The novel anthraquinone compound Kanglexin prevents endothelial-to-mesenchymal transition in atherosclerosis by activating FGFR1 and suppressing integrin β1/TGFβ signaling
Yixiu Zhao, Zhiqi Wang, Jing Ren, Huan Chen, Jia Zhu, Yue Zhang, Jiangfei Zheng, Shifeng Cao, Yanxi Li, Xue Liu, Na An, Tao Ban, Baofeng Yang, Yan Zhang
The novel anthraquinone compound Kanglexin prevents endothelial-to-mesenchymal transition in atherosclerosis by activating FGFR1 and suppressing integrin β1/TGFβ signaling
Endothelial-mesenchymal transition (EndMT) disrupts vascular endothelial integrity and induces atherosclerosis. Active integrin β1 plays a pivotal role in promoting EndMT by facilitating TGFβ/Smad signaling in endothelial cells. Here, we report a novel anthraquinone compound, Kanglexin (KLX), which prevented EndMT and atherosclerosis by activating MAP4K4 and suppressing integrin β1/TGFβ signaling. First, KLX effectively counteracted the EndMT phenotype and mitigated the dysregulation of endothelial and mesenchymal markers induced by TGFβ1. Second, KLX suppressed TGFβ/Smad signaling by inactivating integrin β1 and inhibiting the polymerization of TGFβR1/2. The underlying mechanism involved the activation of FGFR1 by KLX, resulting in the phosphorylation of MAP4K4 and Moesin, which led to integrin β1 inactivation by displacing Talin from its β-tail. Oral administration of KLX effectively stimulated endothelial FGFR1 and inhibited integrin β1, thereby preventing vascular EndMT and attenuating plaque formation and progression in the aorta of atherosclerotic Apoe−/− mice. Notably, KLX (20 mg/kg) exhibited superior efficacy compared with atorvastatin, a clinically approved lipid-regulating drug. In conclusion, KLX exhibited potential in ameliorating EndMT and retarding the formation and progression of atherosclerosis through direct activation of FGFR1. Therefore, KLX is a promising candidate for the treatment of atherosclerosis to mitigate vascular endothelial injury.
atherosclerosis / EndMT / integrin β1 / FGFR1 / MAP4K4 / Kanglexin
Yixiu Zhao et al
[1] |
Libby P. The changing landscape of atherosclerosis. Nature 2021; 592(7855): 524–533
CrossRef
Google scholar
|
[2] |
Burnett JR, Hooper AJ, Hegele RA. Remnant cholesterol and atherosclerotic cardiovascular disease risk. J Am Coll Cardiol 2020; 76(23): 2736–2739
CrossRef
Google scholar
|
[3] |
Man JJ, Beckman JA, Jaffe IZ. Sex as a biological variable in atherosclerosis. Circ Res 2020; 126(9): 1297–1319
CrossRef
Google scholar
|
[4] |
King DR, Sedovy MW, Eaton X, Dunaway LS, Good ME, Isakson BE, Johnstone SR. Cell-to-cell communication in the resistance vasculature. Compr Physiol 2022; 12(4): 3833–3867
CrossRef
Google scholar
|
[5] |
Fan Y, Zhang Y, Zhao H, Liu W, Xu W, Jiang L, Xu R, Zheng Y, Tang X, Li X, Zhao L, Liu X, Hong Y, Lin Y, Chen H, Zhang Y. lncR-GAS5 upregulates the splicing factor SRSF10 to impair endothelial autophagy, leading to atherogenesis. Front Med 2023; 17(2): 317–329
CrossRef
Google scholar
|
[6] |
Liang G, Wang S, Shao J, Jin YJ, Xu L, Yan Y, Günther S, Wang L, Offermanns S. Tenascin-X mediates flow-induced suppression of EndMT and atherosclerosis. Circ Res 2022; 130(11): 1647–1659
CrossRef
Google scholar
|
[7] |
Huang Q, Gan Y, Yu Z, Wu H, Zhong Z. Endothelial to mesenchymal transition: an insight in atherosclerosis. Front Cardiovasc Med 2021; 8: 734550
CrossRef
Google scholar
|
[8] |
Mehta V, Pang KL, Givens CS, Chen Z, Huang J, Sweet DT, Jo H, Reader JS, Tzima E. Mechanical forces regulate endothelial-to-mesenchymal transition and atherosclerosis via an Alk5-Shc mechanotransduction pathway. Sci Adv 2021; 7(28): eabg5060
CrossRef
Google scholar
|
[9] |
Ciszewski WM, Wawro ME, Sacewicz-Hofman I, Sobierajska K. Cytoskeleton reorganization in EndMT—the role in cancer and fibrotic diseases. Int J Mol Sci 2021; 22(21): 11607
CrossRef
Google scholar
|
[10] |
Yang Z, He LJ, Sun SR. Role of endothelial cells in renal fibrosis. Adv Exp Med Biol 2019; 1165: 145–163
CrossRef
Google scholar
|
[11] |
Zhang L, He J, Wang J, Liu J, Chen Z, Deng B, Wei L, Wu H, Liang B, Li H, Huang Y, Lu L, Yang Z, Xian S, Wang L. Knockout RAGE alleviates cardiac fibrosis through repressing endothelial-to-mesenchymal transition (EndMT) mediated by autophagy. Cell Death Dis 2021; 12(5): 470
CrossRef
Google scholar
|
[12] |
Gorelova A, Berman M, Al Ghouleh I. Endothelial-to-mesenchymal transition in pulmonary arterial hypertension. Antioxid Redox Signal 2021; 34(12): 891–914
CrossRef
Google scholar
|
[13] |
Clere N, Renault S, Corre I. Endothelial-to-mesenchymal transition in cancer. Front Cell Dev Biol 2020; 8: 747
CrossRef
Google scholar
|
[14] |
Sabbineni H, Verma A, Somanath PR. Isoform-specific effects of transforming growth factor β on endothelial-to-mesenchymal transition. J Cell Physiol 2018; 233(11): 8418–8428
CrossRef
Google scholar
|
[15] |
Hong L, Li F, Tang C, Li L, Sun L, Li X, Zhu L. Semaphorin 7A promotes endothelial to mesenchymal transition through ATF3 mediated TGFβ2/Smad signaling. Cell Death Dis 2020; 11(8): 695
CrossRef
Google scholar
|
[16] |
Song S, Liu L, Yu Y, Zhang R, Li Y, Cao W, Xiao Y, Fang G, Li Z, Wang X, Wang Q, Zhao X, Chen L, Wang Y, Wang Q. Inhibition of BRD4 attenuates transverse aortic constriction- and TGFβ-induced endothelial-mesenchymal transition and cardiac fibrosis. J Mol Cell Cardiol 2019; 127: 83–96
CrossRef
Google scholar
|
[17] |
Hiepen C, Jatzlau J, Hildebrandt S, Kampfrath B, Goktas M, Murgai A, Cuellar Camacho JL, Haag R, Ruppert C, Sengle G, Cavalcanti-Adam EA, Blank KG, Knaus P. BMPR2 acts as a gatekeeper to protect endothelial cells from increased TGFβ responses and altered cell mechanics. PLoS Biol 2019; 17(12): e3000557
CrossRef
Google scholar
|
[18] |
Shi S, Prakash Srivastava S, Kanasaki M, He J, Kitada M, Nagai T, Nitta K, Takagi S, Kanasaki K, Koya D. Interactions of DPP-4 and integrin β1 influences endothelial-to-mesenchymal transition. Kidney Int 2015; 88(3): 479–489
CrossRef
Google scholar
|
[19] |
Vitorino P, Yeung S, Crow A, Bakke J, Smyczek T, West K, McNamara E, Eastham-Anderson J, Gould S, Harris SF, Ndubaku C, Ye W. MAP4K4 regulates integrin-FERM binding to control endothelial cell motility. Nature 2015; 519(7544): 425–430
CrossRef
Google scholar
|
[20] |
Li J, Shi S, Srivastava SP, Kitada M, Nagai T, Nitta K, Kohno M, Kanasaki K, Koya D. FGFR1 is critical for the anti-endothelial mesenchymal transition effect of N-acetyl-seryl-aspartyl-lysyl-proline via induction of the MAP4K4 pathway. Cell Death Dis 2017; 8(8): e2965
CrossRef
Google scholar
|
[21] |
Chen PY, Qin L, Barnes C, Charisse K, Yi T, Zhang X, Ali R, Medina PP, Yu J, Slack FJ, Anderson DG, Kotelianski V, Wang F, Tellides G, Simons M. FGF regulates TGF-β signaling and endothelial-to-mesenchymal transition via control of let-7 miRNA expression. Cell Rep 2012; 2(6): 1684–1696
CrossRef
Google scholar
|
[22] |
Chen PY, Qin L, Tellides G, Simons M. Fibroblast growth factor receptor 1 is a key inhibitor of TGFβ signaling in the endothelium. Sci Signal 2014; 7(344): ra90
CrossRef
Google scholar
|
[23] |
Chen PY, Qin L, Baeyens N, Li G, Afolabi T, Budatha M, Tellides G, Schwartz MA, Simons M. Endothelial-to-mesenchymal transition drives atherosclerosis progression. J Clin Invest 2015; 125(12): 4514–4528
CrossRef
Google scholar
|
[24] |
Li XK. The FGF metabolic axis. Front Med 2019; 13(5): 511–530
CrossRef
Google scholar
|
[25] |
Zhao Y, Zhu J, Liang H, Yang S, Zhang Y, Han W, Chen C, Cao N, Aruhan P, Liang X, Du J, Huang J, Wang Y, Zhang B. Kang Le Xin reduces blood pressure through inducing endothelial-dependent vasodilation by activating the AMPK-eNOS pathway. Front Pharmacol 2020; 10: 1548
CrossRef
Google scholar
|
[26] |
Zhao Y, Wang X, Yang S, Song X, Sun N, Chen C, Zhang Y, Yao D, Huang J, Wang J, Zhang Y, Yang B. Kanglexin accelerates diabetic wound healing by promoting angiogenesis via FGFR1/ERK signaling. Biomed Pharmacother 2020; 132: 110933
CrossRef
Google scholar
|
[27] |
Li X, Hu X, Pan T, Dong L, Ding L, Wang Z, Song R, Wang X, Wang N, Zhang Y, Wang J, Yang B. Kanglexin, a new anthraquinone compound, attenuates lipid accumulation by activating the AMPK/SREBP-2/PCSK9/LDLR signalling pathway. Biomed Pharmacother 2021; 133: 110802
CrossRef
Google scholar
|
[28] |
Chen Y, Zou H, Lu H, Xiang H, Chen S. Research progress of endothelial-mesenchymal transition in diabetic kidney disease. J Cell Mol Med 2022; 26(12): 3313–3322
CrossRef
Google scholar
|
[29] |
Shu Y, Liu Y, Li X, Gao X, Zhang NN, Lv QQ, Liu J, Li Y. Aspirin-triggered resolvin D1 inhibits TGFβ1-induced EndMT through increasing the expression of Smad7 and is closely related to oxidative stress. Biomol Ther (Seoul) 2016; 24(2): 132–139
CrossRef
Google scholar
|
[30] |
Lin X, Ouyang S, Zhi C, Li P, Tan X, Ma W, Yu J, Peng T, Chen X, Li L, Xie W. Focus on ferroptosis, pyroptosis, apoptosis and autophagy of vascular endothelial cells to the strategic targets for the treatment of atherosclerosis. Arch Biochem Biophys 2022; 715: 109098
CrossRef
Google scholar
|
[31] |
Jia M, Li Q, Guo J, Shi W, Zhu L, Huang Y, Li Y, Wang L, Ma S, Zhuang T, Wang X, Pan Q, Wei X, Qin Y, Li X, Jin J, Zhi X, Tang J, Jing Q, Li S, Jiang L, Qu L, Osto E, Zhang J, Wang X, Yu B, Meng D. Deletion of BACH1 attenuates atherosclerosis by reducing endothelial inflammation. Circ Res 2022; 130(7): 1038–1055
CrossRef
Google scholar
|
[32] |
Wang B, Ge Z, Wu Y, Zha Y, Zhang X, Yan Y, Xie Y. MFGE8 is down-regulated in cardiac fibrosis and attenuates endothelial-mesenchymal transition through Smad2/3-Snail signaling pathway. J Cell Mol Med 2020; 24(21): 12799–12812
CrossRef
Google scholar
|
[33] |
Yeh YC, Wei WC, Wang YK, Lin SC, Sung JM, Tang MJ. Transforming growth factor-beta1 induces Smad3-dependent beta1 integrin gene expression in epithelial-to-mesenchymal transition during chronic tubulointerstitial fibrosis. Am J Pathol 2010; 177(4): 1743–1754
CrossRef
Google scholar
|
[34] |
Su Y, Xia W, Li J, Walz T, Humphries MJ, Vestweber D, Cabañas C, Lu C, Springer TA. Relating conformation to function in integrin α5β1. Proc Natl Acad Sci USA 2016; 113(27): E3872–E3881
CrossRef
Google scholar
|
[35] |
Ye F, Snider AK, Ginsberg MH. Talin and kindlin: the one-two punch in integrin activation. Front Med 2014; 8(1): 6–16
CrossRef
Google scholar
|
[36] |
Hao YM, Yuan HQ, Ren Z, Qu SL, Liu LS, Wei DH, Yin K, Fu M, Jiang ZS. Endothelial to mesenchymal transition in atherosclerotic vascular remodeling. Clin Chim Acta 2019; 490: 34–38
CrossRef
Google scholar
|
[37] |
Bischoff J. Endothelial-to-mesenchymal transition. Circ Res 2019; 124(8): 1163–1165
CrossRef
Google scholar
|
[38] |
Sabbineni H, Verma A, Somanath P. Isoform-specific effects of transforming growth factor β on endothelial-to-mesenchymal transition. J Cell Physiol 2018; 233(11): 8418–8428
CrossRef
Google scholar
|
[39] |
Liu H, Zhu Y, Zhu H, Cai R, Wang KF, Song J, Wang RX, Zhou RX. Role of transforming growth factor β1 in the inhibition of gastric cancer cell proliferation by melatonin in vitro and in vivo. Oncol Rep 2019; 42(2): 753–762
CrossRef
Google scholar
|
[40] |
Panji M, Behmard V, Zare Z, Malekpour M, Nejadbiglari H, Yavari S, Nayerpour dizaj T, Safaeian A, Maleki N, Abbasi M, Abazari O, Shabanzadeh M, Khanicheragh P. Suppressing effects of green tea extract and Epigallocatechin-3-gallate (EGCG) on TGFβ-induced Epithelial-to-mesenchymal transition via ROS/Smad signaling in human cervical cancer cells. Gene 2021; 794: 145774
CrossRef
Google scholar
|
[41] |
Bertrand-Chapel A, Caligaris C, Fenouil T, Savary C, Aires S, Martel S, Huchedé P, Chassot C, Chauvet V, Cardot-Ruffino V, Morel AP, Subtil F, Mohkam K, Mabrut JY, Tonon L, Viari A, Cassier P, Hervieu V, Castets M, Mauviel A, Sentis S, Bartholin L. SMAD2/3 mediate oncogenic effects of TGF-β in the absence of SMAD4. Commun Biol 2022; 5(1): 1068
CrossRef
Google scholar
|
[42] |
Chuang HC, Sheu WH, Lin YT, Tsai CY, Yang CY, Cheng YJ, Huang PY, Li JP, Chiu LL, Wang X, Xie M, Schneider MD, Tan TH. HGK/MAP4K4 deficiency induces TRAF2 stabilization and Th17 differentiation leading to insulin resistance. Nat Commun 2014; 5(1): 4602
CrossRef
Google scholar
|
[43] |
Chuang HC, Wang JS, Lee IT, Sheu WH, Tan TH. Epigenetic regulation of HGK/MAP4K4 in T cells of type 2 diabetes patients. Oncotarget 2016; 7(10): 10976–10989
CrossRef
Google scholar
|
[44] |
Slack RJ, Macdonald SJF, Roper JA, Jenkins RG, Hatley RJD. Emerging therapeutic opportunities for integrin inhibitors. Nat Rev Drug Discov 2022; 21(1): 60–78
CrossRef
Google scholar
|
[45] |
Pang X, He X, Qiu Z, Zhang H, Xie R, Liu Z, Gu Y, Zhao N, Xiang Q, Cui Y. Targeting integrin pathways: mechanisms and advances in therapy. Signal Transduct Target Ther 2023; 8(1): 1
CrossRef
Google scholar
|
[46] |
Woo KV, Shen IY, Weinheimer CJ, Kovacs A, Nigro J, Lin CY, Chakinala M, Byers DE, Ornitz DM. Endothelial FGF signaling is protective in hypoxia-induced pulmonary hypertension. J Clin Invest 2021; 131(17): e141467
CrossRef
Google scholar
|
[47] |
Zhao Y, Sun N, Song X, Zhu J, Wang T, Wang Z, Yu Y, Ren J, Chen H, Zhan T, Tian J, Ma C, Huang J, Wang J, Zhang Y, Yang B. A novel small molecule AdipoR2 agonist ameliorates experimental hepatic steatosis in hamsters and mice. Free Radic Biol Med 2023; 203: 69–85
CrossRef
Google scholar
|
/
〈 | 〉 |