW, Jiao CY, Xu ZG, Li XC, Wang K, Wang XH. Development and validation of a gradient boosting machine to predict prognosis after liver resection for intrahepatic cholangiocarcinoma. BMC Cancer 2022; 22(1): 258
CrossRef Google scholar
[59]
Pfob A, Mehrara BJ, Nelson JA, Wilkins EG, Pusic AL, Sidey-Gibbons C. Towards patient-centered decision-making in breast cancer surgery: machine learning to predict individual patient-reported outcomes at 1-year follow-up. Ann Surg 2023; 277(1): e144–e152
CrossRef Google scholar
[60]
Ma B, Meng F, Yan G, Yan H, Chai B, Song F. Diagnostic classification of cancers using extreme gradient boosting algorithm and multi-omics data. Comput Biol Med 2020; 121: 103761
CrossRef Google scholar
[61]
Cortes C, Vapnik V. Support-vector networks. Mach Learn 1995; 20(3): 273–297
CrossRef Google scholar
[62]
Noble WS. What is a support vector machine. Nat Biotechnol 2006; 24(12): 1565–1567
CrossRef Google scholar
[63]
Furey TS, Cristianini N, Duffy N, Bednarski DW, Schummer M, Haussler D. Support vector machine classification and validation of cancer tissue samples using microarray expression data. Bioinformatics 2000; 16(10): 906–914
CrossRef Google scholar
[64]
Dorman SN, Baranova K, Knoll JHM, Urquhart BL, Mariani G, Carcangiu ML, Rogan PK. Genomic signatures for paclitaxel and gemcitabine resistance in breast cancer derived by machine learning. Mol Oncol 2016; 10(1): 85–100
CrossRef Google scholar
[65]
Zhang B, He X, Ouyang F, Gu D, Dong Y, Zhang L, Mo X, Huang W, Tian J, Zhang S. Radiomic machine-learning classifiers for prognostic biomarkers of advanced nasopharyngeal carcinoma. Cancer Lett 2017; 403: 21–27
CrossRef Google scholar
[66]
Liu Z, Zhang XY, Shi YJ, Wang L, Zhu HT, Tang Z, Wang S, Li XT, Tian J, Sun YS. Radiomics analysis for evaluation of pathological complete response to neoadjuvant chemoradiotherapy in locally advanced rectal cancer. Clin Cancer Res 2017; 23(23): 7253–7262
CrossRef Google scholar
[67]
Yang L, Dong D, Fang M, Zhu Y, Zang Y, Liu Z, Zhang H, Ying J, Zhao X, Tian J. Can CT-based radiomics signature predict KRAS/NRAS/BRAF mutations in colorectal cancer. Eur Radiol 2018; 28(5): 2058–2067
CrossRef Google scholar
[68]
Abeel T, Helleputte T, Van de Peer Y, Dupont P, Saeys Y. Robust biomarker identification for cancer diagnosis with ensemble feature selection methods. Bioinformatics 2010; 26(3): 392–398
CrossRef Google scholar
[69]
Li Y, Zhao J, Yu S, Wang Z, He X, Su Y, Guo T, Sheng H, Chen J, Zheng Q, Li Y, Guo W, Cai X, Shi G, Wu J, Wang L, Wang P, He X, Huang S. Extracellular vesicles long RNA sequencing reveals abundant mRNA, circRNA, and lncRNA in human blood as potential biomarkers for cancer diagnosis. Clin Chem 2019; 65(6): 798–808
CrossRef Google scholar
[70]
Qiu J, Peng B, Tang Y, Qian Y, Guo P, Li M, Luo J, Chen B, Tang H, Lu C, Cai M, Ke Z, He W, Zheng Y, Xie D, Li B, Yuan Y. CpG methylation signature predicts recurrence in early-stage hepatocellular carcinoma: results from a multicenter study. J Clin Oncol 2017; 35(7): 734–742
CrossRef Google scholar
[71]
Jiang Y, Xie J, Han Z, Liu W, Xi S, Huang L, Huang W, Lin T, Zhao L, Hu Y, Yu J, Zhang Q, Li T, Cai S, Li G. Immunomarker support vector machine classifier for prediction of gastric cancer survival and adjuvant chemotherapeutic benefit. Clin Cancer Res 2018; 24(22): 5574–5584
CrossRef Google scholar
[72]
Cheong JH, Wang SC, Park S, Porembka MR, Christie AL, Kim H, Kim HS, Zhu H, Hyung WJ, Noh SH, Hu B, Hong C, Karalis JD, Kim IH, Lee SH, Hwang TH. Development and validation of a prognostic and predictive 32-gene signature for gastric cancer. Nat Commun 2022; 13(1): 774
CrossRef Google scholar
[73]
Delahunt B, Eble JN, Egevad L, Samaratunga H. Grading of renal cell carcinoma. Histopathology 2019; 74(1): 4–17
CrossRef Google scholar
[74]
FIGO Committee on Gynecologic Oncology. FIGO staging for carcinoma of the vulva, cervix, and corpus uteri. Int J Gynaecol Obstet 2014; 125(2): 97–98
CrossRef Google scholar
[75]
Bektas CT, Kocak B, Yardimci AH, Turkcanoglu MH, Yucetas U, Koca SB, Erdim C, Kilickesmez O. Clear cell renal cell carcinoma: machine learning-based quantitative computed tomography texture analysis for prediction of Fuhrman nuclear grade. Eur Radiol 2019; 29(3): 1153–1163
CrossRef Google scholar
[76]
Xie L, Chu R, Wang K, Zhang X, Li J, Zhao Z, Yao S, Wang Z, Dong T, Yang X, Su X, Qiao X, Song K, Kong B. Prognostic assessment of cervical cancer patients by clinical staging and surgical-pathological factor: a support vector machine-based approach. Front Oncol 2020; 10: 1353
CrossRef Google scholar
[77]
Xu G, Zhang M, Zhu H, Xu J. A 15-gene signature for prediction of colon cancer recurrence and prognosis based on SVM. Gene 2017; 604: 33–40
CrossRef Google scholar
[78]
Jiang D, Lei T, Wang Z, Shen C, Cao D, Hou T. ADMET evaluation in drug discovery. 20. Prediction of breast cancer resistance protein inhibition through machine learning. J Cheminform 2020; 12(1): 16
CrossRef Google scholar
[79]
Huang X, Zhang L, Wang B, Li F, Zhang Z. Feature clustering based support vector machine recursive feature elimination for gene selection. Appl Intell 2018; 48(3): 594–607
CrossRef Google scholar
[80]
Wang H, Zheng B, Yoon SW, Ko HS. A support vector machine-based ensemble algorithm for breast cancer diagnosis. Eur J Oper Res 2018; 267(2): 687–699
CrossRef Google scholar
[81]
Cooper GF, Herskovits E. A Bayesian method for the induction of probabilistic networks from data. Mach Learn 1992; 9(4): 309–347
CrossRef Google scholar
[82]
Friedman N, Geiger D, Goldszmidt M. Bayesian network classifiers. Mach Learn 1997; 29(2/3): 131–163
CrossRef Google scholar
[83]
Johnson M, Albizri A, Simsek S. Artificial intelligence in healthcare operations to enhance treatment outcomes: a framework to predict lung cancer prognosis. Ann Oper Res 2022; 308(1-2): 275–305
CrossRef Google scholar
[84]
Li R, Zhang C, Du K, Dan H, Ding R, Cai Z, Duan L, Xie Z, Zheng G, Wu H, Ren G, Dou X, Feng F, Zheng J. Analysis of prognostic factors of rectal cancer and construction of a prognostic prediction model based on Bayesian network. Front Public Health 2022; 10: 842970
CrossRef Google scholar
[85]
Wright GW, Huang DW, Phelan JD, Coulibaly ZA, Roulland S, Young RM, Wang JQ, Schmitz R, Morin RD, Tang J, Jiang A, Bagaev A, Plotnikova O, Kotlov N, Johnson CA, Wilson WH, Scott DW, Staudt LM. A probabilistic classification tool for genetic subtypes of diffuse large B cell lymphoma with therapeutic implications. Cancer Cell 2020; 37(4): 551–568.e14
CrossRef Google scholar
[86]
Jochems A, Deist TM, van Soest J, Eble M, Bulens P, Coucke P, Dries W, Lambin P, Dekker A. Distributed learning: developing a predictive model based on data from multiple hospitals without data leaving the hospital—a real life proof of concept. Radiother Oncol 2016; 121(3): 459–467
CrossRef Google scholar
[87]
Braman NM, Etesami M, Prasanna P, Dubchuk C, Gilmore H, Tiwari P, Plecha D, Madabhushi A. Intratumoral and peritumoral radiomics for the pretreatment prediction of pathological complete response to neoadjuvant chemotherapy based on breast DCE-MRI. Breast Cancer Res 2017; 19(1): 57
CrossRef Google scholar
[88]
Yang L, Fu B, Li Y, Liu Y, Huang W, Feng S, Xiao L, Sun L, Deng L, Zheng X, Ye F, Bu H. Prediction model of the response to neoadjuvant chemotherapy in breast cancers by a Naive Bayes algorithm. Comput Methods Programs Biomed 2020; 192: 105458
CrossRef Google scholar
[89]
Rouhi R, Jafari M, Kasaei S, Keshavarzian P. Benign and malignant breast tumors classification based on region growing and CNN segmentation. Expert Syst Appl 2015; 42(3): 990–1002
CrossRef Google scholar
[90]
Russo DP, Zorn KM, Clark AM, Zhu H, Ekins S. Comparing multiple machine learning algorithms and metrics for estrogen receptor binding prediction. Mol Pharm 2018; 15(10): 4361–4370
CrossRef Google scholar
[91]
Karabatak M. A new classifier for breast cancer detection based on Naïve Bayesian. Measurement 2015; 72: 32–36
CrossRef Google scholar
[92]
Abdar M, Zomorodi-Moghadam M, Zhou X, Gururajan R, Tao X, Barua PD, Gururajan R. A new nested ensemble technique for automated diagnosis of breast cancer. Pattern Recognit Lett 2020; 132: 123–131
CrossRef Google scholar
[93]
Farid DM, Zhang L, Rahman CM, Hossain MA, Strachan R. Hybrid decision tree and naïve Bayes classifiers for multi-class classification tasks. Expert Syst Appl 2014; 41(4): 1937–1946
CrossRef Google scholar
[94]
Chen S, Webb GI, Liu L, Ma X. A novel selective naïve Bayes algorithm. Knowl Base Syst 2020; 192: 105361
CrossRef Google scholar
[95]
Cover T, Hart P. Nearest neighbor pattern classification. IEEE Trans Inf Theory 1967; 13(1): 21–27
CrossRef Google scholar
[96]
Peterson LE. K-nearest neighbor. Scholarpedia J 2009; 4(2): 1883
CrossRef Google scholar
[97]
Dhahbi S, Barhoumi W, Zagrouba E. Breast cancer diagnosis in digitized mammograms using curvelet moments. Comput Biol Med 2015; 64: 79–90
CrossRef Google scholar
[98]
Huang Q, Huang Y, Luo Y, Yuan F, Li X. Segmentation of breast ultrasound image with semantic classification of superpixels. Med Image Anal 2020; 61: 101657
CrossRef Google scholar
[99]
Waugh SA, Purdie CA, Jordan LB, Vinnicombe S, Lerski RA, Martin P, Thompson AM. Magnetic resonance imaging texture analysis classification of primary breast cancer. Eur Radiol 2016; 26(2): 322–330
CrossRef Google scholar
[100]
Leithner D, Horvat JV, Marino MA, Bernard-Davila B, Jochelson MS, Ochoa-Albiztegui RE, Martinez DF, Morris EA, Thakur S, Pinker K. Radiomic signatures with contrast-enhanced magnetic resonance imaging for the assessment of breast cancer receptor status and molecular subtypes: initial results. Breast Cancer Res 2019; 21(1): 106
CrossRef Google scholar
[101]
García-Laencina PJ, Abreu PH, Abreu MH, Afonoso N. Missing data imputation on the 5-year survival prediction of breast cancer patients with unknown discrete values. Comput Biol Med 2015; 59: 125–133
CrossRef Google scholar
[102]
Wu W, Parmar C, Grossmann P, Quackenbush J, Lambin P, Bussink J, Mak R, Aerts HJ. Exploratory study to identify radiomics classifiers for lung cancer histology. Front Oncol 2016; 6: 71
CrossRef Google scholar
[103]
Tandel GS, Balestrieri A, Jujaray T, Khanna NN, Saba L, Suri JS. Multiclass magnetic resonance imaging brain tumor classification using artificial intelligence paradigm. Comput Biol Med 2020; 122: 103804
CrossRef Google scholar
[104]
Wang A, An N, Chen G, Li L, Alterovitz G. Accelerating wrapper-based feature selection with K-nearest-neighbor. Knowl Base Syst 2015; 83: 81–91
CrossRef Google scholar
[105]
Saeys Y, Inza I, Larrañaga P. A review of feature selection techniques in bioinformatics. Bioinformatics 2007; 23(19): 2507–2517
CrossRef Google scholar
[106]
Kar S, Das Sharma K, Maitra M. Gene selection from microarray gene expression data for classification of cancer subgroups employing PSO and adaptive K-nearest neighborhood technique. Expert Syst Appl 2015; 42(1): 612–627
CrossRef Google scholar
[107]
Zhang S, Li X, Zong M, Zhu X, Wang R. Efficient kNN classification with different numbers of nearest neighbors. IEEE Trans Neural Netw Learn Syst 2018; 29(5): 1774–1785
CrossRef Google scholar
[108]
Uddin S, Haque I, Lu H, Moni MA, Gide E. Comparative performance analysis of K-nearest neighbour (KNN) algorithm and its different variants for disease prediction. Sci Rep 2022; 12(1): 6256
CrossRef Google scholar
[109]
Krogh A. What are artificial neural networks. Nat Biotechnol 2008; 26(2): 195–197
CrossRef Google scholar
[110]
Khan J, Wei JS, Ringnér M, Saal LH, Ladanyi M, Westermann F, Berthold F, Schwab M, Antonescu CR, Peterson C, Meltzer PS. Classification and diagnostic prediction of cancers using gene expression profiling and artificial neural networks. Nat Med 2001; 7(6): 673–679
CrossRef Google scholar
[111]
Abbass HA. An evolutionary artificial neural networks approach for breast cancer diagnosis. Artif Intell Med 2002; 25(3): 265–281
CrossRef Google scholar
[112]
Wei JS, Greer BT, Westermann F, Steinberg SM, Son CG, Chen QR, Whiteford CC, Bilke S, Krasnoselsky AL, Cenacchi N, Catchpoole D, Berthold F, Schwab M, Khan J. Prediction of clinical outcome using gene expression profiling and artificial neural networks for patients with neuroblastoma. Cancer Res 2004; 64(19): 6883–6891
CrossRef Google scholar
[113]
Delen D, Walker G, Kadam A. Predicting breast cancer survivability: a comparison of three data mining methods. Artif Intell Med 2005; 34(2): 113–127
CrossRef Google scholar
[114]
Dheeba J, Albert Singh N, Tamil Selvi S. Computer-aided detection of breast cancer on mammograms: a swarm intelligence optimized wavelet neural network approach. J Biomed Inform 2014; 49: 45–52
CrossRef Google scholar
[115]
Bhardwaj A, Tiwari A. Breast cancer diagnosis using Genetically Optimized Neural Network model. Expert Syst Appl 2015; 42(10): 4611–4620
CrossRef Google scholar
[116]
Alshayeji MH, Ellethy H, Abed S, Gupta R. Computer-aided detection of breast cancer on the Wisconsin dataset: an artificial neural networks approach. Biomed Signal Process Control 2022; 71: 103141
CrossRef Google scholar
[117]
Almeida PP, Cardoso CP, de Freitas LM. PDAC-ANN: an artificial neural network to predict pancreatic ductal adenocarcinoma based on gene expression. BMC Cancer 2020; 20(1): 82
CrossRef Google scholar
[118]
LeCun Y, Bengio Y, Hinton G. Deep learning. Nature 2015; 521(7553): 436–444
CrossRef Google scholar
[119]
LeCunYBoser BDenkerJHendersonDHowardR HubbardWJackel L. Handwritten digit recognition with a back-propagation network. NIPS'89: Proceedings of the 2nd International Conference on Neural Information Processing Systems. 1989; 396–404
[120]
Yamashita R, Nishio M, Do RKG, Togashi K. Convolutional neural networks: an overview and application in radiology. Insights Imaging 2018; 9(4): 611–629
CrossRef Google scholar
[121]
Esteva A, Kuprel B, Novoa RA, Ko J, Swetter SM, Blau HM, Thrun S. Dermatologist-level classification of skin cancer with deep neural networks. Nature 2017; 542(7639): 115–118
CrossRef Google scholar
[122]
Bychkov D, Linder N, Turkki R, Nordling S, Kovanen PE, Verrill C, Walliander M, Lundin M, Haglund C, Lundin J. Deep learning based tissue analysis predicts outcome in colorectal cancer. Sci Rep 2018; 8(1): 3395
CrossRef Google scholar
[123]
Kather JN, Krisam J, Charoentong P, Luedde T, Herpel E, Weis CA, Gaiser T, Marx A, Valous NA, Ferber D, Jansen L, Reyes-Aldasoro CC, Zörnig I, Jäger D, Brenner H, Chang-Claude J, Hoffmeister M, Halama N. Predicting survival from colorectal cancer histology slides using deep learning: a retrospective multicenter study. PLoS Med 2019; 16(1): e1002730
CrossRef Google scholar
[124]
Skrede OJ, De Raedt S, Kleppe A, Hveem TS, Liestøl K, Maddison J, Askautrud HA, Pradhan M, Nesheim JA, Albregtsen F, Farstad IN, Domingo E, Church DN, Nesbakken A, Shepherd NA, Tomlinson I, Kerr R, Novelli M, Kerr DJ, Danielsen HE. Deep learning for prediction of colorectal cancer outcome: a discovery and validation study. Lancet 2020; 395(10221): 350–360
CrossRef Google scholar
[125]
Sirinukunwattana K, Domingo E, Richman SD, Redmond KL, Blake A, Verrill C, Leedham SJ, Chatzipli A, Hardy C, Whalley CM, Wu CH, Beggs AD, McDermott U, Dunne PD, Meade A, Walker SM, Murray GI, Samuel L, Seymour M, Tomlinson I, Quirke P, Maughan T, Rittscher J, Koelzer VH; S:CORT consortium. Image-based consensus molecular subtype (imCMS) classification of colorectal cancer using deep learning. Gut 2021; 70(3): 544–554
CrossRef Google scholar
[126]
Kather JN, Heij LR, Grabsch HI, Loeffler C, Echle A, Muti HS, Krause J, Niehues JM, Sommer KAJ, Bankhead P, Kooreman LFS, Schulte JJ, Cipriani NA, Buelow RD, Boor P, Ortiz-Brüchle NN, Hanby AM, Speirs V, Kochanny S, Patnaik A, Srisuwananukorn A, Brenner H, Hoffmeister M, van den Brandt PA, Jäger D, Trautwein C, Pearson AT, Luedde T. Pan-cancer image-based detection of clinically actionable genetic alterations. Nat Cancer 2020; 1(8): 789–799
CrossRef Google scholar
[127]
Yang J, Ju J, Guo L, Ji B, Shi S, Yang Z, Gao S, Yuan X, Tian G, Liang Y, Yuan P. Prediction of HER2-positive breast cancer recurrence and metastasis risk from histopathological images and clinical information via multimodal deep learning. Comput Struct Biotechnol J 2022; 20: 333–342
CrossRef Google scholar
[128]
Xu Y, Hosny A, Zeleznik R, Parmar C, Coroller T, Franco I, Mak RH, Aerts HJWL. Deep learning predicts lung cancer treatment response from serial medical imaging. Clin Cancer Res 2019; 25(11): 3266–3275
CrossRef Google scholar
[129]
Freer TW, Ulissey MJ. Screening mammography with computer-aided detection: prospective study of 12,860 patients in a community breast center. Radiology 2001; 220(3): 781–786
CrossRef Google scholar
[130]
Kooi T, Litjens G, van Ginneken B, Gubern-Mérida A, Sánchez CI, Mann R, den Heeten A, Karssemeijer N. Large scale deep learning for computer aided detection of mammographic lesions. Med Image Anal 2017; 35: 303–312
CrossRef Google scholar
[131]
Ren S, He K, Girshick R, Sun J. Faster R-CNN: towards real-time object detection with region proposal networks. IEEE Trans Pattern Anal Mach Intell 2017; 39(6): 1137–1149
CrossRef Google scholar
[132]
Moreira IC, Amaral I, Domingues I, Cardoso A, Cardoso MJ, Cardoso JS. INbreast: toward a full-field digital mammographic database. Acad Radiol 2012; 19(2): 236–248
CrossRef Google scholar
[133]
Shen L, Margolies LR, Rothstein JH, Fluder E, McBride R, Sieh W. Deep learning to improve breast cancer detection on screening mammography. Sci Rep 2019; 9(1): 12495
CrossRef Google scholar
[134]
Hekler A, Utikal JS, Enk AH, Berking C, Klode J, Schadendorf D, Jansen P, Franklin C, Holland-Letz T, Krahl D, von Kalle C, Fröhling S, Brinker TJ. Pathologist-level classification of histopathological melanoma images with deep neural networks. Eur J Cancer 2019; 115: 79–83
CrossRef Google scholar
[135]
Ardila D, Kiraly AP, Bharadwaj S, Choi B, Reicher JJ, Peng L, Tse D, Etemadi M, Ye W, Corrado G, Naidich DP, Shetty S. End-to-end lung cancer screening with three-dimensional deep learning on low-dose chest computed tomography. Nat Med 2019; 25(6): 954–961
CrossRef Google scholar
[136]
McKinney SM, Sieniek M, Godbole V, Godwin J, Antropova N, Ashrafian H, Back T, Chesus M, Corrado GS, Darzi A, Etemadi M, Garcia-Vicente F, Gilbert FJ, Halling-Brown M, Hassabis D, Jansen S, Karthikesalingam A, Kelly CJ, King D, Ledsam JR, Melnick D, Mostofi H, Peng L, Reicher JJ, Romera-Paredes B, Sidebottom R, Suleyman M, Tse D, Young KC, De Fauw J, Shetty S. International evaluation of an AI system for breast cancer screening. Nature 2020; 577(7788): 89–94
CrossRef Google scholar
[137]
Schaffter T, Buist DSM, Lee CI, Nikulin Y, Ribli D, Guan Y, Lotter W, Jie Z, Du H, Wang S, Feng J, Feng M, Kim HE, Albiol F, Albiol A, Morrell S, Wojna Z, Ahsen ME, Asif U, Jimeno Yepes A, Yohanandan S, Rabinovici-Cohen S, Yi D, Hoff B, Yu T, Chaibub Neto E, Rubin DL, Lindholm P, Margolies LR, McBride RB, Rothstein JH, Sieh W, Ben-Ari R, Harrer S, Trister A, Friend S, Norman T, Sahiner B, Strand F, Guinney J, Stolovitzky G;, the DM DREAM Consortium; Mackey L, Cahoon J, Shen L, Sohn JH, Trivedi H, Shen Y, Buturovic L, Pereira JC, Cardoso JS, Castro E, Kalleberg KT, Pelka O, Nedjar I, Geras KJ, Nensa F, Goan E, Koitka S, Caballero L, Cox DD, Krishnaswamy P, Pandey G, Friedrich CM, Perrin D, Fookes C, Shi B, Cardoso Negrie G, Kawczynski M, Cho K, Khoo CS, Lo JY, Sorensen AG, Jung H. Evaluation of combined artificial intelligence and radiologist assessment to interpret screening mammograms. JAMA Netw Open 2020; 3(3): e200265
CrossRef Google scholar
[138]
Wu N, Phang J, Park J, Shen Y, Huang Z, Zorin M, Jastrzębski S, Févry T, Katsnelson J, Kim E, Wolfson S, Parikh U, Gaddam S, Lin LLY, Ho K, Weinstein JD, Reig B, Gao Y, Toth H, Pysarenko K, Lewin A, Lee J, Airola K, Mema E, Chung S, Hwang E, Samreen N, Kim SG, Heacock L, Moy L, Cho K, Geras KJ. Deep neural networks improve radiologists’ performance in breast cancer screening. IEEE Trans Med Imaging 2020; 39(4): 1184–1194
CrossRef Google scholar
[139]
Tabibu S, Vinod PK, Jawahar CV. Pan-renal cell carcinoma classification and survival prediction from histopathology images using deep learning. Sci Rep 2019; 9(1): 10509
CrossRef Google scholar
[140]
Jin X, Zhou YF, Ma D, Zhao S, Lin CJ, Xiao Y, Fu T, Liu CL, Chen YY, Xiao WX, Liu YQ, Chen QW, Yu Y, Shi LM, Shi JX, Huang W, Robertson JFR, Jiang YZ, Shao ZM. Molecular classification of hormone receptor-positive HER2-negative breast cancer. Nat Genet 2023; 55(10): 1696–1708
CrossRef Google scholar
[141]
Munquad S, Das AB. DeepAutoGlioma: a deep learning autoencoder-based multi-omics data integration and classification tools for glioma subtyping. BioData Min 2023; 16(1): 32
CrossRef Google scholar
[142]
Chen M, Zhang B, Topatana W, Cao J, Zhu H, Juengpanich S, Mao Q, Yu H, Cai X. Classification and mutation prediction based on histopathology H&E images in liver cancer using deep learning. NPJ Precis Oncol 2020; 4(1): 14
CrossRef Google scholar
[143]
Coudray N, Ocampo PS, Sakellaropoulos T, Narula N, Snuderl M, Fenyö D, Moreira AL, Razavian N, Tsirigos A. Classification and mutation prediction from non-small cell lung cancer histopathology images using deep learning. Nat Med 2018; 24(10): 1559–1567
CrossRef Google scholar
[144]
Sharifi-Noghabi H, Zolotareva O, Collins CC, Ester M. MOLI: multi-omics late integration with deep neural networks for drug response prediction. Bioinformatics 2019; 35(14): i501–i509
CrossRef Google scholar
[145]
Sakellaropoulos T, Vougas K, Narang S, Koinis F, Kotsinas A, Polyzos A, Moss TJ, Piha-Paul S, Zhou H, Kardala E, Damianidou E, Alexopoulos LG, Aifantis I, Townsend PA, Panayiotidis MI, Sfikakis P, Bartek J, Fitzgerald RC, Thanos D, Mills Shaw KR, Petty R, Tsirigos A, Gorgoulis VG. A deep learning framework for predicting response to therapy in cancer. Cell Rep 2019; 29(11): 3367–3373.e4
CrossRef Google scholar
[146]
Kuenzi BM, Park J, Fong SH, Sanchez KS, Lee J, Kreisberg JF, Ma J, Ideker T. Predicting drug response and synergy using a deep learning model of human cancer cells. Cancer Cell 2020; 38(5): 672–684.e6
CrossRef Google scholar
[147]
Su R, Liu X, Wei L, Zou Q. Deep-Resp-Forest: a deep forest model to predict anti-cancer drug response. Methods 2019; 166: 91–102
CrossRef Google scholar
[148]
Preuer K, Lewis RPI, Hochreiter S, Bender A, Bulusu KC, Klambauer G. DeepSynergy: predicting anti-cancer drug synergy with deep learning. Bioinformatics 2018; 34(9): 1538–1546
CrossRef Google scholar
[149]
Rajkomar A, Oren E, Chen K, Dai AM, Hajaj N, Hardt M, Liu PJ, Liu X, Marcus J, Sun M, Sundberg P, Yee H, Zhang K, Zhang Y, Flores G, Duggan GE, Irvine J, Le Q, Litsch K, Mossin A, Tansuwan J, Wang D, Wexler J, Wilson J, Ludwig D, Volchenboum SL, Chou K, Pearson M, Madabushi S, Shah NH, Butte AJ, Howell MD, Cui C, Corrado GS, Dean J. Scalable and accurate deep learning with electronic health records. NPJ Digit Med 2018; 1(1): 18
CrossRef Google scholar
[150]
Yala A, Lehman C, Schuster T, Portnoi T, Barzilay R. A deep learning mammography-based model for improved breast cancer risk prediction. Radiology 2019; 292(1): 60–66
CrossRef Google scholar
[151]
Rasmy L, Xiang Y, Xie Z, Tao C, Zhi D. Med-BERT: pretrained contextualized embeddings on large-scale structured electronic health records for disease prediction. NPJ Digit Med 2021; 4(1): 86
CrossRef Google scholar
[152]
Miotto R, Li L, Kidd BA, Dudley JT. Deep Patient: an unsupervised representation to predict the future of patients from the electronic health records. Sci Rep 2016; 6(1): 26094
CrossRef Google scholar
[153]
Hosny A, Parmar C, Coroller TP, Grossmann P, Zeleznik R, Kumar A, Bussink J, Gillies RJ, Mak RH, Aerts HJWL. Deep learning for lung cancer prognostication: a retrospective multi-cohort radiomics study. PLoS Med 2018; 15(11): e1002711
CrossRef Google scholar
[154]
Hirschberg J, Manning CD. Advances in natural language processing. Science 2015; 349(6245): 261–266
CrossRef Google scholar
[155]
Yim WW, Yetisgen M, Harris WP, Kwan SW. Natural language processing in oncology: a review. JAMA Oncol 2016; 2(6): 797–804
CrossRef Google scholar
[156]
Castro SM, Tseytlin E, Medvedeva O, Mitchell K, Visweswaran S, Bekhuis T, Jacobson RS. Automated annotation and classification of BI-RADS assessment from radiology reports. J Biomed Inform 2017; 69: 177–187
CrossRef Google scholar
[157]
Patel TA, Puppala M, Ogunti RO, Ensor JE, He T, Shewale JB, Ankerst DP, Kaklamani VG, Rodriguez AA, Wong ST, Chang JC. Correlating mammographic and pathologic findings in clinical decision support using natural language processing and data mining methods. Cancer 2017; 123(1): 114–121
CrossRef Google scholar
[158]
Carrell DS, Halgrim S, Tran DT, Buist DSM, Chubak J, Chapman WW, Savova G. Using natural language processing to improve efficiency of manual chart abstraction in research: the case of breast cancer recurrence. Am J Epidemiol 2014; 179(6): 749–758
CrossRef Google scholar
[159]
Xu H, Aldrich MC, Chen Q, Liu H, Peterson NB, Dai Q, Levy M, Shah A, Han X, Ruan X, Jiang M, Li Y, Julien JS, Warner J, Friedman C, Roden DM, Denny JC. Validating drug repurposing signals using electronic health records: a case study of metformin associated with reduced cancer mortality. J Am Med Inform Assoc 2015; 22(1): 179–191
CrossRef Google scholar
[160]
Savova GK, Tseytlin E, Finan S, Castine M, Miller T, Medvedeva O, Harris D, Hochheiser H, Lin C, Chavan G, Jacobson RS. DeepPhe: a natural language processing system for extracting cancer phenotypes from clinical records. Cancer Res 2017; 77(21): e115–e118
CrossRef Google scholar
[161]
Savova GK, Danciu I, Alamudun F, Miller T, Lin C, Bitterman DS, Tourassi G, Warner JL. Use of natural language processing to extract clinical cancer phenotypes from electronic medical records. Cancer Res 2019; 79(21): 5463–5470
CrossRef Google scholar
[162]
Kehl KL, Elmarakeby H, Nishino M, Van Allen EM, Lepisto EM, Hassett MJ, Johnson BE, Schrag D. Assessment of deep natural language processing in ascertaining oncologic outcomes from radiology reports. JAMA Oncol 2019; 5(10): 1421–1429
CrossRef Google scholar
[163]
VaswaniAShazeer NParmarNUszkoreitJJonesL GomezANKaiser ŁPolosukhinI. Attention is all you need. In: Advances in Neural Information Processing Systems. 2017; 30
[164]
Thirunavukarasu AJ, Ting DSJ, Elangovan K, Gutierrez L, Tan TF, Ting DSW. Large language models in medicine. Nat Med 2023; 29(8): 1930–1940
CrossRef Google scholar
[165]
Qiu X, Sun T, Xu Y, Shao Y, Dai N, Huang X. Pre-trained models for natural language processing: a survey. Sci China Technol Sci 2020; 63(10): 1872–1897
CrossRef Google scholar
[166]
RadfordANarasimhan KSalimansTSutskeverI. Improving Language Understanding by Generative Pre-Training. 2018. Available at the website of cdn.openai.com
[167]
Yeo YH, Samaan JS, Ng WH, Ting PS, Trivedi H, Vipani A, Ayoub W, Yang JD, Liran O, Spiegel B, Kuo A. Assessing the performance of ChatGPT in answering questions regarding cirrhosis and hepatocellular carcinoma. Clin Mol Hepatol 2023; 29(3): 721–732
CrossRef Google scholar
[168]
Hopkins AM, Logan JM, Kichenadasse G, Sorich MJ. Artificial intelligence chatbots will revolutionize how cancer patients access information: ChatGPT represents a paradigm-shift. JNCI Cancer Spectr 2023; 7(2): pkad010
CrossRef Google scholar
[169]
Sorin V, Klang E, Sklair-Levy M, Cohen I, Zippel DB, Balint Lahat N, Konen E, Barash Y. Large language model (ChatGPT) as a support tool for breast tumor board. NPJ Breast Cancer 2023; 9(1): 44
CrossRef Google scholar
[170]
Johnson SB, King AJ, Warner EL, Aneja S, Kann BH, Bylund CL. Using ChatGPT to evaluate cancer myths and misconceptions: artificial intelligence and cancer information. JNCI Cancer Spectr 2023; 7(2): pkad015
CrossRef Google scholar
[171]
Chen S, Kann BH, Foote MB, Aerts HJWL, Savova GK, Mak RH, Bitterman DS. Use of artificial intelligence chatbots for cancer treatment information. JAMA Oncol 2023; 9(10): 1459–1462
CrossRef Google scholar
[172]
Coskun B, Ocakoglu G, Yetemen M, Kaygisiz O. Can ChatGPT, an artificial intelligence language model, provide accurate and high-quality patient information on prostate cancer. Urology 2023; 180: 35–58
CrossRef Google scholar
[173]
Sanderson K. GPT-4 is here: what scientists think. Nature 2023; 615(7954): 773
CrossRef Google scholar
[174]
Lyu Q, Tan J, Zapadka ME, Ponnatapura J, Niu C, Myers KJ, Wang G, Whitlow CT. Translating radiology reports into plain language using ChatGPT and GPT-4 with prompt learning: results, limitations, and potential. Vis Comput Ind Biomed Art 2023; 6(1): 9
CrossRef Google scholar
[175]
Fink MA, Bischoff A, Fink CA, Moll M, Kroschke J, Dulz L, Heußel CP, Kauczor HU, Weber TF. Potential of ChatGPT and GPT-4 for data mining of free-text CT reports on lung cancer. Radiology 2023; 308(3): e231362
CrossRef Google scholar
[176]
Ibrahim H, Liu X, Denniston AK. Reporting guidelines for artificial intelligence in healthcare research. Clin Exp Ophthalmol 2021; 49(5): 470–476
CrossRef Google scholar
[177]
Cruz Rivera S, Liu X, Chan AW, Denniston AK, Calvert MJ; SPIRIT-AI, CONSORT-AI Working Group; SPIRIT-AI, CONSORT-AI Steering Group; SPIRIT-AI, CONSORT-AI Consensus Group. Guidelines for clinical trial protocols for interventions involving artificial intelligence: the SPIRIT-AI extension. Nat Med 2020; 26(9): 1351–1363
CrossRef Google scholar
[178]
Liu X, Cruz Rivera S, Moher D, Calvert MJ, Denniston AK; SPIRIT-AI, CONSORT-AI Working Group. Reporting guidelines for clinical trial reports for interventions involving artificial intelligence: the CONSORT-AI extension. Nat Med 2020; 26(9): 1364–1374
CrossRef Google scholar
[179]
Norgeot B, Quer G, Beaulieu-Jones BK, Torkamani A, Dias R, Gianfrancesco M, Arnaout R, Kohane IS, Saria S, Topol E, Obermeyer Z, Yu B, Butte AJ. Minimum information about clinical artificial intelligence modeling: the MI-CLAIM checklist. Nat Med 2020; 26(9): 1320–1324
CrossRef Google scholar
[180]
Hernandez-Boussard T, Bozkurt S, Ioannidis JPA, Shah NH. MINIMAR (MINimum Information for Medical AI Reporting): developing reporting standards for artificial intelligence in health care. J Am Med Inform Assoc 2020; 27(12): 2011–2015
CrossRef Google scholar
[181]
Sounderajah V, Ashrafian H, Golub RM, Shetty S, De Fauw J, Hooft L, Moons K, Collins G, Moher D, Bossuyt PM, Darzi A, Karthikesalingam A, Denniston AK, Mateen BA, Ting D, Treanor D, King D, Greaves F, Godwin J, Pearson-Stuttard J, Harling L, McInnes M, Rifai N, Tomasev N, Normahani P, Whiting P, Aggarwal R, Vollmer S, Markar SR, Panch T, Liu X; STARD-AI Steering Committee. Developing a reporting guideline for artificial intelligence-centred diagnostic test accuracy studies: the STARD-AI protocol. BMJ Open 2021; 11(6): e047709
CrossRef Google scholar
[182]
Collins GS, Dhiman P, Andaur Navarro CL, Ma J, Hooft L, Reitsma JB, Logullo P, Beam AL, Peng L, Van Calster B, van Smeden M, Riley RD, Moons KG. Protocol for development of a reporting guideline (TRIPOD-AI) and risk of bias tool (PROBAST-AI) for diagnostic and prognostic prediction model studies based on artificial intelligence. BMJ Open 2021; 11(7): e048008
CrossRef Google scholar
[183]
Sounderajah V, Ashrafian H, Rose S, Shah NH, Ghassemi M, Golub R, Kahn CE Jr, Esteva A, Karthikesalingam A, Mateen B, Webster D, Milea D, Ting D, Treanor D, Cushnan D, King D, McPherson D, Glocker B, Greaves F, Harling L, Ordish J, Cohen JF, Deeks J, Leeflang M, Diamond M, McInnes MDF, McCradden M, Abràmoff MD, Normahani P, Markar SR, Chang S, Liu X, Mallett S, Shetty S, Denniston A, Collins GS, Moher D, Whiting P, Bossuyt PM, Darzi A. A quality assessment tool for artificial intelligence-centered diagnostic test accuracy studies: QUADAS-AI. Nat Med 2021; 27(10): 1663–1665
CrossRef Google scholar
[184]
Vasey B, Nagendran M, Campbell B, Clifton DA, Collins GS, Denaxas S, Denniston AK, Faes L, Geerts B, Ibrahim M, Liu X, Mateen BA, Mathur P, McCradden MD, Morgan L, Ordish J, Rogers C, Saria S, Ting DSW, Watkinson P, Weber W, Wheatstone P, McCulloch P; DECIDE-AI expert group. Reporting guideline for the early stage clinical evaluation of decision support systems driven by artificial intelligence: DECIDE-AI. BMJ 2022; 377: e070904
CrossRef Google scholar
[185]
Cohen JF, Korevaar DA, Altman DG, Bruns DE, Gatsonis CA, Hooft L, Irwig L, Levine D, Reitsma JB, de Vet HC, Bossuyt PM. STARD 2015 guidelines for reporting diagnostic accuracy studies: explanation and elaboration. BMJ Open 2016; 6(11): e012799
CrossRef Google scholar
[186]
Smith M, Sattler A, Hong G, Lin S. From code to bedside: implementing artificial intelligence using quality improvement methods. J Gen Intern Med 2021; 36(4): 1061–1066
CrossRef Google scholar
[187]
Wiens J, Saria S, Sendak M, Ghassemi M, Liu VX, Doshi-Velez F, Jung K, Heller K, Kale D, Saeed M, Ossorio PN, Thadaney-Israni S, Goldenberg A. Do no harm: a roadmap for responsible machine learning for health care. Nat Med 2019; 25(9): 1337–1340
CrossRef Google scholar
[188]
Larson DB, Harvey H, Rubin DL, Irani N, Tse JR, Langlotz CP. Regulatory frameworks for development and evaluation of artificial intelligence-based diagnostic imaging algorithms: summary and recommendations. J Am Coll Radiol 2021; 18(3 3 Pt A): 413–424
CrossRef Google scholar
[189]
Gunning D, Stefik M, Choi J, Miller T, Stumpf S, Yang GZ. XAI-explainable artificial intelligence. Sci Robot 2019; 4(37): eaay7120
CrossRef Google scholar
[190]
Klein H, Mazor T, Siegel E, Trukhanov P, Ovalle A, Vecchio Fitz CD, Zwiesler Z, Kumari P, Van Der Veen B, Marriott E, Hansel J, Yu J, Albayrak A, Barry S, Keller RB, MacConaill LE, Lindeman N, Johnson BE, Rollins BJ, Do KT, Beardslee B, Shapiro G, Hector-Barry S, Methot J, Sholl L, Lindsay J, Hassett MJ, Cerami E. MatchMiner: an open-source platform for cancer precision medicine. NPJ Precis Oncol 2022; 6(1): 69
CrossRef Google scholar
[191]
Li T, Shetty S, Kamath A, Jaiswal A, Jiang X, Ding Y, Kim Y. CancerGPT for few shot drug pair synergy prediction using large pretrained language models. NPJ Digit Med 2024; 7(1): 40
CrossRef Google scholar
[192]
Hartman RI, Trepanowski N, Chang MS, Tepedino K, Gianacas C, McNiff JM, Fung M, Braghiroli NF, Grant-Kels JM. Multicenter prospective blinded melanoma detection study with a handheld elastic scattering spectroscopy device. JAAD Int 2024; 15: 24–31
CrossRef Google scholar

Acknowledgements

This work was supported by the National Research, Development, and Innovation Office (PharmaLab, RRF-2.3.1-21-2022-00015 and TKP2021-NVA-15). The manuscript has been edited using a GPT platform to improve grammar. Ankita Murmu and Balázs Győrffy acknowledge the support of ELIXIR Hungary. Ankita Murmu is grateful to Tempus Public Foundation (Hungary) for the Stipendium Hungaricum Ph.D. Scholarship.

Compliance with ethics guidelines

Conflict of interest Ankita Murmu and Balázs Győrffy declares no potential conflict of interest.
This manuscript is a review article and does not involve a research protocol requiring approval by the relevant institutional review board or ethics committee.

Open Access

This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.
The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
To view a copy of this license, visit https://creativecommons.org/licenses/by/4.0/.

Funding note

Open access funding provided by HUN-REN Research Centre for Natural Sciences.

RIGHTS & PERMISSIONS

2024 The Author(s). This article is published with open access at link.springer.com and journal.hep.com.cn
AI Summary AI Mindmap
PDF(4546 KB)

Accesses

Citations

Detail

Sections
Recommended

/