Single-cell transcriptome profiling identifies the activation of type I interferon signaling in ossified posterior longitudinal ligament
Xiao Liu, Lei Zhang, Ge Wang, Wei Zhao, Chen Liang, Youzhi Tang, Yenan Fu, Bo Liu, Jing Zhang, Xiaoguang Liu, Hongquan Zhang, Yu Yu
Single-cell transcriptome profiling identifies the activation of type I interferon signaling in ossified posterior longitudinal ligament
Ossification of the posterior longitudinal ligament (OPLL) is a condition comprising ectopic bone formation from spinal ligaments. This disease is a leading cause of myelopathy in the Asian population. However, the molecular mechanism underlying OPLL and efficient preventive interventions remain unclear. Here, we performed single-cell RNA sequencing and revealed that type I interferon (IFN) signaling was activated in the ossified ligament of patients with OPLL. We also observed that IFN-β stimulation promoted the osteogenic differentiation of preosteoblasts in vitro and activated the ossification-related gene SPP1, thereby confirming the single-cell RNA sequencing findings. Further, blocking the IFN-α/β subunit 1 receptor (IFNAR1) using an anti-IFNAR1 neutralizing antibody markedly suppressed osteogenic differentiation. Together, these results demonstrated that the type I IFN signaling pathway facilitated ligament ossification, and the blockade of this signaling might provide a foundation for the prevention of OPLL.
ossification / posterior longitudinal ligament / osteogenic differentiation / IFN signaling
[1] |
Le HV, Wick JB, Van BW, Klineberg EO. Ossification of the posterior longitudinal ligament: pathophysiology, diagnosis, and management. J Am Acad Orthop Surg 2022; 30(17): 820–830
CrossRef
Google scholar
|
[2] |
Zhang Q, Zhou D, Wang H, Tan J. Heterotopic ossification of tendon and ligament. J Cell Mol Med 2020; 24(10): 5428–5437
CrossRef
Google scholar
|
[3] |
Koike Y, Takahata M, Nakajima M, Otomo N, Suetsugu H, Liu X, Endo T, Imagama S, Kobayashi K, Kaito T, Kato S, Kawaguchi Y, Kanayama M, Sakai H, Tsuji T, Miyamoto T, Inose H, Yoshii T, Kashii M, Nakashima H, Ando K, Taniguchi Y, Takeuchi K, Ito S, Tomizuka K, Hikino K, Iwasaki Y, Kamatani Y, Maeda S, Nakajima H, Mori K, Seichi A, Fujibayashi S, Kanchiku T, Watanabe K, Tanaka T, Kida K, Kobayashi S, Takahashi M, Yamada K, Takuwa H, Lu HF, Niida S, Ozaki K, Momozawa Y; Genetic Study Group of Investigation Committee on Ossification of the Spinal Ligaments; Yamazaki M, Okawa A, Matsumoto M, Iwasaki N, Terao C, Ikegawa S. Genetic insights into ossification of the posterior longitudinal ligament of the spine. eLife 2023; 12: e86514
CrossRef
Google scholar
|
[4] |
Ikegawa S. Genomic study of ossification of the posterior longitudinal ligament of the spine. Proc Jpn Acad, Ser B, Phys Biol Sci 2014; 90(10): 405–412
CrossRef
Google scholar
|
[5] |
Nakajima M, Takahashi A, Tsuji T, Karasugi T, Baba H, Uchida K, Kawabata S, Okawa A, Shindo S, Takeuchi K, Taniguchi Y, Maeda S, Kashii M, Seichi A, Nakajima H, Kawaguchi Y, Fujibayashi S, Takahata M, Tanaka T, Watanabe K, Kida K, Kanchiku T, Ito Z, Mori K, Kaito T, Kobayashi S, Yamada K, Takahashi M, Chiba K, Matsumoto M, Furukawa K, Kubo M, Toyama Y, Ikegawa S; Genetic Study Group of Investigation Committee on Ossification of the Spinal Ligaments; Ikegawa S. A genome-wide association study identifies susceptibility loci for ossification of the posterior longitudinal ligament of the spine. Nat Genet 2014; 46(9): 1012–1016
CrossRef
Google scholar
|
[6] |
Kim KH, Kuh SU, Park JY, Lee SJ, Park HS, Chin DK, Kim KS, Cho YE. Association between BMP-2 and COL6A1 gene polymorphisms with susceptibility to ossification of the posterior longitudinal ligament of the cervical spine in Korean patients and family members. Genet Mol Res 2014; 13(1): 2240–2247
CrossRef
Google scholar
|
[7] |
Yan L, Gao R, Liu Y, He B, Lv S, Hao D. The pathogenesis of ossification of the posterior longitudinal ligament. Aging Dis 2017; 8(5): 570–582
CrossRef
Google scholar
|
[8] |
Li H, Jiang LS, Dai LY. Hormones and growth factors in the pathogenesis of spinal ligament ossification. Eur Spine J 2007; 16(8): 1075–1084
CrossRef
Google scholar
|
[9] |
Ling Z, Crane J, Hu H, Chen Y, Wan M, Ni S, Demehri S, Mohajer B, Peng X, Zou X, Cao X. Parathyroid hormone treatment partially reverses endplate remodeling and attenuates low back pain in animal models of spine degeneration. Sci Transl Med 2023; 15(722): eadg8982
CrossRef
Google scholar
|
[10] |
Feng H, Xing W, Han Y, Sun J, Kong M, Gao B, Yang Y, Yin Z, Chen X, Zhao Y, Bi Q, Zou W. Tendon-derived cathepsin K-expressing progenitor cells activate Hedgehog signaling to drive heterotopic ossification. J Clin Invest 2020; 130(12): 6354–6365
CrossRef
Google scholar
|
[11] |
Liu N, Zhang Z, Li L, Shen X, Sun B, Wang R, Zhong H, Shi Q, Wei L, Zhang Y, Wang Y, Xu C, Liu Y, Yuan W. MicroRNA-181 regulates the development of ossification of posterior longitudinal ligament via epigenetic modulation by targeting PBX1. Theranostics 2020; 10(17): 7492–7509
CrossRef
Google scholar
|
[12] |
Xu C, Zhang Z, Liu N, Li L, Zhong H, Wang R, Shi Q, Zhang Z, Wei L, Hu B, Zhang H, Shen X, Wang Y, Liu Y, Yuan W. Small extracellular vesicle-mediated miR-320e transmission promotes osteogenesis in OPLL by targeting TAK1. Nat Commun 2022; 13(1): 2467
CrossRef
Google scholar
|
[13] |
Kim KT, Kim DH, Chung JY, Lee S, Joo J, Nah SS, Song HY, Kim HJ. Association of interferon gamma polymorphism with ossification of the posterior longitudinal ligament in the Korean population. Immunol Invest 2012; 41(8): 876–887
CrossRef
Google scholar
|
[14] |
Pestka S, Krause CD, Walter MR. Interferons, interferon-like cytokines, and their receptors. Immunol Rev 2004; 202(1): 8–32
CrossRef
Google scholar
|
[15] |
Lee AJ, Ashkar AA. The dual nature of type I and type II interferons. Front Immunol 2018; 9: 2061
CrossRef
Google scholar
|
[16] |
Wathelet MG, Lin CH, Parekh BS, Ronco LV, Howley PM, Maniatis T. Virus infection induces the assembly of coordinately activated transcription factors on the IFN-β enhancer in vivo. Mol Cell 1998; 1(4): 507–518
CrossRef
Google scholar
|
[17] |
Hu X, Li J, Fu M, Zhao X, Wang W. The JAK/STAT signaling pathway: from bench to clinic. Signal Transduct Target Ther 2021; 6(1): 402
CrossRef
Google scholar
|
[18] |
Ivashkiv LB, Donlin LT. Regulation of type I interferon responses. Nat Rev Immunol 2014; 14(1): 36–49
CrossRef
Google scholar
|
[19] |
Chen K, Liu J, Cao X. Regulation of type I interferon signaling in immunity and inflammation: a comprehensive review. J Autoimmun 2017; 83: 1–11
CrossRef
Google scholar
|
[20] |
Crow YJ, Stetson DB. The type I interferonopathies: 10 years on. Nat Rev Immunol 2022; 22(8): 471–483
CrossRef
Google scholar
|
[21] |
Snell LM, McGaha TL, Brooks DG. Type I interferon in chronic virus infection and cancer. Trends Immunol 2017; 38(8): 542–557
CrossRef
Google scholar
|
[22] |
Seeliger C, Schyschka L, Kronbach Z, Wottge A, van Griensven M, Wildemann B, Vester H. Signaling pathway STAT1 is strongly activated by IFN-β in the pathogenesis of osteoporosis. Eur J Med Res 2015; 20(1): 1
CrossRef
Google scholar
|
[23] |
Takaoka A, Taniguchi T. New aspects of IFN-α/β signalling in immunity, oncogenesis and bone metabolism. Cancer Sci 2003; 94(5): 405–411
CrossRef
Google scholar
|
[24] |
Duque G, Huang DC, Macoritto M, Rivas D, Yang XF, Ste-Marie LG, Kremer R. Autocrine regulation of interferon gamma in mesenchymal stem cells plays a role in early osteoblastogenesis. Stem Cells 2009; 27(3): 550–558
CrossRef
Google scholar
|
[25] |
Rifas L. T-cell cytokine induction of BMP-2 regulates human mesenchymal stromal cell differentiation and mineralization. J Cell Biochem 2006; 98(4): 706–714
CrossRef
Google scholar
|
[26] |
Duque G, Huang DC, Dion N, Macoritto M, Rivas D, Li W, Yang XF, Li J, Lian J, Marino FT, Barralet J, Lascau V, Deschenes C, Ste-Marie LG, Kremer R. Interferon-gamma plays a role in bone formation in vivo and rescues osteoporosis in ovariectomized mice. J Bone Miner Res 2011; 26(7): 1472–1483
CrossRef
Google scholar
|
[27] |
Ji Q, Zheng Y, Zhang G, Hu Y, Fan X, Hou Y, Wen L, Li L, Xu Y, Wang Y, Tang F. Single-cell RNA-seq analysis reveals the progression of human osteoarthritis. Ann Rheum Dis 2019; 78(1): 100–110
CrossRef
Google scholar
|
[28] |
Butler A, Hoffman P, Smibert P, Papalexi E, Satija R. Integrating single-cell transcriptomic data across different conditions, technologies, and species. Nat Biotechnol 2018; 36(5): 411–420
CrossRef
Google scholar
|
[29] |
Kumar L, Futschik ME. Mfuzz: a software package for soft clustering of microarray data. Bioinformation 2007; 2(1): 5–7
CrossRef
Google scholar
|
[30] |
Cai Z, Liu W, Chen K, Wang P, Xie Z, Li J, Li M, Cen S, Ye G, Li Z, Su Z, Ma M, Wu Y, Shen H. Aberrantly expressed lncRNAs and mRNAs of osteogenically differentiated mesenchymal stem cells in ossification of the posterior longitudinal ligament. Front Genet 2020; 11: 896
CrossRef
Google scholar
|
[31] |
Ma X, Xu Z, Ding S, Yi G, Wang Q. Alendronate promotes osteoblast differentiation and bone formation in ovariectomy-induced osteoporosis through interferon-β/signal transducer and activator of transcription 1 pathway. Exp Ther Med 2018; 15(1): 182–190
CrossRef
Google scholar
|
[32] |
Kim JM, Lin C, Stavre Z, Greenblatt MB, Shim JH. Osteoblast-osteoclast communication and bone homeostasis. Cells 2020; 9(9): 2073
CrossRef
Google scholar
|
[33] |
Paravati R, De Mello N, Onyido EK, Francis LW, Brusehafer K, Younas K, Spencer-Harty S, Conlan RS, Gonzalez D, Margarit L. Differential regulation of osteopontin and CD44 correlates with infertility status in PCOS patients. J Mol Med (Berl) 2020; 98(12): 1713–1725
CrossRef
Google scholar
|
[34] |
Qin X, Jiang Q, Matsuo Y, Kawane T, Komori H, Moriishi T, Taniuchi I, Ito K, Kawai Y, Rokutanda S, Izumi S, Komori T. Cbfb regulates bone development by stabilizing Runx family proteins. J Bone Miner Res 2015; 30(4): 706–714
CrossRef
Google scholar
|
[35] |
Hwang C, Marini S, Huber AK, Stepien DM, Sorkin M, Loder S, Pagani CA, Li J, Visser ND, Vasquez K, Garada MA, Li S, Xu J, Hsu CY, Yu PB, James AW, Mishina Y, Agarwal S, Li J, Levi B. Mesenchymal VEGFA induces aberrant differentiation in heterotopic ossification. Bone Res 2019; 7(1): 36
CrossRef
Google scholar
|
[36] |
Almubarak A, Lavy R, Srnic N, Hu Y, Maripuri DP, Kume T, Berry FB. Loss of Foxc1 and Foxc2 function in chondroprogenitor cells disrupts endochondral ossification. J Biol Chem 2021; 297(3): 101020
CrossRef
Google scholar
|
[37] |
Kitsoulis P, Galani V, Stefanaki K, Paraskevas G, Karatzias G, Agnantis NJ, Bai M. Osteochondromas: review of the clinical, radiological and pathological features. In Vivo 2008; 22(5): 633–646
|
[38] |
Chin S, Furukawa K, Ono A, Asari T, Harada Y, Wada K, Tanaka T, Inaba W, Mizukami H, Motomura S, Yagihashi S, Ishibashi Y. Immunohistochemical localization of mesenchymal stem cells in ossified human spinal ligaments. Biochem Biophys Res Commun 2013; 436(4): 698–704
CrossRef
Google scholar
|
/
〈 | 〉 |