Ferroptosis contributes to immunosuppression
Nina He, Dun Yuan, Minjie Luo, Qing Xu, Zhongchi Wen, Ziqin Wang, Jie Zhao, Ying Liu
Ferroptosis contributes to immunosuppression
As a novel form of cell death, ferroptosis is mainly regulated by the accumulation of soluble iron ions in the cytoplasm and the production of lipid peroxides and is closely associated with several diseases, including acute kidney injury, ischemic reperfusion injury, neurodegenerative diseases, and cancer. The term “immunosuppression” refers to various factors that can directly harm immune cells’ structure and function and affect the synthesis, release, and biological activity of immune molecules, leading to the insufficient response of the immune system to antigen production, failure to successfully resist the invasion of foreign pathogens, and even organ damage and metabolic disorders. An immunosuppressive phase commonly occurs in the progression of many ferroptosis-related diseases, and ferroptosis can directly inhibit immune cell function. However, the relationship between ferroptosis and immunosuppression has not yet been published due to their complicated interactions in various diseases. Therefore, this review deeply discusses the contribution of ferroptosis to immunosuppression in specific cases. In addition to offering new therapeutic targets for ferroptosis-related diseases, the findings will help clarify the issues on how ferroptosis contributes to immunosuppression.
ferroptosis / immunosuppression / immune cells
[1] |
Dixon SJ , Lemberg KM , Lamprecht MR , Skouta R , Zaitsev EM , Gleason CE , Patel DN , Bauer AJ , Cantley AM , Yang WS , Morrison B III , Stockwell BR . Ferroptosis: an iron-dependent form of nonapoptotic cell death. Cell 2012; 149(5): 1060–1072
CrossRef
Google scholar
|
[2] |
Feng HZ , Stockwell BR . Unsolved mysteries: how does lipid peroxidation cause ferroptosis. PLoS Biol 2018; 16(5): e2006203
CrossRef
Google scholar
|
[3] |
Stockwell BR , Angeli JPF , Bayir H , Bush AI , Conrad M , Dixon SJ , Fulda S , Gascón S , Hatzios SK , Kagan VE , Noel K , Jiang XJ , Linkermann A , Murphy ME , Overholtzer M , Oyagi A , Pagnussat GC , Park J , Ran Q , Rosenfeld CS , Salnikow K , Tang DL , Torti FM , Torti SV , Toyokuni S , Woerpel KA , Zhang DD . Ferroptosis: a regulated cell death nexus linking metabolism, redox biology, and disease. Cell 2017; 171(2): 273–285
CrossRef
Google scholar
|
[4] |
Nakamura E , Sato M , Yang HL , Miyagawa F , Harasaki M , Tomita K , Matsuoka S , Noma A , Iwai K , Minato N . 4F2 (CD98) heavy chain is associated covalently with an amino acid transporter and controls intracellular trafficking and membrane topology of 4F2 heterodimer. J Biol Chem 1999; 274(5): 3009–3016
CrossRef
Google scholar
|
[5] |
Koppula P , Zhang YL , Zhuang L , Gan BY . Amino acid transporter SLC7A11/xCT at the crossroads of regulating redox homeostasis and nutrient dependency of cancer. Cancer Commun 2018; 38(1): 12
CrossRef
Google scholar
|
[6] |
Sun X , Ou Z , Chen R , Niu X , Chen D , Kang R , Tang D . Activation of the p62-Keap1–NRF2 pathway protects against ferroptosis in hepatocellular carcinoma cells. Hepatology 2016; 63(1): 173–184
CrossRef
Google scholar
|
[7] |
Conrad M , Sato H . The oxidative stress-inducible cystine/glutamate antiporter, system xc−: cystine supplier and beyond. Amino Acids 2012; 42(1): 231–246
CrossRef
Google scholar
|
[8] |
Yang WS , SriRamaratnam R , Welsch ME , Shimada K , Skouta R , Viswanathan VS , Cheah JH , Clemons PA , Shamji AF , Clish CB , Brown LM , Girotti AW , Cornish VW , Schreiber SL , Stockwell BR . Regulation of ferroptotic cancer cell death by GPX4. Cell 2014; 156(1–2): 317–331
CrossRef
Google scholar
|
[9] |
Stockwell BR , Friedmann Angeli JP , Bayir H , Bush AI , Conrad M , Dixon SJ , Fulda S , Gascon S , Hatzios SK , Kagan VE , Noel K , Jiang X , Linkermann A , Murphy ME , Overholtzer M , Oyagi A , Pagnussat GC , Park J , Ran Q , Rosenfeld CS , Salnikow K , Tang D , Torti FM , Torti SV , Toyokuni S , Woerpel KA , Zhang DD . Ferroptosis: a regulated cell death nexus linking metabolism, redox biology, and disease. Cell 2017; 171(2): 273–285
CrossRef
Google scholar
|
[10] |
Galluzzi L , Vitale I , Aaronson SA , Abrams JM , Adam D , Agostinis P , Alnemri ES , Altucci L , Amelio I , Andrews DW , Annicchiarico-Petruzzelli M , Antonov AV , Arama E , Baehrecke EH , Barlev NA , Bazan NG , Bernassola F , Bertrand MJM , Bianchi K , Blagosklonny MV , Blomgren K , Borner C , Boya P , Brenner C , Campanella M , Candi E , Carmona-Gutierrez D , Cecconi F , Chan FK , Chandel NS , Cheng EH , Chipuk JE , Cidlowski JA , Ciechanover A , Cohen GM , Conrad M , Cubillos-Ruiz JR , Czabotar PE , D’Angiolella V , Dawson TM , Dawson VL , De Laurenzi V , De Maria R , Debatin KM , DeBerardinis RJ , Deshmukh M , Di Daniele N , Di Virgilio F , Dixit VM , Dixon SJ , Duckett CS , Dynlacht BD , El-Deiry WS , Elrod JW , Fimia GM , Fulda S , Garcia-Saez AJ , Garg AD , Garrido C , Gavathiotis E , Golstein P , Gottlieb E , Green DR , Greene LA , Gronemeyer H , Gross A , Hajnoczky G , Hardwick JM , Harris IS , Hengartner MO , Hetz C , Ichijo H , Jaattela M , Joseph B , Jost PJ , Juin PP , Kaiser WJ , Karin M , Kaufmann T , Kepp O , Kimchi A , Kitsis RN , Klionsky DJ , Knight RA , Kumar S , Lee SW , Lemasters JJ , Levine B , Linkermann A , Lipton SA , Lockshin RA , Lopez-Otin C , Lowe SW , Luedde T , Lugli E , MacFarlane M , Madeo F , Malewicz M , Malorni W , Manic G , Marine JC , Martin SJ , Martinou JC , Medema JP , Mehlen P , Meier P , Melino S , Miao EA , Molkentin JD , Moll UM , Munoz-Pinedo C , Nagata S , Nunez G , Oberst A , Oren M , Overholtzer M , Pagano M , Panaretakis T , Pasparakis M , Penninger JM , Pereira DM , Pervaiz S , Peter ME , Piacentini M , Pinton P , Prehn JHM , Puthalakath H , Rabinovich GA , Rehm M , Rizzuto R , Rodrigues CMP , Rubinsztein DC , Rudel T , Ryan KM , Sayan E , Scorrano L , Shao F , Shi Y , Silke J , Simon HU , Sistigu A , Stockwell BR , Strasser A , Szabadkai G , Tait SWG , Tang D , Tavernarakis N , Thorburn A , Tsujimoto Y , Turk B , Vanden Berghe T , Vandenabeele P , Vander Heiden MG , Villunger A , Virgin HW , Vousden KH , Vucic D , Wagner EF , Walczak H , Wallach D , Wang Y , Wells JA , Wood W , Yuan J , Zakeri Z , Zhivotovsky B , Zitvogel L , Melino G , Kroemer G . Molecular mechanisms of cell death: recommendations of the Nomenclature Committee on Cell Death 2018. Cell Death Differ 2018; 25(3): 486–541
CrossRef
Google scholar
|
[11] |
Roveri A , Maiorino M , Ursini F . Enzymatic and immunological measurements of soluble and membrane-bound phospholipid-hydroperoxide glutathione peroxidase. Methods Enzymol 1994; 233: 202–212
CrossRef
Google scholar
|
[12] |
Liu Y , Zhou L , Lv C , Liu L , Miao S , Xu Y , Li K , Zhao Y , Zhao J . PGE2 pathway mediates oxidative stress-induced ferroptosis in renal tubular epithelial cells. FEBS J 2023; 290(2): 533–549
CrossRef
Google scholar
|
[13] |
Angeli JPF , Schneider M , Proneth B , Tyurina YY , Tyurin VA , Hammond VJ , Herbach N , Aichler M , Walch A , Eggenhofer E , Basavarajappa D , Rådmark O , Kobayashi S , Seibt T , Beck H , Neff F , Esposito I , Wanke R , Förster H , Yefremova O , Heinrichmeyer M , Bornkamm GW , Geissler EK , Thomas SB , Stockwell BR , O’Donnell VB , Kagan VE , Schick JA , Conrad M . Inactivation of the ferroptosis regulator Gpx4 triggers acute renal failure in mice. Nat Cell Biol 2014; 16(12): 1180–1191
CrossRef
Google scholar
|
[14] |
Wang SJ , Li DW , Ou Y , Jiang L , Chen Y , Zhao YM , Gu W . Acetylation is crucial for p53-mediated ferroptosis and tumor suppression. Cell Rep 2016; 17(2): 366–373
CrossRef
Google scholar
|
[15] |
Luedde T , Kaplowitz N , Schwabe RF . Cell death and cell death responses in liver disease: mechanisms and clinical relevance. Gastroenterology 2014; 147(4): 765–783.e4
CrossRef
Google scholar
|
[16] |
Chen LJ , Hambright WS , Na R , Ran QT . Ablation of the ferroptosis inhibitor glutathione peroxidase 4 in neurons results in rapid motor neuron degeneration and paralysis. J Biol Chem 2015; 290(47): 28097–28106
CrossRef
Google scholar
|
[17] |
Do Van B , Gouel F , Jonneaux A , Timmerman K , Gelé P , Pétrault M , Bastide M , Laloux C , Moreau C , Bordet R , Devos D , Devedjian JC . Ferroptosis, a newly characterized form of cell death in Parkinson’s disease that is regulated by PKC. Neurobiol Dis 2016; 94: 169–178
CrossRef
Google scholar
|
[18] |
Zhao Y , Liu Y , Xu Y , Li K , Zhou L , Qiao H , Xu Q , Zhao J . The role of ferroptosis in blood-brain barrier injury. Cell Mol Neurobiol 2023; 43(1): 223–236
CrossRef
Google scholar
|
[19] |
Galluzzi L , Bravo-San Pedro JM , Kroemer G . Ferroptosis in p53-dependent oncosuppression and organismal homeostasis. Cell Death Differ 2015; 22(8): 1237–1238
CrossRef
Google scholar
|
[20] |
Guo N . Identification of ACSL4 as a biomarker and contributor of ferroptosis in clear cell renal cell carcinoma. Transl Cancer Res 2022; 11(8): 2688–2699
CrossRef
Google scholar
|
[21] |
Yu Y , Yan Y , Niu FL , Wang YJ , Chen XY , Su GD , Liu YR , Zhao XL , Qian L , Liu P , Xiong YY . Ferroptosis: a cell death connecting oxidative stress, inflammation and cardiovascular diseases. Cell Death Discov 2021; 7: 193
CrossRef
Google scholar
|
[22] |
Xu Y , Li K , Zhao Y , Zhou L , Liu Y , Zhao J . Role of ferroptosis in stroke. Cell Mol Neurobiol 2023; 43: 205–222
CrossRef
Google scholar
|
[23] |
Cui Y , Zhang Y , Zhao XL , Shao LM , Liu GP , Sun CJ , Xu R , Zhang ZL . ACSL4 exacerbates ischemic stroke by promoting ferroptosis-induced brain injury and neuroinflammation. Brain Behav Immun 2021; 93: 312–321
CrossRef
Google scholar
|
[24] |
Xiao ZN , Shen DM , Lan T , Wei C , Luo ZL , Chen W , Zhang YR , Zhang CG , Wang YM , Lu YB , Wang PP , Yang F , Li Q , Hu LY , Wu WH . Reduction of lactoferrin aggravates neuronal ferroptosis after intracerebral hemorrhagic stroke in hyperglycemic mice. Redox Biol 2022; 50: 102256
CrossRef
Google scholar
|
[25] |
Xu Y , Liu Y , Li K , Yuan D , Yang S , Zhou L , Zhao Y , Miao S , Lv C , Zhao J . COX-2/PGE2 pathway inhibits the ferroptosis induced by cerebral ischemia reperfusion. Mol Neurobiol 2022; 59(3): 1619–1631
CrossRef
Google scholar
|
[26] |
Li Y , Feng DC , Wang ZY , Zhao Y , Sun RM , Tian DH , Liu DS , Zhang F , Ning SL , Yao JH , Tian XF . Ischemia-induced ACSL4 activation contributes to ferroptosis-mediated tissue injury in intestinal ischemia/reperfusion. Cell Death Differ 2019; 26(11): 2284–2299
CrossRef
Google scholar
|
[27] |
Rong YL , Fan J , Ji CY , Wang ZH , Ge XH , Wang JX , Ye W , Yin GY , Cai WH , Liu W . USP11 regulates autophagy-dependent ferroptosis after spinal cord ischemia-reperfusion injury by deubiquitinating Beclin 1. Cell Death Differ 2022; 29(6): 1164–1175
CrossRef
Google scholar
|
[28] |
Del Re DP , Amgalan D , Linkermann A , Liu QH , Kitsis RN . Fundamental mechanisms of regulated cell death and implications for heart disease. Physiol Rev 2019; 99(4): 1765–1817
CrossRef
Google scholar
|
[29] |
Aisen P , Enns C , Wessling-Resnick M . Chemistry and biology of eukaryotic iron metabolism. Int J Biochem Cell Biol 2001; 33(10): 940–959
CrossRef
Google scholar
|
[30] |
Soares MP , Hamza I . Macrophages and iron metabolism. Immunity 2016; 44(3): 492–504
CrossRef
Google scholar
|
[31] |
Li P , Jiang M , Li K , Li H , Zhou Y , Xiao X , Xu Y , Krishfield S , Lipsky PE , Tsokos GC , Zhang X . Glutathione peroxidase 4-regulated neutrophil ferroptosis induces systemic autoimmunity. Nat Immunol 2021; 22(9): 1107–1117
CrossRef
Google scholar
|
[32] |
Ren Y , Tang JL , Mok MY , Chan AWK , Wu A , Lau CS . Increased apoptotic neutrophils and macrophages and impaired macrophage phagocytic clearance of apoptotic neutrophils in systemic lupus erythematosus. Arthritis Rheum 2003; 48(10): 2888–2897
CrossRef
Google scholar
|
[33] |
Rothe T , Gruber F , Uderhardt S , Ipseiz N , Rossner S , Oskolkova O , Bluml S , Leitinger N , Bicker W , Bochkov VN , Yamamoto M , Steinkasserer A , Schett G , Zinser E , Kronke G . 12/15-lipoxygenase-mediated enzymatic lipid oxidation regulates DC maturation and function. J Clin Invest 2015; 125(5): 1944–1954
CrossRef
Google scholar
|
[34] |
Dai E , Han L , Liu J , Xie Y , Kroemer G , Klionsky DJ , Zeh HJ , Kang R , Wang J , Tang D . Autophagy-dependent ferroptosis drives tumor-associated macrophage polarization via release and uptake of oncogenic KRAS protein. Autophagy 2020; 16(11): 2069–2083
CrossRef
Google scholar
|
[35] |
Burton EM , Voyer J , Gewurz BE . Epstein-Barr virus latency programs dynamically sensitize B cells to ferroptosis. Proc Natl Acad Sci USA 2022; 119(11): e2118300119
CrossRef
Google scholar
|
[36] |
Zhao Y , Liu Z , Liu G , Zhang Y , Liu S , Gan D , Chang W , Peng X , Sung ES , Gilbert K , Zhu Y , Wang X , Zeng Z , Baldwin H , Ren G , Weaver J , Huron A , Mayberry T , Wang Q , Wang Y , Diaz-Rubio ME , Su X , Stack MS , Zhang S , Lu X , Sheldon RD , Li J , Zhang C , Wan J , Lu X . Neutrophils resist ferroptosis and promote breast cancer metastasis through aconitate decarboxylase 1. Cell Metab 2023; 35(10): 1688–1703.e10
CrossRef
Google scholar
|
[37] |
Poznanski SM , Singh K , Ritchie TM , Aguiar JA , Fan IY , Portillo AL , Rojas EA , Vahedi F , El-Sayes A , Xing S , Butcher M , Lu Y , Doxey AC , Schertzer JD , Hirte HW , Ashkar AA . Metabolic flexibility determines human NK cell functional fate in the tumor microenvironment. Cell Metab 2021; 33(6): 1205–1220.e5
CrossRef
Google scholar
|
[38] |
Akira S , Uematsu S , Takeuchi O . Pathogen recognition and innate immunity. Cell 2006; 124(4): 783–801
CrossRef
Google scholar
|
[39] |
Ginhoux F , Guilliams M . Tissue-resident macrophage ontogeny and homeostasis. Immunity 2016; 44(3): 439–449
CrossRef
Google scholar
|
[40] |
Murray PJ , Wynn TA . Protective and pathogenic functions of macrophage subsets. Nat Rev Immunol 2011; 11(11): 723–737
CrossRef
Google scholar
|
[41] |
Shapouri-Moghaddam A , Mohammadian S , Vazini H , Taghadosi M , Esmaeili SA , Mardani F , Seifi B , Mohammadi A , Afshari JT , Sahebkar A . Macrophage plasticity, polarization, and function in health and disease. J Cell Physiol 2018; 233(9): 6425–6440
CrossRef
Google scholar
|
[42] |
Murray PJ . Macrophage polarization. Annu Rev Physiol 2017; 79(1): 541–566
CrossRef
Google scholar
|
[43] |
Perry VH , Teeling J . Microglia and macrophages of the central nervous system: the contribution of microglia priming and systemic inflammation to chronic neurodegeneration. Semin Immunopathol 2013; 35(5): 601–612
CrossRef
Google scholar
|
[44] |
Lavin Y , Mortha A , Rahman A , Merad M . Regulation of macrophage development and function in peripheral tissues. Nat Rev Immunol 2015; 15(12): 731–744
CrossRef
Google scholar
|
[45] |
Yagoda N , von Rechenberg M , Zaganjor E , Bauer AJ , Yang WS , Fridman DJ , Wolpaw AJ , Smukste I , Peltier JM , Boniface JJ , Smith R , Lessnick SL , Sahasrabudhe S , Stockwell BR . RAS-RAF-MEK-dependent oxidative cell death involving voltage-dependent anion channels. Nature 2007; 447(7146): 865–868
CrossRef
Google scholar
|
[46] |
Dixon SJ , Lemberg KM , Lamprecht MR , Skouta R , Zaitsev EM , Gleason CE , Patel DN , Bauer AJ , Cantley AM , Yang WS , Morrison B 3rd , Stockwell BR . Ferroptosis: an iron-dependent form of nonapoptotic cell death. Cell 2012; 149(5): 1060–1072
CrossRef
Google scholar
|
[47] |
Cui Y , Zhang ZL , Zhou X , Zhao ZY , Zhao R , Xu XY , Kong XY , Ren JY , Yao XJ , Wen Q , Guo FF , Gao SL , Sun JD , Wan Q . Microglia and macrophage exhibit attenuated inflammatory response and ferroptosis resistance after RSL3 stimulation via increasing Nrf2 expression. J Neuroinflammation 2021; 18(1): 249
CrossRef
Google scholar
|
[48] |
Cassetta L , Pollard JW . Targeting macrophages: therapeutic approaches in cancer. Nat Rev Drug Discov 2018; 17(12): 887–904
CrossRef
Google scholar
|
[49] |
Mantovani A , Schioppa T , Porta C , Allavena P , Sica A . Role of tumor-associated macrophages in tumor progression and invasion. Cancer Metastasis Rev 2006; 25(3): 315–322
CrossRef
Google scholar
|
[50] |
Sica A , Bronte V . Altered macrophage differentiation and immune dysfunction in tumor development. J Clin Invest 2007; 117(5): 1155–1166
CrossRef
Google scholar
|
[51] |
Xia Y , Rao L , Yao H , Wang Z , Ning P , Chen X . Engineering macrophages for cancer immunotherapy and drug delivery. Adv Mater 2020; 32(40): 2002054
CrossRef
Google scholar
|
[52] |
Dai E , Han L , Liu J , Xie Y , Zeh HJ , Kang R , Bai L , Tang D . Ferroptotic damage promotes pancreatic tumorigenesis through a TMEM173/STING-dependent DNA sensor pathway. Nat Commun 2020; 11(1): 6339
CrossRef
Google scholar
|
[53] |
Wu J , Feng Z , Chen L , Li Y , Bian HJ , Geng JJ , Zheng ZH , Fu XH , Pei Z , Qin YF , Yang L , Zhao YL , Wang K , Chen R , He Q , Nan G , Jiang XJ , Chen ZN , Zhu P . TNF antagonist sensitizes synovial fibroblasts to ferroptotic cell death in collagen-induced arthritis mouse models. Nat Commun 2022; 13(1): 676
CrossRef
Google scholar
|
[54] |
Ouyang SM , Li HX , Lou LL , Huang QY , Zhang ZH , Mo JS , Li M , Lu JY , Zhu K , Chu YJ , Ding W , Zhu JZ , Lin ZY , Zhong L , Wang JJ , Yue PB , Turkson J , Liu PQ , Wang YX , Zhang XL . Inhibition of STAT3-ferroptosis negative regulatory axis suppresses tumor growth and alleviates chemoresistance in gastric cancer. Redox Biol 2022; 52: 102317
CrossRef
Google scholar
|
[55] |
Corna G , Campana L , Pignatti E , Castiglioni A , Tagliafico E , Bosurgi L , Campanella A , Brunelli S , Manfredi AA , Apostoli P , Silvestri L , Camaschella C , Rovere-Querini P . Polarization dictates iron handling by inflammatory and alternatively activated macrophages. Haematologica 2010; 95(11): 1814–1822
CrossRef
Google scholar
|
[56] |
Recalcati S , Locati M , Marini A , Santambrogio P , Zaninotto F , De Pizzol M , Zammataro L , Girelli D , Cairo G . Differential regulation of iron homeostasis during human macrophage polarized activation. Eur J Immunol 2010; 40(3): 824–835
CrossRef
Google scholar
|
[57] |
Kapralov AA , Yang Q , Dar HH , Tyurina YY , Anthonymuthu TS , Kim R , St Croix CM , Mikulska-Ruminska K , Liu B , Shrivastava IH , Tyurin VA , Ting HC , Wu YL , Gao Y , Shurin GV , Artyukhova MA , Ponomareva LA , Timashev PS , Domingues RM , Stoyanovsky DA , Greenberger JS , Mallampalli RK , Bahar I , Gabrilovich DI , Bayir H , Kagan VE . Redox lipid reprogramming commands susceptibility of macrophages and microglia to ferroptotic death. Nat Chem Biol 2020; 16(3): 278–290
CrossRef
Google scholar
|
[58] |
Kumar A , Singh KP , Bali P , Anwar S , Kaul A , Singh OP , Gupta BK , Kumari N , Alam MN , Raziuddin M , Sinha MP , Gourinath S , Sharma AK , Sohail M . iNOS polymorphism modulates iNOS/NO expression via impaired antioxidant and ROS content in P. vivax and P. falciparum infection. Redox Biol 2018; 15: 192–206
CrossRef
Google scholar
|
[59] |
Cui ZL , Li WK , Wang YD , Zhao MR , Liu KL , Yang Y , Teng S , Zhang N , Min L , Li P , Zhang ST , Xu JX , Wu J . M2 macrophage-derived exosomal ferritin heavy chain promotes colon cancer cell proliferation. Biol Trace Elem Res 2023; 201(8): 3717–3728
CrossRef
Google scholar
|
[60] |
Kashfi K , Kannikal J , Nath N . Macrophage reprogramming and cancer therapeutics: role of iNOS-derived NO. Cells 2021; 10(11): 3194
CrossRef
Google scholar
|
[61] |
Giger KM , Kalfa TA . Phylogenetic and ontogenetic view of erythroblastic islands. BioMed Res Int 2015; 2015: 873628
CrossRef
Google scholar
|
[62] |
Knutson MD , Oukka M , Koss LM , Aydemir F , Wessling-Resnick M . Iron release from macrophages after erythrophagocytosis is up-regulated by ferroportin 1 overexpression and down-regulated by hepcidin. Proc Natl Acad Sci USA 2005; 102(5): 1324–1328
CrossRef
Google scholar
|
[63] |
Youssef LA , Rebbaa A , Pampou S , Weisberg SP , Stockwell BR , Hod EA , Spitalnik SL . Increased erythrophagocytosis induces ferroptosis in red pulp macrophages in a mouse model of transfusion. Blood 2018; 131(23): 2581–2593
CrossRef
Google scholar
|
[64] |
Yuan H , Li XM , Zhang XY , Kang R , Tang DL . Identification of ACSL4 as a biomarker and contributor of ferroptosis. Biochem Biophys Res Commun 2016; 478(3): 1338–1343
CrossRef
Google scholar
|
[65] |
Liu SH , Gao ZS , He WQ , Wu YT , Liu JW , Zhang S , Yan LP , Mao SY , Shi XZ , Fan WT , Song SQ . The gut microbiota metabolite glycochenodeoxycholate activates TFR-ACSL4-mediated ferroptosis to promote the development of environmental toxin-linked MAFLD. Free Radic Biol Med 2022; 193: 213–226
CrossRef
Google scholar
|
[66] |
Gao L , Zhang JS , Yang TT , Jiang L , Liu XQ , Wang S , Wang X , Huang YB , Wang HY , Zhang MY , Gong TT , Ma LJ , Li C , He CY , Meng XM , Wu YG . STING/ACSL4 axis-dependent ferroptosis and inflammation promote hypertension-associated chronic kidney disease. Mol Ther 2023; 31(10): 3084–3103
CrossRef
Google scholar
|
[67] |
Niu CY , Jiang DM , Guo YN , Wang ZL , Sun Q , Wang X , Ling WK , An XG , Ji CW , Li S , Zhao H , Kang B . Spermidine suppresses oxidative stress and ferroptosis by Nrf2/HO-1/GPX4 and Akt/FHC/ACSL4 pathway to alleviate ovarian damage. Life Sci 2023; 332: 122109
CrossRef
Google scholar
|
[68] |
Zheng H , Jiang L , Tsuduki T , Conrad M , Toyokuni S . Embryonal erythropoiesis and aging exploit ferroptosis. Redox Biol 2021; 48: 102175
CrossRef
Google scholar
|
[69] |
Wu ZY , Li D , Tian DY , Liu XJ , Wu ZM . Aspirin mediates protection from diabetic kidney disease by inducing ferroptosis inhibition. PLoS One 2022; 17(12): e0279010
CrossRef
Google scholar
|
[70] |
Amaral EP , Costa DL , Namasivayam S , Riteau N , Kamenyeva O , Mittereder L , Mayer-Barber KD , Andrade BB , Sher A . A major role for ferroptosis in Mycobacterium tuberculosis-induced cell death and tissue necrosis. J Exp Med 2019; 216(3): 556–570
CrossRef
Google scholar
|
[71] |
Kennedy DE , Knight KL . Inhibition of B lymphopoiesis by adipocytes and IL-1-producing myeloid-derived suppressor cells. J Immunol 2015; 195(6): 2666–2674
CrossRef
Google scholar
|
[72] |
Behar SM , Divangahi M , Remold HG . Evasion of innate immunity by Mycobacterium tuberculosis: is death an exit strategy. Nat Rev Microbiol 2010; 8(9): 668–674
CrossRef
Google scholar
|
[73] |
Dar HH , Tyurina YY , Mikulska-Ruminska K , Shrivastava I , Ting HC , Tyurin VA , Krieger J , St Croix CM , Watkins S , Bayir E , Mao G , Armbruster CR , Kapralov A , Wang H , Parsek MR , Anthonymuthu TS , Ogunsola AF , Flitter BA , Freedman CJ , Gaston JR , Holman TR , Pilewski JM , Greenberger JS , Mallampalli RK , Doi Y , Lee JS , Bahar I , Bomberger JM , Bayir H , Kagan VE . Pseudomonas aeruginosa utilizes host polyunsaturated phosphatidylethanolamines to trigger theft-ferroptosis in bronchial epithelium. J Clin Invest 2018; 128(10): 4639–4653
CrossRef
Google scholar
|
[74] |
Luo X , Gong HB , Gao HY , Wu YP , Sun WY , Li ZQ , Wang G , Liu B , Liang L , Kurihara H , Duan WJ , Li YF , He RR . Oxygenated phosphatidylethanolamine navigates phagocytosis of ferroptotic cells by interacting with TLR2. Cell Death Differ 2021; 28(6): 1971–1989
CrossRef
Google scholar
|
[75] |
Cui Y , Zhang Z , Zhou X , Zhao Z , Zhao R , Xu X , Kong X , Ren J , Yao X , Wen Q , Guo F , Gao S , Sun J , Wan Q . Microglia and macrophage exhibit attenuated inflammatory response and ferroptosis resistance after RSL3 stimulation via increasing Nrf2 expression. J Neuroinflammation 2021; 18(1): 249
CrossRef
Google scholar
|
[76] |
Summers C , Rankin SM , Condliffe AM , Singh N , Peters AM , Chilvers ER . Neutrophil kinetics in health and disease. Trends Immunol 2010; 31(8): 318–324
CrossRef
Google scholar
|
[77] |
Hotchkiss RS , Moldawer LL , Opal SM , Reinhart K , Turnbull IR , Vincent JL . Sepsis and septic shock. Nat Rev Dis Primers 2016; 2(1): 16045
CrossRef
Google scholar
|
[78] |
Castanheira FVS , Kubes P . Neutrophils and NETs in modulating acute and chronic inflammation. Blood 2019; 133(20): 2178–2185
CrossRef
Google scholar
|
[79] |
Cai W , Yang T , Liu H , Han LJ , Zhang K , Hu XM , Zhang XJ , Yin KJ , Gao YQ , Bennett MVL , Leak RK , Chen J . Peroxisome proliferator-activated receptor γ (PPARγ): a master gatekeeper in CNS injury and repair. Prog Neurobiol 2018; 163–164: 27–58
CrossRef
Google scholar
|
[80] |
Zhao D , Xue C , Yang Y , Li J , Wang X , Chen Y , Zhang S , Chen Y , Duan Y , Yang X , Han J . Lack of Nogo-B expression ameliorates PPARγ deficiency-aggravated liver fibrosis by regulating TLR4-NF-κB-TNF-α axis and macrophage polarization. Biomed Pharmacother 2022; 153: 113444
CrossRef
Google scholar
|
[81] |
Xue X , Dai T , Chen J , Xu Y , Yang Z , Huang J , Xu W , Li S , Meng Q . PPARγ activation suppresses chondrocyte ferroptosis through mitophagy in osteoarthritis. J Orthop Surg Res 2023; 18(1): 620
CrossRef
Google scholar
|
[82] |
Kruzel ML , Zimecki M , Actor JK . Lactoferrin in a context of inflammation-induced pathology. Front Immunol 2017; 8: 1438
CrossRef
Google scholar
|
[83] |
Wang B , Timilsena YP , Blanch E , Adhikari B . Lactoferrin: structure, function, denaturation and digestion. Crit Rev Food Sci Nutr 2019; 59(4): 580–596
CrossRef
Google scholar
|
[84] |
Actor JK , Hwang SA , Kruzel ML . Lactoferrin as a natural immune modulator. Curr Pharm Des 2009; 15(17): 1956–1973
CrossRef
Google scholar
|
[85] |
Gullotta GS , De Feo D , Friebel E , Semerano A , Scotti GM , Bergamaschi A , Butti E , Brambilla E , Genchi A , Capotondo A , Gallizioli M , Coviello S , Piccoli M , Vigo T , Della Valle P , Ronchi P , Comi G , D’Angelo A , Maugeri N , Roveri L , Uccelli A , Becher B , Martino G , Bacigaluppi M . Age-induced alterations of granulopoiesis generate atypical neutrophils that aggravate stroke pathology. Nat Immunol 2023; 24(6): 925–940
CrossRef
Google scholar
|
[86] |
Wei LY , Liu C , Wang J , Zheng X , Peng Q , Ye QR , Qin ZL , Li ZS , Zhang XY , Wu YG , Wen YQ , Zhang XM , Yan Q , Ma J . Lactoferrin is required for early B cell development in C57BL/6 mice. J Hematol Oncol 2021; 14(1): 58
CrossRef
Google scholar
|
[87] |
Takeda K , Akira S . Toll-like receptors in innate immunity. Int Immunol 2005; 17(1): 1–14
CrossRef
Google scholar
|
[88] |
Li W , Feng G , Gauthier JM , Lokshina I , Higashikubo R , Evans S , Liu X , Hassan A , Tanaka S , Cicka M , Hsiao HM , Ruiz-Perez D , Bredemeyer A , Gross RW , Mann DL , Tyurina YY , Gelman AE , Kagan VE , Linkermann A , Lavine KJ , Kreisel D . Ferroptotic cell death and TLR4/Trif signaling initiate neutrophil recruitment after heart transplantation. J Clin Invest 2019; 129(6): 2293–2304
CrossRef
Google scholar
|
[89] |
Ito F , Kato K , Yanatori I , Murohara T , Toyokuni S . Ferroptosis-dependent extracellular vesicles from macrophage contribute to asbestos-induced mesothelial carcinogenesis through loading ferritin. Redox Biol 2021; 47: 102174
CrossRef
Google scholar
|
[90] |
Murphy KM , Reiner SL . The lineage decisions of helper T cells. Nat Rev Immunol 2002; 2(12): 933–944
CrossRef
Google scholar
|
[91] |
Zhu JF , Yamane H , Paul WE . Differentiation of effector CD4+ T cell populations. Annu Rev Immunol 2010; 28: 445–489
CrossRef
Google scholar
|
[92] |
Mosmann TR , Cherwinski H , Bond MW , Giedlin MA , Coffman RL . Pillars article: two types of murine helper T cell clone. I. Definition according to profiles of lymphokine activities and secreted proteins. J Immunol 2005; 175(1): 5–14
|
[93] |
Park H , Li ZX , Yang XO , Chang SH , Nurieva R , Wang YH , Wang Y , Hood L , Zhu Z , Tian Q , Dong C . A distinct lineage of CD4 T cells regulates tissue inflammation by producing interleukin 17. Nat Immunol 2005; 6(11): 1133–1141
CrossRef
Google scholar
|
[94] |
Acosta-Rodriguez EV , Rivino L , Geginat J , Jarrossay D , Gattorno M , Lanzavecchia A , Sallusto F , Napolitani G . Surface phenotype and antigenic specificity of human interleukin 17-producing T helper memory cells. Nat Immunol 2007; 8(6): 639–646
CrossRef
Google scholar
|
[95] |
Vinuesa CG , Linterman MA , Yu D , MacLennan IC . Follicular helper T cells. Annu Rev Immunol 2016; 34(1): 335–368
CrossRef
Google scholar
|
[96] |
Shaw J , Chakraborty A , Nag A , Chattopadyay A , Dasgupta AK , Bhattacharyya M . Intracellular iron overload leading to DNA damage of lymphocytes and immune dysfunction in thalassemia major patients. Eur J Haematol 2017; 99(5): 399–408
CrossRef
Google scholar
|
[97] |
Wang Z , Yin W , Zhu L , Li J , Yao Y , Chen F , Sun M , Zhang J , Shen N , Song Y , Chang X . Iron drives T helper cell pathogenicity by promoting RNA-binding protein PCBP1-mediated proinflammatory cytokine production. Immunity 2018; 49(1): 80–92.e7
CrossRef
Google scholar
|
[98] |
Matsushita H , Hosoi A , Ueha S , Abe J , Fujieda N , Tomura M , Maekawa R , Matsushima K , Ohara O , Kakimi K . Cytotoxic T lymphocytes block tumor growth both by lytic activity and IFNγ-dependent cell-cycle arrest. Cancer Immunol Res 2015; 3(1): 26–36
CrossRef
Google scholar
|
[99] |
Wei TT , Zhang MY , Zheng XH , Xie TH , Wang W , Zou J , Li Y , Li HY , Cai J , Wang X , Tan J , Yang X , Yao Y , Zhu L . Interferon-γ induces retinal pigment epithelial cell ferroptosis by a JAK1-2/STAT1/SLC7A11 signaling pathway in age-related macular degeneration. FEBS J 2022; 289(7): 1968–1983
CrossRef
Google scholar
|
[100] |
Cao T , Zhou J , Liu Q , Mao T , Chen B , Wu Q , Wang L , Pathak JL , Watanabe N , Li J . Interferon-γ induces salivary gland epithelial cell ferroptosis in Sjogren’s syndrome via JAK/STAT1-mediated inhibition of system Xc. Free Radic Biol Med 2023; 205: 116–128
CrossRef
Google scholar
|
[101] |
Kang K , Park SH , Chen J , Qiao Y , Giannopoulou E , Berg K , Hanidu A , Li J , Nabozny G , Kang K , Park-Min KH , Ivashkiv LB . Interferon-γ represses M2 gene expression in human macrophages by disassembling enhancers bound by the transcription factor MAF. Immunity 2017; 47(2): 235–250.e4
CrossRef
Google scholar
|
[102] |
Ma X , Xiao L , Liu L , Ye L , Su P , Bi E , Wang Q , Yang M , Qian J , Yi Q . CD36-mediated ferroptosis dampens intratumoral CD8+ T cell effector function and impairs their antitumor ability. Cell Metab 2021; 33(5): 1001–1012.e5
CrossRef
Google scholar
|
[103] |
Xu S , Chaudhary O , Rodriguez-Morales P , Sun X , Chen D , Zappasodi R , Xu Z , Pinto AFM , Williams A , Schulze I , Farsakoglu Y , Varanasi SK , Low JS , Tang W , Wang H , McDonald B , Tripple V , Downes M , Evans RM , Abumrad NA , Merghoub T , Wolchok JD , Shokhirev MN , Ho PC , Witztum JL , Emu B , Cui G , Kaech SM . Uptake of oxidized lipids by the scavenger receptor CD36 promotes lipid peroxidation and dysfunction in CD8+ T cells in tumors. Immunity 2021; 54(7): 1561–1577.e7
CrossRef
Google scholar
|
[104] |
Jiang P , Gu SQ , Pan D , Fu JX , Sahu A , Hu XH , Li ZY , Traugh N , Bu X , Li B , Liu J , Freeman GJ , Brown MA , Wucherpfennig KW , Liu XLS . Signatures of T-cell dysfunction and exclusion predict cancer immunotherapy response. Cancer Immunol Res 2019; 7(2): B077
CrossRef
Google scholar
|
[105] |
Hao MQ , Jiang YX , Zhang Y , Yang XY , Han JH . Ferroptosis regulation by methylation in cancer. Bba-Rev Cancer 2023; 1878(6): 188972
CrossRef
Google scholar
|
[106] |
Li S , Huang Y . Ferroptosis: an iron-dependent cell death form linking metabolism, diseases, immune cell and targeted therapy. Clin Transl Oncol 2022; 24(1): 1–12
CrossRef
Google scholar
|
[107] |
Wang D , Fu L , Sun H , Guo L , DuBois RN . Prostaglandin E2 promotes colorectal cancer stem cell expansion and metastasis in mice. Gastroenterology 2015; 149(7): 1884–1895e
CrossRef
Google scholar
|
[108] |
Caronni N , La Terza F , Vittoria FM , Barbiera G , Mezzanzanica L , Cuzzola V , Barresi S , Pellegatta M , Canevazzi P , Dunsmore G , Leonardi C , Montaldo E , Lusito E , Dugnani E , Citro A , Ng MSF , Schiavo Lena M , Drago D , Andolfo A , Brugiapaglia S , Scagliotti A , Mortellaro A , Corbo V , Liu Z , Mondino A , Dellabona P , Piemonti L , Taveggia C , Doglioni C , Cappello P , Novelli F , Iannacone M , Ng LG , Ginhoux F , Crippa S , Falconi M , Bonini C , Naldini L , Genua M , Ostuni R . IL-1β+ macrophages fuel pathogenic inflammation in pancreatic cancer. Nature 2023; 623(7986): 415–422
CrossRef
Google scholar
|
[109] |
Piqueras B , Connolly J , Freitas H , Palucka AK , Banchereau J . Upon viral exposure, myeloid and plasmacytoid dendritic cells produce 3 waves of distinct chemokines to recruit immune effectors. Blood 2006; 107(7): 2613–2618
CrossRef
Google scholar
|
[110] |
Cha JH , Chan LC , Li CW , Hsu JL , Hung MC . Mechanisms controlling PD-L1 expression in cancer. Mol Cell 2019; 76(3): 359–370
CrossRef
Google scholar
|
[111] |
Zhou X , Zou L , Liao H , Luo J , Yang T , Wu J , Chen W , Wu K , Cen S , Lv D , Shu F , Yang Y , Li C , Li B , Mao X . Abrogation of HnRNP L enhances anti-PD-1 therapy efficacy via diminishing PD-L1 and promoting CD8+ T cell-mediated ferroptosis in castration-resistant prostate cancer. Acta Pharm Sin B 2022; 12(2): 692–707
CrossRef
Google scholar
|
[112] |
Juneja VR , McGuire KA , Manguso RT , LaFleur MW , Collins N , Haining WN , Freeman GJ , Sharpe AH . PD-L1 on tumor cells is sufficient for immune evasion in immunogenic tumors and inhibits CD8 T cell cytotoxicity. J Exp Med 2017; 214(4): 895–904
CrossRef
Google scholar
|
[113] |
Drijvers JM , Gillis JE , Muijlwijk T , Nguyen TH , Gaudiano EF , Harris IS , LaFleur MW , Ringel AE , Yao CH , Kurmi K , Juneja VR , Trombley JD , Haigis MC , Sharpe AH . Pharmacologic screening identifies metabolic vulnerabilities of CD8+ T Cells. Cancer Immunol Res 2021; 9(2): 184–199
CrossRef
Google scholar
|
[114] |
Xu C , Sun S , Johnson T , Qi R , Zhang S , Zhang J , Yang K . The glutathione peroxidase Gpx4 prevents lipid peroxidation and ferroptosis to sustain Treg cell activation and suppression of antitumor immunity. Cell Rep 2021; 35(11): 109235
CrossRef
Google scholar
|
[115] |
Wang HP , Franco F , Tsui YC , Xie X , Trefny MP , Zappasodi R , Mohmood SR , Fernández-García J , Tsai CH , Schulze I , Picard F , Meylan E , Silverstein R , Goldberg I , Fendt SM , Wolchok JD , Merghoub T , Jandus C , Zippelius A , Ho PC . CD36-mediated metabolic adaptation supports regulatory T cell survival and function in tumors. Nat Immunol 2020; 21(3): 298–308
CrossRef
Google scholar
|
[116] |
Sharabi A , Tsokos GC . T cell metabolism: new insights in systemic lupus erythematosus pathogenesis and therapy. Nat Rev Rheumatol 2020; 16(2): 100–112
CrossRef
Google scholar
|
[117] |
Michalek RD , Gerriets VA , Jacobs SR , Macintyre AN , MacIver NJ , Mason EF , Sullivan SA , Nichols AG , Rathmell JC . Cutting edge: distinct glycolytic and lipid oxidative metabolic programs are essential for effector and regulatory CD4+ T cell subsets. J Immunol 2011; 186(6): 3299–3303
CrossRef
Google scholar
|
[118] |
Hao F , Tian M , Zhang X , Jin X , Jiang Y , Sun X , Wang Y , Peng P , Liu J , Xia C , Feng Y , Wei M . Butyrate enhances CPT1A activity to promote fatty acid oxidation and iTreg differentiation. Proc Natl Acad Sci USA 2021; 118(22): e2014681118
CrossRef
Google scholar
|
[119] |
Tivol EA , Borriello F , Schweitzer AN , Lynch WP , Bluestone JA , Sharpe AH . Loss of CTLA-4 leads to massive lymphoproliferation and fatal multiorgan tissue destruction, revealing a critical negative regulatory role of CTLA-4. Immunity 1995; 3(5): 541–547
CrossRef
Google scholar
|
[120] |
Berg M , Zavazava N . Regulation of CD28 expression on CD8 T cells by CTLA-4. J Leukoc Biol 2008; 83(4): 853–863
CrossRef
Google scholar
|
[121] |
Wing K , Onishi Y , Prieto-Martin P , Yamaguchi T , Miyara M , Fehervari Z , Nomura T , Sakaguchi S . CTLA-4 control over Foxp3+ regulatory T cell function. Science 2008; 322(5899): 271–275
CrossRef
Google scholar
|
[122] |
Mellor AL , Munn DH . IDO expression by dendritic cells: tolerance and tryptophan catabolism. Nat Rev Immunol 2004; 4(10): 762–774
CrossRef
Google scholar
|
[123] |
Tekguc M , Wing JB , Osaki M , Long J , Sakaguchi S . Treg-expressed CTLA-4 depletes CD80/CD86 by trogocytosis, releasing free PD-L1 on antigen-presenting cells. Proc Natl Acad Sci USA 2021; 118(30): e2023739118
CrossRef
Google scholar
|
[124] |
Walker LSK . EFIS Lecture: understanding the CTLA-4 checkpoint in the maintenance of immune homeostasis. Immunol Lett 2017; 184: 43–50
CrossRef
Google scholar
|
[125] |
Sharma P , Goswami S , Raychaudhuri D , Siddiqui BA , Singh P , Nagarajan A , Liu J , Subudhi SK , Poon C , Gant KL , Herbrich SM , Anandhan S , Islam S , Amit M , Anandappa G , Allison JP . Immune checkpoint therapy-current perspectives and future directions. Cell 2023; 186(8): 1652–1669
CrossRef
Google scholar
|
[126] |
Xu JH , Wu X , Wang XY . Ferroptosis-related genes with regard to CTLA-4 and immune infiltration in hepatocellular carcinoma. Biochem Genet 2023; 61(2): 687–703
CrossRef
Google scholar
|
[127] |
Yu D , Rao S , Tsai LM , Lee SK , He Y , Sutcliffe EL , Srivastava M , Linterman M , Zheng L , Simpson N , Ellyard JI , Parish IA , Ma CS , Li QJ , Parish CR , Mackay CR , Vinuesa CG . The transcriptional repressor Bcl-6 directs T follicular helper cell lineage commitment. Immunity 2009; 31(3): 457–468
CrossRef
Google scholar
|
[128] |
Lee SK , Rigby RJ , Zotos D , Tsai LM , Kawamoto S , Marshall JL , Ramiscal RR , Chan TD , Gatto D , Brink R , Yu D , Fagarasan S , Tarlinton DM , Cunningham AF , Vinuesa CG . B cell priming for extrafollicular antibody responses requires Bcl-6 expression by T cells. J Exp Med 2011; 208(7): 1377–1388
CrossRef
Google scholar
|
[129] |
Klein U , Dalla-Favera R . Germinal centres: role in B-cell physiology and malignancy. Nat Rev Immunol 2008; 8(1): 22–33
CrossRef
Google scholar
|
[130] |
Yao Y , Chen Z , Zhang H , Chen C , Zeng M , Yunis J , Wei Y , Wan Y , Wang N , Zhou M , Qiu C , Zeng Q , Ong HS , Wang H , Makota FV , Yang Y , Yang Z , Wang N , Deng J , Shen C , Xia Y , Yuan L , Lian Z , Deng Y , Guo C , Huang A , Zhou P , Shi H , Zhang W , Yi H , Li D , Xia M , Fu J , Wu N , de Haan JB , Shen N , Zhang W , Liu Z , Yu D . Selenium-GPX4 axis protects follicular helper T cells from ferroptosis. Nat Immunol 2021; 22(9): 1127–1139
CrossRef
Google scholar
|
[131] |
Mougiakakos D , Johansson CC , Jitschin R , Bottcher M , Kiessling R . Increased thioredoxin-1 production in human naturally occurring regulatory T cells confers enhanced tolerance to oxidative stress. Blood 2011; 117(3): 857–861
CrossRef
Google scholar
|
[132] |
van der Windt GJ , Everts B , Chang CH , Curtis JD , Freitas TC , Amiel E , Pearce EJ , Pearce EL . Mitochondrial respiratory capacity is a critical regulator of CD8+ T cell memory development. Immunity 2012; 36(1): 68–78
CrossRef
Google scholar
|
[133] |
Pietrangelo A . Hemochromatosis: an endocrine liver disease. Hepatology 2007; 46(4): 1291–1301
CrossRef
Google scholar
|
[134] |
Maia ML , Pereira CS , Melo G , Pinheiro I , Exley MA , Porto G , Macedo MF . Invariant natural killer T cells are reduced in hereditary hemochromatosis patients. J Clin Immunol 2015; 35(1): 68–74
CrossRef
Google scholar
|
[135] |
Martin F , Kearney JF . B1 cells: similarities and differences with other B cell subsets. Curr Opin Immunol 2001; 13(2): 195–201
CrossRef
Google scholar
|
[136] |
Baumgarth N . The double life of a B-1 cell: self-reactivity selects for protective effector functions. Nat Rev Immunol 2011; 11(1): 34–46
CrossRef
Google scholar
|
[137] |
Allman D , Pillai S . Peripheral B cell subsets. Curr Opin Immunol 2008; 20(2): 149–157
CrossRef
Google scholar
|
[138] |
Hsu MC , Toellner KM , Vinuesa CG , MacLennan ICM . B cell clones that sustain long-term plasmablast growth in T-independent extrafollicular antibody responses. Proc Natl Acad Sci USA 2006; 103(15): 5905–5910
CrossRef
Google scholar
|
[139] |
Dang VD , Hilgenberg E , Ries S , Shen P , Fillatreau S . From the regulatory functions of B cells to the identification of cytokine-producing plasma cell subsets. Curr Opin Immunol 2014; 28: 77–83
CrossRef
Google scholar
|
[140] |
Shapiro-Shelef M , Calame K . Regulation of plasma-cell development. Nat Rev Immunol 2005; 5(3): 230–242
CrossRef
Google scholar
|
[141] |
Gilbert AE , Karagiannis P , Dodev T , Koers A , Lacy K , Josephs DH , Takhar P , Geh JL , Healy C , Harries M , Acland KM , Rudman SM , Beavil RL , Blower PJ , Beavil AJ , Gould HJ , Spicer J , Nestle FO , Karagiannis SN . Monitoring the systemic human memory B cell compartment of melanoma patients for anti-tumor IgG antibodies. PLoS One 2011; 6(4): e19330
CrossRef
Google scholar
|
[142] |
Kurai J , Chikumi H , Hashimoto K , Yamaguchi K , Yamasaki A , Sako T , Touge H , Makino H , Takata M , Miyata M , Nakamoto M , Burioka N , Shimizu E . Antibody-dependent cellular cytotoxicity mediated by cetuximab against lung cancer cell lines. Clin Cancer Res 2007; 13(5): 1552–1561
CrossRef
Google scholar
|
[143] |
Shi JY , Gao Q , Wang ZC , Zhou J , Wang XY , Min ZH , Shi YH , Shi GM , Ding ZB , Ke AW , Dai Z , Qiu SJ , Song K , Fan J . Margin-infiltrating CD20+ B cells display an atypical memory phenotype and correlate with favorable prognosis in hepatocellular carcinoma. Clin Cancer Res 2013; 19(21): 5994–6005
CrossRef
Google scholar
|
[144] |
Mlynarczyk C , Teater M , Pae J , Chin CR , Wang L , Arulraj T , Barisic D , Papin A , Hoehn KB , Kots E , Ersching J , Bandyopadhyay A , Barin E , Poh HX , Evans CM , Chadburn A , Chen Z , Shen H , Isles HM , Pelzer B , Tsialta I , Doane AS , Geng H , Rehman MH , Melnick J , Morgan W , Nguyen DTT , Elemento O , Kharas MG , Jaffrey SR , Scott DW , Khelashvili G , Meyer-Hermann M , Victora GD , Melnick A . BTG1 mutation yields supercompetitive B cells primed for malignant transformation. Science 2023; 379(6629): eabj7412
CrossRef
Google scholar
|
[145] |
Cho IJ , Kim D , Kim EO , Jegal KH , Kim JK , Park SM , Zhao R , Ki SH , Kim SC , Ku SK . Cystine and methionine deficiency promotes ferroptosis by inducing B-cell translocation gene 1. Antioxidants 2021; 10(10): 1543
CrossRef
Google scholar
|
[146] |
Falk MH , Meier T , Issels RD , Brielmeier M , Scheffer B , Bornkamm GW . Apoptosis in Burkitt lymphoma cells is prevented by promotion of cysteine uptake. Int J Cancer 1998; 75(4): 620–625
CrossRef
Google scholar
|
[147] |
Han J , Back SH , Hur J , Lin YH , Gildersleeve R , Shan J , Yuan CL , Krokowski D , Wang S , Hatzoglou M , Kilberg MS , Sartor MA , Kaufman RJ . ER-stress-induced transcriptional regulation increases protein synthesis leading to cell death. Nat Cell Biol 2013; 15(5): 481–490
CrossRef
Google scholar
|
[148] |
Yuniati L , van der Meer LT , Tijchon E , Schenau DV , van Emst L , Levers M , Palit SAL , Rodenbach C , Poelmans G , Hoogerbrugge PM , Shan JX , Kilberg MS , Scheijen B , van Leeuwen FN . Tumor suppressor BTG1 promotes PRMT1-mediated ATF4 function in response to cellular stress. Oncotarget 2016; 7(3): 3128–3143
CrossRef
Google scholar
|
[149] |
Zhang W , Wang J , Liu Z , Zhang L , Jing J , Han L , Gao A . Iron-dependent ferroptosis participated in benzene-induced anemia of inflammation through IRP1-DHODH-ALOX12 axis. Free Radic Biol Med 2022; 193(Pt 1): 122–133
CrossRef
Google scholar
|
[150] |
Clarke AJ , Riffelmacher T , Braas D , Cornall RJ , Simon AK . B1a B cells require autophagy for metabolic homeostasis and self-renewal. J Exp Med 2018; 215(2): 399–413
CrossRef
Google scholar
|
[151] |
Muri J , Thut H , Bornkamm GW , Kopf M . B1 and marginal zone B cells but not follicular B2 cells require Gpx4 to prevent lipid peroxidation and ferroptosis. Cell Rep 2019; 29(9): 2731–2744.e4
CrossRef
Google scholar
|
[152] |
Vivier E , Tomasello E , Baratin M , Walzer T , Ugolini S . Functions of natural killer cells. Nat Immunol 2008; 9(5): 503–510
CrossRef
Google scholar
|
[153] |
Bodduluru LN , Kasala ER , Madhana RMR , Sriram CS . Natural killer cells: the journey from puzzles in biology to treatment of cancer. Cancer Lett 2015; 357(2): 454–467
CrossRef
Google scholar
|
[154] |
French AR , Yokoyama WM . Natural killer cells and viral infections. Curr Opin Immunol 2003; 15(1): 45–51
CrossRef
Google scholar
|
[155] |
Cooper MA , Fehniger TA , Caligiuri MA . The biology of human natural killer-cell subsets. Trends Immunol 2001; 22(11): 633–640
CrossRef
Google scholar
|
[156] |
Jewett A , Kos J , Fong Y , Ko MW , Safaei T , Perisic Nanut M , Kaur K . NK cells shape pancreatic and oral tumor microenvironments; role in inhibition of tumor growth and metastasis. Semin Cancer Biol 2018; 53: 178–188
CrossRef
Google scholar
|
[157] |
Biron CA , Brossay L . NK cells and NKT cells in innate defense against viral infections. Curr Opin Immunol 2001; 13(4): 458–464
CrossRef
Google scholar
|
[158] |
Cózar B , Greppi M , Carpentier S , Narni-Mancinelli E , Chiossone L , Vivier E . Tumor-infiltrating natural killer cells. Cancer Discov 2021; 11(1): 34–44
CrossRef
Google scholar
|
[159] |
Crome SQ , Nguyen LT , Lopez-Verges S , Yang SYC , Martin B , Yam JY , Johnson DJ , Nie J , Pniak M , Yen PH , Milea A , Sowamber R , Katz SR , Bernardini MQ , Clarke BA , Shaw PA , Lang PA , Berman HK , Pugh TJ , Lanier LL , Ohashi PS . A distinct innate lymphoid cell population regulates tumor-associated T cells. Nat Med 2017; 23(3): 368–375
CrossRef
Google scholar
|
[160] |
Bruno A , Focaccetti C , Pagani A , Imperatori AS , Spagnoletti M , Rotolo N , Cantelmo AR , Franzi F , Capella C , Ferlazzo G , Mortara L , Albini A , Noonan DM . The Proangiogenic phenotype of natural killer cells in patients with non-small cell lung cancer. Neoplasia 2013; 15(2): 133–142
CrossRef
Google scholar
|
[161] |
Levi I , Amsalem H , Nissan A , Darash-Yahana M , Peretz T , Mandelboim O , Rachmilewitz J . Characterization of tumor infiltrating natural killer cell subset. Oncotarget 2015; 6(15): 13835–13843
CrossRef
Google scholar
|
[162] |
Kalinski P . Regulation of immune responses by prostaglandin E2. J Immunol 2012; 188(1): 21–28
CrossRef
Google scholar
|
[163] |
Böttcher JP , Bonavita E , Chakravarty P , Blees H , Cabeza-Cabrerizo M , Sammicheli S , Rogers NC , Sahai E , Zelenay S , Reis e Sousa C . NK cells stimulate recruitment of cDC1 into the tumor microenvironment promoting cancer immune control. Cell 2018; 172(5): 1022–1037.e14
CrossRef
Google scholar
|
[164] |
Yao L , Hou J , Wu X , Lu Y , Jin Z , Yu Z , Yu B , Li J , Yang Z , Li C , Yan M , Zhu Z , Liu B , Yan C , Su L . Cancer-associated fibroblasts impair the cytotoxic function of NK cells in gastric cancer by inducing ferroptosis via iron regulation. Redox Biol 2023; 67: 102923
CrossRef
Google scholar
|
[165] |
M. Merad , P. Sathe , J. Helft , J. Miller , A. Mortha . The dendritic cell lineage: ontogeny and function of dendritic cells and their subsets in the steady state and the inflamed setting. Annu Rev Immunol 2013; 31: 563–604
CrossRef
Google scholar
|
[166] |
Henrickson SE , Perro M , Loughhead SM , Senman B , Stutte S , Quigley M , Alexe G , Iannacone M , Flynn MP , Omid S , Jesneck JL , Imam S , Mempel TR , Mazo IB , Haining WN , von Andrian UH . Antigen availability determines CD8+ T cell-dendritic cell interaction kinetics and memory fate decisions. Immunity 2013; 39(3): 496–507
CrossRef
Google scholar
|
[167] |
Cabeza-Cabrerizo M , Cardoso A , Minutti CM , da Costa MP , Sousa CRE . Dendritic cells revisited. Annu Rev Immunol 2021; 39: 131–166
CrossRef
Google scholar
|
[168] |
Cubillos-Ruiz JR , Silberman PC , Rutkowski MR , Chopra S , Perales-Puchalt A , Song M , Zhang S , Bettigole SE , Gupta D , Holcomb K , Ellenson LH , Caputo T , Lee AH , Conejo-Garcia JR , Glimcher LH . ER stress sensor XBP1 controls anti-tumor immunity by disrupting dendritic cell homeostasis. Cell 2015; 161(7): 1527–1538
CrossRef
Google scholar
|
[169] |
Liu PF , Feng YT , Li HW , Chen X , Wang GS , Xu SY , Li YL , Zhao L . Ferrostatin-1 alleviates lipopolysaccharide-induced acute lung injury via inhibiting ferroptosis. Cell Mol Biol Lett 2020; 25(1): 10
CrossRef
Google scholar
|
[170] |
Chen X , Huang J , Yu CH , Liu J , Gao WL , Li JB , Song XX , Zhou ZA , Li CF , Xie YC , Kroemer G , Liu JB , Tang DL , Kang R . A noncanonical function of EIF4E limits ALDH1B1 activity and increases susceptibility to ferroptosis. Nat Commun 2022; 13(1): 6318
CrossRef
Google scholar
|
[171] |
Efimova I , Catanzaro E , Van der Meeren L , Turubanova VD , Hammad H , Mishchenko TA , Vedunova MV , Fimognari C , Bachert C , Coppieters F , Lefever S , Skirtach AG , Krysko O , Krysko DV . Vaccination with early ferroptotic cancer cells induces efficient antitumor immunity. J Immunother Cancer 2020; 8(2): e001369
CrossRef
Google scholar
|
[172] |
Förster R , Schubel A , Breitfeld D , Kremmer E , Renner-Muller I , Wolf E , Lipp M . CCR7 coordinates the primary immune response by establishing functional microenvironments in secondary lymphoid organs. Cell 1999; 99(1): 23–33
CrossRef
Google scholar
|
[173] |
Wiernicki B , Maschalidi S , Pinney J , Adjemian S , Vanden Berghe T , Ravichandran KS , Vandenabeele P . Cancer cells dying from ferroptosis impede dendritic cell-mediated anti-tumor immunity. Nat Commun 2022; 13(1): 3676
CrossRef
Google scholar
|
[174] |
Yan HF , Zou T , Tuo QZ , Xu S , Li H , Belaidi AA , Lei P . Ferroptosis: mechanisms and links with diseases. Signal Transduct Target Ther 2021; 6(1): 49
CrossRef
Google scholar
|
[175] |
Zhu H , Santo A , Jia Z , Li Y . GPx4 in bacterial infection and polymicrobial sepsis: involvement of ferroptosis and pyroptosis. Reactive Oxygen Species 2019; 7(21): 154–160
CrossRef
Google scholar
|
[176] |
Park I , Kim M , Choe K , Song E , Seo H , Hwang Y , Ahn J , Lee SH , Lee JH , Jo YH , Kim K , Koh GY , Kim P . Neutrophils disturb pulmonary microcirculation in sepsis-induced acute lung injury. Eur Respir J 2019; 53(3): 1800786
CrossRef
Google scholar
|
[177] |
Pastille E , Didovic S , Brauckmann D , Rani M , Agrawal H , Schade FU , Zhang Y , Flohé SB . Modulation of dendritic cell differentiation in the bone marrow mediates sustained immunosuppression after polymicrobial sepsis. J Immunol 2011; 186(2): 977–986
CrossRef
Google scholar
|
[178] |
Wenzel SE , Tyurina YY , Zhao J , St Croix CM , Dar HH , Mao G , Tyurin VA , Anthonymuthu TS , Kapralov AA , Amoscato AA , Mikulska-Ruminska K , Shrivastava IH , Kenny EM , Yang Q , Rosenbaum JC , Sparvero LJ , Emlet DR , Wen X , Minami Y , Qu F , Watkins SC , Holman TR , VanDemark AP , Kellum JA , Bahar I , Bayir H , Kagan VE . PEBP1 wardens ferroptosis by enabling lipoxygenase generation of lipid death signals. Cell 2017; 171(3): 628–641.e26
CrossRef
Google scholar
|
[179] |
Liu Y , Zhao Y , Li K , Miao S , Xu Y , Zhao J . WD-40 repeat protein 26 protects against oxidative stress-induced injury in astrocytes via Nrf2/HO-1 pathways. Mol Biol Rep 2022; 49(2): 1045–1056
CrossRef
Google scholar
|
[180] |
Hu HL , Chen YQ , Jing LL , Zhai CL , Shen L . The link between ferroptosis and cardiovascular diseases: a novel target for treatment. Front Cardiovasc Med 2021; 8: 710963
CrossRef
Google scholar
|
[181] |
Bai T , Li MX , Liu YF , Qiao ZT , Wang ZW . Inhibition of ferroptosis alleviates atherosclerosis through attenuating lipid peroxidation and endothelial dysfunction in mouse aortic endothelial cell. Free Radic Biol Med 2020; 160: 92–102
CrossRef
Google scholar
|
[182] |
Zhou YQ , Zhou HX , Hua L , Hou C , Jia QW , Chen JX , Zhang S , Wang YJ , He S , Jia EZ . Verification of ferroptosis and pyroptosis and identification of PTGS2 as the hub gene in human coronary artery atherosclerosis. Free Radic Biol Med 2021; 171: 55–68
CrossRef
Google scholar
|
[183] |
Lin X , Shan SK , Xu F , Zhong JY , Wu F , Duan JY , Guo B , Li FXZ , Wang Y , Zheng MH , Xu QS , Lei LM , Ou-Yang WL , Wu YY , Tang KX , Ullah MHE , Liao XB , Yuan LQ . The crosstalk between endothelial cells and vascular smooth muscle cells aggravates high phosphorus-induced arterial calcification. Cell Death Dis 2022; 13(7): 650
CrossRef
Google scholar
|
[184] |
Broder A , Chan JJ , Putterman C . Dendritic cells: an important link between antiphospholipid antibodies, endothelial dysfunction, and atherosclerosis in autoimmune and non-autoimmune diseases. Clin Immunol 2013; 146(3): 197–206
CrossRef
Google scholar
|
[185] |
Talmadge JE , Gabrilovich DI . History of myeloid-derived suppressor cells. Nat Rev Cancer 2013; 13(10): 739–752
CrossRef
Google scholar
|
[186] |
Jordan KR , Kapoor P , Spongberg E , Tobin RP , Gao DX , Borges VF , McCarter MD . Immunosuppressive myeloid-derived suppressor cells are increased in splenocytes from cancer patients. Cancer Immunol Immunother 2017; 66(4): 503–513
CrossRef
Google scholar
|
[187] |
Condamine T , Gabrilovich DI . Molecular mechanisms regulating myeloid-derived suppressor cell differentiation and function. Trends Immunol 2011; 32(1): 19–25
CrossRef
Google scholar
|
[188] |
Trigunaite A , Khan A , Der E , Song A , Varikuti S , Jorgensen TN . Gr-1(high) CD11b+ cells suppress B cell differentiation and lupus-like disease in lupus-prone male mice. Arthritis Rheum 2013; 65(9): 2392–2402
CrossRef
Google scholar
|
[189] |
Ji J , Xu J , Zhao S , Liu F , Qi J , Song Y , Ren J , Wang T , Dou H , Hou Y . Myeloid-derived suppressor cells contribute to systemic lupus erythaematosus by regulating differentiation of Th17 cells and Tregs. Clin Sci (Lond) 2016; 130(16): 1453–1467
CrossRef
Google scholar
|
[190] |
Wu H , Zhen Y , Ma Z , Li H , Yu J , Xu ZG , Wang XY , Yi H , Yang YG . Arginase-1-dependent promotion of TH17 differentiation and disease progression by MDSCs in systemic lupus erythematosus. Sci Transl Med 2016; 8(331): 331ra340
CrossRef
Google scholar
|
[191] |
Sobo-Vujanovic A , Vujanovic L , DeLeo AB , Concha-Benavente F , Ferris RL , Lin Y , Vujanovic NL . Inhibition of soluble tumor necrosis factor prevents chemically induced carcinogenesis in mice. Cancer Immunol Res 2016; 4(5): 441–451
CrossRef
Google scholar
|
[192] |
Lin H , Wei S , Hurt EM , Green MD , Zhao L , Vatan L , Szeliga W , Herbst R , Harms PW , Fecher LA , Vats P , Chinnaiyan AM , Lao CD , Lawrence TS , Wicha M , Hamanishi J , Mandai M , Kryczek I , Zou W . Host expression of PD-L1 determines efficacy of PD-L1 pathway blockade-mediated tumor regression. J Clin Invest 2018; 128(4): 1708
CrossRef
Google scholar
|
[193] |
Lu C , Redd PS , Lee JR , Savage N , Liu K . The expression profiles and regulation of PD-L1 in tumor-induced myeloid-derived suppressor cells. OncoImmunology 2016; 5(12): e1247135
CrossRef
Google scholar
|
[194] |
Golstein P , Griffiths GM . An early history of T cell-mediated cytotoxicity. Nat Rev Immunol 2018; 18(8): 527–535
CrossRef
Google scholar
|
[195] |
Zhu H , Klement JD , Lu C , Redd PS , Yang D , Smith AD , Poschel DB , Zou J , Liu D , Wang PG , Ostrov D , Coant N , Hannun YA , Colby AH , Grinstaff MW , Liu K . Asah2 represses the p53-Hmox1 axis to protect myeloid-derived suppressor cells from ferroptosis. J Immunol 2021; 206(6): 1395–1404
CrossRef
Google scholar
|
[196] |
Srivastava MK , Sinha P , Clements VK , Rodriguez P , Ostrand-Rosenberg S . Myeloid-derived suppressor cells inhibit T-cell activation by depleting cystine and cysteine. Cancer Res 2010; 70(1): 68–77
CrossRef
Google scholar
|
[197] |
Gabrilovich DI , Nagaraj S . Myeloid-derived suppressor cells as regulators of the immune system. Nat Rev Immunol 2009; 9(3): 162–174
CrossRef
Google scholar
|
[198] |
Youn JI , Gabrilovich DI . The biology of myeloid-derived suppressor cells: the blessing and the curse of morphological and functional heterogeneity. Eur J Immunol 2010; 40(11): 2969–2975
CrossRef
Google scholar
|
[199] |
Gabrilovich DI , Bronte V , Chen SH , Colombo MP , Ochoa A , Ostrand-Rosenberg S , Schreiber H . The terminology issue for myeloid-derived suppressor cells. Cancer Res 2007; 67(1): 425
CrossRef
Google scholar
|
[200] |
Ostrand-Rosenberg S , Beury DW , Parker KH , Horn LA . Survival of the fittest: how myeloid-derived suppressor cells survive in the inhospitable tumor microenvironment. Cancer Immunol Immunother 2020; 69(2): 215–221
CrossRef
Google scholar
|
[201] |
Kim R , Hashimoto A , Markosyan N , Tyurin VA , Tyurina YY , Kar G , Fu SY , Sehgal M , Garcia-Gerique L , Kossenkov A , Gebregziabher BA , Tobias JW , Hicks K , Halpin RA , Cvetesic N , Deng H , Donthireddy L , Greenberg A , Nam B , Vonderheide RH , Nefedova Y , Kagan VE , Gabrilovich DI . Ferroptosis of tumour neutrophils causes immune suppression in cancer. Nature 2022; 612(7939): 338–346
CrossRef
Google scholar
|
[202] |
Veglia F , Perego M , Gabrilovich D . Myeloid-derived suppressor cells coming of age. Nat Immunol 2018; 19(2): 108–119
CrossRef
Google scholar
|
[203] |
Cheng Q , Mou LJ , Su WJ , Chen X , Zhang T , Xie YF , Xue J , Lee PY , Wu HX , Du Y . Ferroptosis of CD163+ tissue-infiltrating macrophages and CD10+ PC+ epithelial cells in lupus nephritis. Front Immunol 2023; 14: 1171318
CrossRef
Google scholar
|
[204] |
Zhang D , Xu J , Ren J , Ding L , Shi G , Li D , Dou H , Hou Y . Myeloid-derived suppressor cells induce podocyte injury through increasing reactive oxygen species in lupus nephritis. Front Immunol 2018; 9: 1443
CrossRef
Google scholar
|
[205] |
Yee PP , Wei Y , Kim SY , Lu T , Chih SY , Lawson C , Tang M , Liu Z , Anderson B , Thamburaj K , Young MM , Aregawi DG , Glantz MJ , Zacharia BE , Specht CS , Wang HG , Li W . Neutrophil-induced ferroptosis promotes tumor necrosis in glioblastoma progression. Nat Commun 2020; 11(1): 5424
CrossRef
Google scholar
|
[206] |
Wang D , Li X , Jiao D , Cai Y , Qian L , Shen Y , Lu Y , Zhou Y , Fu B , Sun R , Tian Z , Zheng X , Wei H . LCN2 secreted by tissue-infiltrating neutrophils induces the ferroptosis and wasting of adipose and muscle tissues in lung cancer cachexia. J Hematol Oncol 2023; 16(1): 30
CrossRef
Google scholar
|
[207] |
Zhang H , Liu J , Zhou Y , Qu M , Wang Y , Guo K , Shen R , Sun Z , Cata JP , Yang S , Chen W , Miao C . Neutrophil extracellular traps mediate m6A modification and regulates sepsis-associated acute lung injury by activating ferroptosis in alveolar epithelial cells. Int J Biol Sci 2022; 18(8): 3337–3357
CrossRef
Google scholar
|
[208] |
C . Mauri, A. Bosma. Immune regulatory function of B cells. Annu Rev Immunol 2012; 30: 221–241
CrossRef
Google scholar
|
[209] |
Carter NA , Vasconcellos R , Rosser EC , Tulone C , Muñoz-Suano A , Kamanaka M , Ehrenstein MR , Flavell RA , Mauri C . Mice lacking endogenous IL-10-producing regulatory B cells develop exacerbated disease and present with an increased frequency of Th1/Th17 but a decrease in regulatory T cells. J Immunol 2011; 186(10): 5569–5579
CrossRef
Google scholar
|
[210] |
Flores-Borja F , Bosma A , Ng D , Reddy V , Ehrenstein MR , Isenberg DA , Mauri C . CD19+ CD24hiCD38hi B cells maintain regulatory T cells while limiting TH1 and TH17 differentiation. Sci Transl Med 2013; 5(173): 173ra123
CrossRef
Google scholar
|
[211] |
Carter NA , Rosser EC , Mauri C . Interleukin-10 produced by B cells is crucial for the suppression of Th17/Th1 responses, induction of T regulatory type 1 cells and reduction of collagen-induced arthritis. Arthritis Res Ther 2012; 14(1): R32
CrossRef
Google scholar
|
[212] |
Matsumoto M , Baba A , Yokota T , Nishikawa H , Ohkawa Y , Kayama H , Kallies A , Nutt SL , Sakaguchi S , Takeda K , Kurosaki T , Baba Y . Interleukin-10-producing plasmablasts exert regulatory function in autoimmune inflammation. Immunity 2014; 41(6): 1040–1051
CrossRef
Google scholar
|
[213] |
Sun CM , Deriaud E , Leclerc C , Lo-Man R . Upon TLR9 signaling, CD5 B cells control the IL-12-dependent Th1-priming capacity of neonatal DCs. Immunity 2005; 22(4): 467–477
CrossRef
Google scholar
|
[214] |
Tian J , Zekzer D , Hanssen L , Lu YX , Olcott A , Kaufman DL . Lipopolysaccharide-activated B cells down-regulate Th1 immunity and prevent autoimmune diabetes in nonobese diabetic mice. J Immunol 2001; 167(2): 1081–1089
CrossRef
Google scholar
|
[215] |
Parekh VV , Prasad DVR , Banerjee PP , Joshi BN , Kumar A , Mishra GC . B cells activated by lipopolysaccharide, but not by anti-Ig and anti-CD40 antibody, induce anergy in CD8+ T cells: role of TGF-β1. J Immunol 2003; 170(12): 5897–5911
CrossRef
Google scholar
|
[216] |
Pei Z , Qin YF , Fu XH , Yang FF , Huo F , Liang X , Wang SJ , Cui HY , Lin P , Zhou G , Yan JN , Wu J , Chen ZN , Zhu P . Inhibition of ferroptosis and iron accumulation alleviates pulmonary fibrosis in a bleomycin model. Redox Biol 2022; 57: 102509
CrossRef
Google scholar
|
/
〈 | 〉 |