Pathological progression of osteoarthritis: a perspective on subchondral bone
Xuefei Li, Wenhua Chen, Dan Liu, Pinghua Chen, Shiyun Wang, Fangfang Li, Qian Chen, Shunyi Lv, Fangyu Li, Chen Chen, Suxia Guo, Weina Yuan, Pan Li, Zhijun Hu
Pathological progression of osteoarthritis: a perspective on subchondral bone
Osteoarthritis (OA) is a degenerative bone disease associated with aging. The rising global aging population has led to a surge in OA cases, thereby imposing a significant socioeconomic burden. Researchers have been keenly investigating the mechanisms underlying OA. Previous studies have suggested that the disease starts with synovial inflammation and hyperplasia, advancing toward cartilage degradation. Ultimately, subchondral-bone collapse, sclerosis, and osteophyte formation occur. This progression is deemed as “top to bottom.” However, recent research is challenging this perspective by indicating that initial changes occur in subchondral bone, precipitating cartilage breakdown. In this review, we elucidate the epidemiology of OA and present an in-depth overview of the subchondral bone’s physiological state, functions, and the varied pathological shifts during OA progression. We also introduce the role of multifunctional signal pathways (including osteoprotegerin (OPG)/receptor activator of nuclear factor-kappa B ligand (RANKL)/receptor activator of nuclear factor-kappa B (RANK), and chemokine (CXC motif) ligand 12 (CXCL12)/CXC motif chemokine receptor 4 (CXCR4)) in the pathology of subchondral bone and their role in the “bottom-up” progression of OA. Using vivid pattern maps and clinical images, this review highlights the crucial role of subchondral bone in driving OA progression, illuminating its interplay with the condition.
osteoarthritis / subchondral bone / OPG/RANKL/RANK / CXCL12/CXCR4
[1] |
GBD 2017 Disease, Injury Incidence, Prevalence Collaborators. Global, regional, and national incidence, prevalence, and years lived with disability for 354 diseases and injuries for 195 countries and territories, 1990–2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet 2018; 392(10159): 1789–1858
CrossRef
Google scholar
|
[2] |
Quicke JG, Conaghan PG, Corp N, Peat G. Osteoarthritis year in review 2021: epidemiology & therapy. Osteoarthritis Cartilage 2022; 30(2): 196–206
CrossRef
Google scholar
|
[3] |
Yunus MHM, Nordin A, Kamal H. Pathophysiological perspective of osteoarthritis. Medicina (Kaunas) 2020; 56(11): 614–627
CrossRef
Google scholar
|
[4] |
Loeser RF, Goldring SR, Scanzello CR, Goldring MB. Osteoarthritis: a disease of the joint as an organ. Arthritis Rheum 2012; 64(6): 1697–1707
CrossRef
Google scholar
|
[5] |
Aizah N, Chong PP, Kamarul T. Early alterations of subchondral bone in the rat anterior cruciate ligament transection model of osteoarthritis. Cartilage 2021; 13(2_suppl): 1322S–1333S
CrossRef
Google scholar
|
[6] |
Zhu X, Chan YT, Yung PSH, Tuan RS, Jiang Y. Subchondral bone remodeling: a therapeutic target for osteoarthritis. Front Cell Dev Biol 2021; 8: 607764
CrossRef
Google scholar
|
[7] |
Hügle T, Geurts J. What drives osteoarthritis? Synovial versus subchondral bone pathology.. Rheumatology (Oxford) 2017; 56(9): 1461–1471
CrossRef
Google scholar
|
[8] |
Mansell JP, Collins C, Bailey AJ. Bone, not cartilage, should be the major focus in osteoarthritis. Nat Clin Pract Rheumatol 2007; 3(6): 306–307
CrossRef
Google scholar
|
[9] |
Henrotin Y, Pesesse L, Sanchez C. Subchondral bone and osteoarthritis: biological and cellular aspects. Osteoporos Int 2012; 23(Suppl 8): S847–S851
CrossRef
Google scholar
|
[10] |
Hu W, Chen Y, Dou C, Dong S. Microenvironment in subchondral bone: predominant regulator for the treatment of osteoarthritis. Ann Rheum Dis 2021; 80(4): 413–422
CrossRef
Google scholar
|
[11] |
Coryell PR, Diekman BO, Loeser RF. Mechanisms and therapeutic implications of cellular senescence in osteoarthritis. Nat Rev Rheumatol 2021; 17(1): 47–57
CrossRef
Google scholar
|
[12] |
Darbandi M, Shadmani FK, Miryan M, Ghalandari M, Mohebi M, Jam SA, Pasdar Y. The burden of osteoarthritis due to high body mass index in Iran from 1990 to 2019. Sci Rep 2023; 13(1): 11710–11719
CrossRef
Google scholar
|
[13] |
Poulsen E, Goncalves GH, Bricca A, Roos EM, Thorlund JB, Juhl CB. Knee osteoarthritis risk is increased 4–6 fold after knee injury—a systematic review and meta-analysis. Br J Sports Med 2019; 53(23): 1454–1463
CrossRef
Google scholar
|
[14] |
Papalia R, Torre G, Zampogna B, Vorini F, Grasso A, Denaro V. Sport activity as risk factor for early knee osteoarthritis. J Biol Regul Homeost Agents 2019; 33(2 Suppl. 1): 29–37, XIX
|
[15] |
Liang X, Chou OHI, Cheung CL, Cheung BMY. Is hypertension associated with arthritis? The United States national health and nutrition examination survey 1999–2018.. Ann Med 2022; 54(1): 1767–1775
CrossRef
Google scholar
|
[16] |
Peshkova M, Lychagin A, Lipina M, Di Matteo B, Anzillotti G, Ronzoni F, Kosheleva N, Shpichka A, Royuk V, Fomin V, Kalinsky E, Timashev P, Kon E. Gender-related aspects in osteoarthritis development and progression: a review. Int J Mol Sci 2022; 23(5): 2767–2788
CrossRef
Google scholar
|
[17] |
Boer CG, Hatzikotoulas K, Southam L, Stefánsdóttir L, Zhang Y, Coutinho de Almeida R, Wu TT, Zheng J, Hartley A, Teder-Laving M, Skogholt AH, Terao C, Zengini E, Alexiadis G, Barysenka A, Bjornsdottir G, Gabrielsen ME, Gilly A, Ingvarsson T, Johnsen MB, Jonsson H, Kloppenburg M, Luetge A, Lund SH, Mägi R, Mangino M, Nelissen RRGHH, Shivakumar M, Steinberg J, Takuwa H, Thomas LF, Tuerlings M; arcOGEN Consortium; HUNT All-In Pain; ARGO Consortium; Regeneron Genetics Center; Babis GC, Cheung JPY, Kang JH, Kraft P, Lietman SA, Samartzis D, Slagboom PE, Stefansson K, Thorsteinsdottir U, Tobias JH, Uitterlinden AG, Winsvold B, Zwart JA, Davey Smith G, Sham PC, Thorleifsson G, Gaunt TR, Morris AP, Valdes AM, Tsezou A, Cheah KSE, Ikegawa S, Hveem K, Esko T, Wilkinson JM, Meulenbelt I, Lee MTM, van Meurs JBJ, Styrkársdóttir U, Zeggini E. Deciphering osteoarthritis genetics across 826,690 individuals from 9 populations. Cell 2021; 184(18): 4784–4818.e17
CrossRef
Google scholar
|
[18] |
Yao Q, Wu X, Tao C, Gong W, Chen M, Qu M, Zhong Y, He T, Chen S, Xiao G. Osteoarthritis: pathogenic signaling pathways and therapeutic targets. Signal Transduct Target Ther 2023; 8(1): 56–87
CrossRef
Google scholar
|
[19] |
Allen KD, Thoma LM, Golightly YM. Epidemiology of osteoarthritis. Osteoarthritis Cartilage 2022; 30(2): 184–195
CrossRef
Google scholar
|
[20] |
Safiri S, Kolahi AA, Smith E, Hill C, Bettampadi D, Mansournia MA, Hoy D, Ashrafi-Asgarabad A, Sepidarkish M, Almasi-Hashiani A, Collins G, Kaufman J, Qorbani M, Moradi-Lakeh M, Woolf AD, Guillemin F, March L, Cross M. Global, regional and national burden of osteoarthritis 1990–2017: a systematic analysis of the Global Burden of Disease Study 2017. Ann Rheum Dis 2020; 79(6): 819–828
CrossRef
Google scholar
|
[21] |
Long H, Liu Q, Yin H, Wang K, Diao N, Zhang Y, Lin J, Guo A. Prevalence trends of site-specific osteoarthritis from 1990 to 2019: findings from the global burden of disease study 2019. Arthritis Rheumatol 2022; 74(7): 1172–1183
CrossRef
Google scholar
|
[22] |
Vos T, Flaxman AD, Naghavi M, Lozano R, Michaud C, Ezzati M, Shibuya K, Salomon JA, Abdalla S, Aboyans V, Abraham J, Ackerman I, Aggarwal R, Ahn SY, Ali MK, Alvarado M, Anderson HR, Anderson LM, Andrews KG, Atkinson C, Baddour LM, Bahalim AN, Barker-Collo S, Barrero LH, Bartels DH, Basáez MG, Baxter A, Bell ML, Benjamin EJ, Bennett D, Bernabé E, Bhalla K, Bhandari B, Bikbov B, Bin Abdulhak A, Birbeck G, Black JA, Blencowe H, Blore JD, Blyth F, Bolliger I, Bonaventure A, Boufous S, Bourne R, Boussinesq M, Braithwaite T, Brayne C, Bridgett L, Brooker S, Brooks P, Brugha TS, Bryan-Hancock C, Bucello C, Buchbinder R, Buckle G, Budke CM, Burch M, Burney P, Burstein R, Calabria B, Campbell B, Canter CE, Carabin H, Carapetis J, Carmona L, Cella C, Charlson F, Chen H, Cheng AT, Chou D, Chugh SS, Coffeng LE, Colan SD, Colquhoun S, Colson KE, Condon J, Connor MD, Cooper LT, Corriere M, Cortinovis M, de Vaccaro KC, Couser W, Cowie BC, Criqui MH, Cross M, Dabhadkar KC, Dahiya M, Dahodwala N, Damsere-Derry J, Danaei G, Davis A, De Leo D, Degenhardt L, Dellavalle R, Delossantos A, Denenberg J, Derrett S, Des Jarlais DC, Dharmaratne SD, Dherani M, Diaz-Torne C, Dolk H, Dorsey ER, Driscoll T, Duber H, Ebel B, Edmond K, Elbaz A, Ali SE, Erskine H, Erwin PJ, Espindola P, Ewoigbokhan SE, Farzadfar F, Feigin V, Felson DT, Ferrari A, Ferri CP, Fèvre EM, Finucane MM, Flaxman S, Flood L, Foreman K, Forouzanfar MH, Fowkes FG, Franklin R, Fransen M, Freeman MK, Gabbe BJ, Gabriel SE, Gakidou E, Ganatra HA, Garcia B, Gaspari F, Gillum RF, Gmel G, Gosselin R, Grainger R, Groeger J, Guillemin F, Gunnell D, Gupta R, Haagsma J, Hagan H, Halasa YA, Hall W, Haring D, Haro JM, Harrison JE, Havmoeller R, Hay RJ, Higashi H, Hill C, Hoen B, Hoffman H, Hotez PJ, Hoy D, Huang JJ, Ibeanusi SE, Jacobsen KH, James SL, Jarvis D, Jasrasaria R, Jayaraman S, Johns N, Jonas JB, Karthikeyan G, Kassebaum N, Kawakami N, Keren A, Khoo JP, King CH, Knowlton LM, Kobusingye O, Koranteng A, Krishnamurthi R, Lalloo R, Laslett LL, Lathlean T, Leasher JL, Lee YY, Leigh J, Lim SS, Limb E, Lin JK, Lipnick M, Lipshultz SE, Liu W, Loane M, Ohno SL, Lyons R, Ma J, Mabweijano J, MacIntyre MF, Malekzadeh R, Mallinger L, Manivannan S, Marcenes W, March L, Margolis DJ, Marks GB, Marks R, Matsumori A, Matzopoulos R, Mayosi BM, McAnulty JH, McDermott MM, McGill N, McGrath J, Medina-Mora ME, Meltzer M, Mensah GA, Merriman TR, Meyer AC, Miglioli V, Miller M, Miller TR, Mitchell PB, Mocumbi AO, Moffitt TE, Mokdad AA, Monasta L, Montico M, Moradi-Lakeh M, Moran A, Morawska L, Mori R, Murdoch ME, Mwaniki MK, Naidoo K, Nair MN, Naldi L, Narayan KM, Nelson PK, Nelson RG, Nevitt MC, Newton CR, Nolte S, Norman P, Norman R, O’Donnell M, O’Hanlon S, Olives C, Omer SB, Ortblad K, Osborne R, Ozgediz D, Page A, Pahari B, Pandian JD, Rivero AP, Patten SB, Pearce N, Padilla RP, Perez-Ruiz F, Perico N, Pesudovs K, Phillips D, Phillips MR, Pierce K, Pion S, Polanczyk GV, Polinder S, Pope CA 3rd, Popova S, Porrini E, Pourmalek F, Prince M, Pullan RL, Ramaiah KD, Ranganathan D, Razavi H, Regan M, Rehm JT, Rein DB, Remuzzi G, Richardson K, Rivara FP, Roberts T, Robinson C, De Leòn FR, Ronfani L, Room R, Rosenfeld LC, Rushton L, Sacco RL, Saha S, Sampson U, Sanchez-Riera L, Sanman E, Schwebel DC, Scott JG, Segui-Gomez M, Shahraz S, Shepard DS, Shin H, Shivakoti R, Singh D, Singh GM, Singh JA, Singleton J, Sleet DA, Sliwa K, Smith E, Smith JL, Stapelberg NJ, Steer A, Steiner T, Stolk WA, Stovner LJ, Sudfeld C, Syed S, Tamburlini G, Tavakkoli M, Taylor HR, Taylor JA, Taylor WJ, Thomas B, Thomson WM, Thurston GD, Tleyjeh IM, Tonelli M, Towbin JA, Truelsen T, Tsilimbaris MK, Ubeda C, Undurraga EA, van der Werf MJ, van Os J, Vavilala MS, Venketasubramanian N, Wang M, Wang W, Watt K, Weatherall DJ, Weinstock MA, Weintraub R, Weisskopf MG, Weissman MM, White RA, Whiteford H, Wiersma ST, Wilkinson JD, Williams HC, Williams SR, Witt E, Wolfe F, Woolf AD, Wulf S, Yeh PH, Zaidi AK, Zheng ZJ, Zonies D, Lopez AD, Murray CJ, AlMazroa MA, Memish ZA. Years lived with disability (YLDs) for 1160 sequelae of 289 diseases and injuries 1990–2010: a systematic analysis for the Global Burden of Disease Study 2010. Lancet 2012; 380(9859): 2163–2196 doi:10.1016/S0140-6736(12)61729-2 PMID:23245607
|
[23] |
Li D, Li S, Chen Q, Xie X. The prevalence of symptomatic knee osteoarthritis in relation to age, sex, area, region, and body mass index in China: a systematic review and meta-analysis. Front Med (Lausanne) 2020; 7: 304–316
CrossRef
Google scholar
|
[24] |
Hong JW, Noh JH, Kim DJ. The prevalence of and demographic factors associated with radiographic knee osteoarthritis in Korean adults aged ≥ 50 years: the 2010–2013 Korea National Health and Nutrition Examination Survey. PLoS One 2020; 15(3): e0230613
CrossRef
Google scholar
|
[25] |
Li Y, Xie W, Xiao W, Dou D. Progress in osteoarthritis research by the national natural science foundation of China. Bone Res 2022; 10(1): 41–53
CrossRef
Google scholar
|
[26] |
Kim C, Linsenmeyer KD, Vlad SC, Guermazi A, Clancy MM, Niu J, Felson DT. Prevalence of radiographic and symptomatic hip osteoarthritis in an urban United States community: the Framingham osteoarthritis study. Arthritis Rheumatol 2014; 66(11): 3013–3017
CrossRef
Google scholar
|
[27] |
Fan Z, Yan L, Liu H, Li X, Fan K, Liu Q, Li JJ, Wang B. The prevalence of hip osteoarthritis: a systematic review and meta-analysis. Arthritis Res Ther 2023; 25(1): 51–62
CrossRef
Google scholar
|
[28] |
GBD 2016 Causes of Death Collaborators. Global, regional, and national age-sex specific mortality for 264 causes of death, 1980–2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet 2017; 390(10100): 1151–1210
CrossRef
Google scholar
|
[29] |
GBD 2019 Diseases, Injuries Collaborators. Global burden of 369 diseases and injuries in 204 countries and territories, 1990–2019: a systematic analysis for the Global Burden of Disease Study 2019. Lancet 2020; 396(10258): 1204–1222
CrossRef
Google scholar
|
[30] |
Tang X, Wang S, Zhan S, Niu J, Tao K, Zhang Y, Lin J. The prevalence of symptomatic knee osteoarthritis in China: results from the China health and retirement longitudinal study. Arthritis Rheumatol 2016; 68(3): 648–653
CrossRef
Google scholar
|
[31] |
Driban JB, Harkey MS, Barbe MF, Ward RJ, MacKay JW, Davis JE, Lu B, Price LL, Eaton CB, Lo GH, McAlindon TE. Risk factors and the natural history of accelerated knee osteoarthritis: a narrative review. BMC Musculoskelet Disord 2020; 21(1): 332–343
CrossRef
Google scholar
|
[32] |
Lo J, Chan L, Flynn S. A systematic review of the incidence, prevalence, costs, and activity and work limitations of amputation, osteoarthritis, rheumatoid arthritis, back pain, multiple sclerosis, spinal cord injury, stroke, and traumatic brain injury in the United States: a 2019 update. Arch Phys Med Rehabil 2021; 102(1): 115–131
CrossRef
Google scholar
|
[33] |
Wang SX, Ganguli AX, Bodhani A, Medema JK, Reichmann WM, Macaulay D. Healthcare resource utilization and costs by age and joint location among osteoarthritis patients in a privately insured population. J Med Econ 2017; 20(12): 1299–1306
CrossRef
Google scholar
|
[34] |
Hunter DJ, Nevitt M, Losina E, Kraus V. Biomarkers for osteoarthritis: current position and steps towards further validation. Best Pract Res Clin Rheumatol 2014; 28(1): 61–71
CrossRef
Google scholar
|
[35] |
Zhou X, Cao H, Yuan Y, Wu W. Biochemical signals mediate the crosstalk between cartilage and bone in osteoarthritis. BioMed Res Int 2020; 2020: 5720360
CrossRef
Google scholar
|
[36] |
Carballo CB, Nakagawa Y, Sekiya I, Rodeo SA. Basic science of articular cartilage. Clin Sports Med 2017; 36(3): 413–425
CrossRef
Google scholar
|
[37] |
Lu P, Takai K, Weaver VM, Werb Z. Extracellular matrix degradation and remodeling in development and disease. Cold Spring Harb Perspect Biol 2011; 3(12): a005058
CrossRef
Google scholar
|
[38] |
Chen S, Fu P, Wu H, Pei M. Meniscus, articular cartilage and nucleus pulposus: a comparative review of cartilage-like tissues in anatomy, development and function. Cell Tissue Res 2017; 370(1): 53–70
CrossRef
Google scholar
|
[39] |
Vincent TL. Mechanoflammation in osteoarthritis pathogenesis. Semin Arthritis Rheum 2019; 49(3 3S): S36–S38
CrossRef
Google scholar
|
[40] |
Greene GW, Banquy X, Lee DW, Lowrey DD, Yu J, Israelachvili JN. Adaptive mechanically controlled lubrication mechanism found in articular joints. Proc Natl Acad Sci USA 2011; 108(13): 5255–5259
CrossRef
Google scholar
|
[41] |
Mieloch AA, Richter M, Trzeciak T, Giersig M, Rybka JD. Osteoarthritis severely decreases the elasticity and hardness of knee joint cartilage: a nanoindentation study. J Clin Med 2019; 8(11): 1865–1876
CrossRef
Google scholar
|
[42] |
Hoemann CD, Lafantaisie-Favreau CH, Lascau-Coman V, Chen G, Guzmán-Morales J. The cartilage-bone interface. J Knee Surg 2012; 25(2): 85–97
CrossRef
Google scholar
|
[43] |
Yu J, Liang F, Huang H, Pirttiniemi P, Yu D. Effects of loading on chondrocyte hypoxia, HIF-1α and VEGF in the mandibular condylar cartilage of young rats. Orthod Craniofac Res 2018; 21(1): 41–47
CrossRef
Google scholar
|
[44] |
Pan J, Zhou X, Li W, Novotny JE, Doty SB, Wang L. In situ measurement of transport between subchondral bone and articular cartilage. J Orthop Res 2009; 27(10): 1347–1352
CrossRef
Google scholar
|
[45] |
Goldring SR, Goldring MB. Changes in the osteochondral unit during osteoarthritis: structure, function and cartilage-bone crosstalk. Nat Rev Rheumatol 2016; 12(11): 632–644
CrossRef
Google scholar
|
[46] |
Goldring MB, Goldring SR. Articular cartilage and subchondral bone in the pathogenesis of osteoarthritis. Ann N Y Acad Sci 2010; 1192(1): 230–237
CrossRef
Google scholar
|
[47] |
Rytky SJO, Huang L, Tanska P, Tiulpin A, Panfilov E, Herzog W, Korhonen RK, Saarakkala S, Finnilä MAJ. Automated analysis of rabbit knee calcified cartilage morphology using micro-computed tomography and deep learning. J Anat 2021; 239(2): 251–263
CrossRef
Google scholar
|
[48] |
Madry H, van Dijk CN, Mueller-Gerbl M. The basic science of the subchondral bone. Knee Surg Sports Traumatol Arthrosc 2010; 18(4): 419–433
CrossRef
Google scholar
|
[49] |
Berthelot JM, Sellam J, Maugars Y, Berenbaum F. Cartilage-gut-microbiome axis: a new paradigm for novel therapeutic opportunities in osteoarthritis. RMD Open 2019; 5(2): e001037
CrossRef
Google scholar
|
[50] |
Milz S, Putz R. Quantitative morphology of the subchondral plate of the tibial plateau. J Anat 1994; 185(Pt 1): 103–110
|
[51] |
Boyde A. The bone cartilage interface and osteoarthritis. Calcif Tissue Int 2021; 109(3): 303–328
CrossRef
Google scholar
|
[52] |
Zhu X, Chan YT, Yung PSH, Tuan RS, Jiang Y. Subchondral bone remodeling: a therapeutic target for osteoarthritis. Front Cell Dev Biol 2021; 8: 607764
CrossRef
Google scholar
|
[53] |
Taheri S, Winkler T, Schenk LS, Neuerburg C, Baumbach SF, Zustin J, Lehmann W, Schilling AF. Developmental transformation and reduction of connective cavities within the subchondral bone. Int J Mol Sci 2019; 20(3): 770–783
CrossRef
Google scholar
|
[54] |
Holopainen JT, Brama PA, Halmesmäki E, Harjula T, Tuukkanen J, van Weeren PR, Helminen HJ, Hyttinen MM. Changes in subchondral bone mineral density and collagen matrix organization in growing horses. Bone 2008; 43(6): 1108–1114
CrossRef
Google scholar
|
[55] |
Day JS, Van Der Linden JC, Bank RA, Ding M, Hvid I, Sumner DR, Weinans H. Adaptation of subchondral bone in osteoarthritis. Biorheology 2004; 41(3–4): 359–368
|
[56] |
Burr DB, Gallant MA. Bone remodelling in osteoarthritis. Nat Rev Rheumatol 2012; 8(11): 665–673
CrossRef
Google scholar
|
[57] |
Zhen G, Wen C, Jia X, Li Y, Crane JL, Mears SC, Askin FB, Frassica FJ, Chang W, Yao J, Carrino JA, Cosgarea A, Artemov D, Chen Q, Zhao Z, Zhou X, Riley L, Sponseller P, Wan M, Lu WW, Cao X. Inhibition of TGF-β signaling in mesenchymal stem cells of subchondral bone attenuates osteoarthritis. Nat Med 2013; 19(6): 704–712
CrossRef
Google scholar
|
[58] |
Fell NLA, Lawless BM, Cox SC, Cooke ME, Eisenstein NM, Shepherd DET, Espino DM. The role of subchondral bone, and its histomorphology, on the dynamic viscoelasticity of cartilage, bone and osteochondral cores. Osteoarthritis Cartilage 2019; 27(3): 535–543
CrossRef
Google scholar
|
[59] |
Radin EL, Martin RB, Burr DB, Caterson B, Boyd RD, Goodwin C. Effects of mechanical loading on the tissues of the rabbit knee. J Orthop Res 1984; 2(3): 221–234
CrossRef
Google scholar
|
[60] |
Hu Y, Chen X, Wang S, Jing Y, Su J. Subchondral bone microenvironment in osteoarthritis and pain. Bone Res 2021; 9(1): 20–33
CrossRef
Google scholar
|
[61] |
Liu XS, Sajda P, Saha PK, Wehrli FW, Bevill G, Keaveny TM, Guo XE. Complete volumetric decomposition of individual trabecular plates and rods and its morphological correlations with anisotropic elastic moduli in human trabecular bone. J Bone Miner Res 2008; 23(2): 223–235
CrossRef
Google scholar
|
[62] |
Wang J, Zhou B, Liu XS, Fields AJ, Sanyal A, Shi X, Adams M, Keaveny TM, Guo XE. Trabecular plates and rods determine elastic modulus and yield strength of human trabecular bone. Bone 2015; 72: 71–80
CrossRef
Google scholar
|
[63] |
O’Brien MS, McDougall JJ. Age and frailty as risk factors for the development of osteoarthritis. Mech Ageing Dev 2019; 180: 21–28
CrossRef
Google scholar
|
[64] |
Ding R, Zhang N, Wang Q, Wang W. Alterations of the subchondral bone in osteoarthritis: complying with Wolff’s law. Curr Rheumatol Rev 2022; 18(3): 178–185
CrossRef
Google scholar
|
[65] |
Teichtahl AJ, Wluka AE, Wijethilake P, Wang Y, Ghasem-Zadeh A, Cicuttini FM. Wolff’s law in action: a mechanism for early knee osteoarthritis. Arthritis Res Ther 2015; 17(1): 207–216
CrossRef
Google scholar
|
[66] |
Zhang J, Chen S, Chen W, Huang Y, Lin R, Huang M, Wu Y, Zheng L, Li Z, Liao N, Ye J, Liu X. Ultrastructural change of the subchondral bone increases the severity of cartilage damage in osteoporotic osteoarthritis of the knee in rabbits. Pathol Res Pract 2018; 214(1): 38–43
CrossRef
Google scholar
|
[67] |
Chen Y, Hu Y, Yu YE, Zhang X, Watts T, Zhou B, Wang J, Wang T, Zhao W, Chiu KY, Leung FK, Cao X, Macaulay W, Nishiyama KK, Shane E, Lu WW, Guo XE. Subchondral trabecular rod loss and plate thickening in the development of osteoarthritis. J Bone Miner Res 2018; 33(2): 316–327
CrossRef
Google scholar
|
[68] |
Zamli Z, Robson Brown K, Sharif M. Subchondral bone plate changes more rapidly than trabecular bone in osteoarthritis. Int J Mol Sci 2016; 17(9): 1496–1507
CrossRef
Google scholar
|
[69] |
Intema F, Hazewinkel HA, Gouwens D, Bijlsma JW, Weinans H, Lafeber FP, Mastbergen SC. In early OA, thinning of the subchondral plate is directly related to cartilage damage: results from a canine ACLT-meniscectomy model. Osteoarthritis Cartilage 2010; 18(5): 691–698
CrossRef
Google scholar
|
[70] |
Botter SM, van Osch GJ, Clockaerts S, Waarsing JH, Weinans H, van Leeuwen JP. Osteoarthritis induction leads to early and temporal subchondral plate porosity in the tibial plateau of mice: an in vivo microfocal computed tomography study. Arthritis Rheum 2011; 63(9): 2690–2699
CrossRef
Google scholar
|
[71] |
Robling AG, Bonewald LF. The osteocyte: new insights. Annu Rev Physiol 2020; 82(1): 485–506
CrossRef
Google scholar
|
[72] |
Pu P, Qingyuan M, Weishan W, Fei H, Tengyang M, Weiping Z, Zhoujun Z, Mengyu W, Chao W, Chong S. Protein-degrading enzymes in osteoarthritis. Z Orthop Unfall 2021; 159(1): 54–66
CrossRef
Google scholar
|
[73] |
Tang SY, Herber RP, Ho SP, Alliston T. Matrix metalloproteinase-13 is required for osteocytic perilacunar remodeling and maintains bone fracture resistance. J Bone Miner Res 2012; 27(9): 1936–1950
CrossRef
Google scholar
|
[74] |
Katsimbri P. The biology of normal bone remodelling. Eur J Cancer Care (Engl) 2017; 26(6): e12740
CrossRef
Google scholar
|
[75] |
Borciani G, Montalbano G, Baldini N, Cerqueni G, Vitale-Brovarone C, Ciapetti G. Co-culture systems of osteoblasts and osteoclasts: simulating in vitro bone remodeling in regenerative approaches. Acta Biomater 2020; 108: 22–45
CrossRef
Google scholar
|
[76] |
Hunter DJ, Bierma-Zeinstra S. Osteoarthritis. Lancet 2019; 393(10182): 1745–1759
CrossRef
Google scholar
|
[77] |
Su W, Liu G, Liu X, Zhou Y, Sun Q, Zhen G, Wang X, Hu Y, Gao P, Demehri S, Cao X, Wan M. Angiogenesis stimulated by elevated PDGF-BB in subchondral bone contributes to osteoarthritis development. JCI Insight 2020; 5(8): e135446
CrossRef
Google scholar
|
[78] |
Zhu S, Zhu J, Zhen G, Hu Y, An S, Li Y, Zheng Q, Chen Z, Yang Y, Wan M, Skolasky RL, Cao Y, Wu T, Gao B, Yang M, Gao M, Kuliwaba J, Ni S, Wang L, Wu C, Findlay D, Eltzschig HK, Ouyang HW, Crane J, Zhou FQ, Guan Y, Dong X, Cao X. Subchondral bone osteoclasts induce sensory innervation and osteoarthritis pain. J Clin Invest 2019; 129(3): 1076–1093
CrossRef
Google scholar
|
[79] |
Jiang W, Jin Y, Zhang S, Ding Y, Huo K, Yang J, Zhao L, Nian B, Zhong TP, Lu W, Zhang H, Cao X, Shah KM, Wang N, Liu M, Luo J. PGE2 activates EP4 in subchondral bone osteoclasts to regulate osteoarthritis. Bone Res 2022; 10(1): 27–43
CrossRef
Google scholar
|
[80] |
Ren P, Niu H, Cen H, Jia S, Gong H, Fan Y. Biochemical and morphological abnormalities of subchondral bone and their association with cartilage degeneration in spontaneous osteoarthritis. Calcif Tissue Int 2021; 109(2): 179–189
CrossRef
Google scholar
|
[81] |
Haneda M, Rai MF, Cai L, Brophy RH, O’Keefe RJ, Clohisy JC, Pascual-Garrido C. Distinct pattern of inflammation of articular cartilage and the synovium in early and late hip femoroacetabular impingement. Am J Sports Med 2020; 48(10): 2481–2488
CrossRef
Google scholar
|
[82] |
Kazakia GJ, Kuo D, Schooler J, Siddiqui S, Shanbhag S, Bernstein G, Horvai A, Majumdar S, Ries M, Li X. Bone and cartilage demonstrate changes localized to bone marrow edema-like lesions within osteoarthritic knees. Osteoarthritis Cartilage 2013; 21(1): 94–101
CrossRef
Google scholar
|
[83] |
Wilson AJ, Murphy WA, Hardy DC, Totty WG. Transient osteoporosis: transient bone marrow edema?. Radiology 1988; 167(3): 757–760
CrossRef
Google scholar
|
[84] |
Leydet-Quilici H, Le Corroller T, Bouvier C, Giorgi R, Argenson JN, Champsaur P, Pham T, de Paula AM, Lafforgue P. Advanced hip osteoarthritis: magnetic resonance imaging aspects and histopathology correlations. Osteoarthritis Cartilage 2010; 18(11): 1429–1435
CrossRef
Google scholar
|
[85] |
Kon E, Ronga M, Filardo G, Farr J, Madry H, Milano G, Andriolo L, Shabshin N. Bone marrow lesions and subchondral bone pathology of the knee. Knee Surg Sports Traumatol Arthrosc 2016; 24(6): 1797–1814
CrossRef
Google scholar
|
[86] |
Muratovic D, Findlay DM, Cicuttini FM, Wluka AE, Lee YR, Edwards S, Kuliwaba JS. Bone marrow lesions in knee osteoarthritis: regional differences in tibial subchondral bone microstructure and their association with cartilage degeneration. Osteoarthritis Cartilage 2019; 27(11): 1653–1662
CrossRef
Google scholar
|
[87] |
Koushesh S, Shahtaheri SM, McWilliams DF, Walsh DA, Sheppard MN, Westaby J, Haybatollahi SM, Howe FA, Sofat N. The osteoarthritis bone score (OABS): a new histological scoring system for the characterisation of bone marrow lesions in osteoarthritis. Osteoarthritis Cartilage 2022; 30(5): 746–755
CrossRef
Google scholar
|
[88] |
Kuttapitiya A, Assi L, Laing K, Hing C, Mitchell P, Whitley G, Harrison A, Howe FA, Ejindu V, Heron C, Sofat N. Microarray analysis of bone marrow lesions in osteoarthritis demonstrates upregulation of genes implicated in osteochondral turnover, neurogenesis and inflammation. Ann Rheum Dis 2017; 76(10): 1764–1773
CrossRef
Google scholar
|
[89] |
Nwosu LN, Allen M, Wyatt L, Huebner JL, Chapman V, Walsh DA, Kraus VB. Pain prediction by serum biomarkers of bone turnover in people with knee osteoarthritis: an observational study of TRAcP5b and cathepsin K in OA. Osteoarthritis Cartilage 2017; 25(6): 858–865
CrossRef
Google scholar
|
[90] |
Zarka M, Hay E, Ostertag A, Marty C, Chappard C, Oudet F, Engelke K, Laredo JD, Cohen-Solal M. Microcracks in subchondral bone plate is linked to less cartilage damage. Bone 2019; 123: 1–7
CrossRef
Google scholar
|
[91] |
Gilbert W, Bragg R, Elmansi AM, McGee-Lawrence ME, Isales CM, Hamrick MW, Hill WD, Fulzele S. Stromal cell-derived factor-1 (CXCL12) and its role in bone and muscle biology. Cytokine 2019; 123: 154783
CrossRef
Google scholar
|
[92] |
Tonna S, Poulton IJ, Taykar F, Ho PW, Tonkin B, Crimeen-Irwin B, Tatarczuch L, McGregor NE, Mackie EJ, Martin TJ, Sims NA. Chondrocytic ephrin B2 promotes cartilage destruction by osteoclasts in endochondral ossification. Development 2016; 143(4): 648–657
|
[93] |
Croucher PI, McDonald MM, Martin TJ. Bone metastasis: the importance of the neighbourhood. Nat Rev Cancer 2016; 16(6): 373–386
CrossRef
Google scholar
|
[94] |
Zhang RK, Li GW, Zeng C, Lin CX, Huang LS, Huang GX, Zhao C, Feng SY, Fang H. Mechanical stress contributes to osteoarthritis development through the activation of transforming growth factor beta 1 (TGF-β1). Bone Joint Res 2018; 7(11): 587–594
CrossRef
Google scholar
|
[95] |
Jung YK, Han MS, Park HR, Lee EJ, Jang JA, Kim GW, Lee SY, Moon D, Han S. Calcium-phosphate complex increased during subchondral bone remodeling affects earlystage osteoarthritis. Sci Rep 2018; 8(1): 487–497
CrossRef
Google scholar
|
[96] |
Pearson MJ, Herndler-Brandstetter D, Tariq MA, Nicholson TA, Philp AM, Smith HL, Davis ET, Jones SW, Lord JM. IL-6 secretion in osteoarthritis patients is mediated by chondrocyte-synovial fibroblast cross-talk and is enhanced by obesity. Sci Rep 2017; 7(1): 3451–3462
CrossRef
Google scholar
|
[97] |
Cao Y, Jansen ID, Sprangers S, Stap J, Leenen PJ, Everts V, de Vries TJ. IL-1β differently stimulates proliferation and multinucleation of distinct mouse bone marrow osteoclast precursor subsets. J Leukoc Biol 2016; 100(3): 513–523
CrossRef
Google scholar
|
[98] |
Tang Q, Su YW, Fan CM, Chung R, Hassanshahi M, Peymanfar Y, Xian CJ. Release of CXCL12 from apoptotic skeletal cells contributes to bone growth defects following dexamethasone therapy in rats. J Bone Miner Res 2020; 35(8): 1612–1613
CrossRef
Google scholar
|
[99] |
Chen L, Yao F, Wang T, Li G, Chen P, Bulsara M, Zheng JJY, Landao-Bassonga E, Firth M, Vasantharao P, Huang Y, Lorimer M, Graves S, Gao J, Carey-Smith R, Papadimitriou J, Zhang C, Wood D, Jones C, Zheng M. Horizontal fissuring at the osteochondral interface: a novel and unique pathological feature in patients with obesity-related osteoarthritis. Ann Rheum Dis 2020; 79(6): 811–818
CrossRef
Google scholar
|
[100] |
Yuan XL, Meng HY, Wang YC, Peng J, Guo QY, Wang AY, Lu SB. Bone-cartilage interface crosstalk in osteoarthritis: potential pathways and future therapeutic strategies. Osteoarthritis Cartilage 2014; 22(8): 1077–1089
CrossRef
Google scholar
|
[101] |
Carrino JA, Blum J, Parellada JA, Schweitzer ME, Morrison WB. MRI of bone marrow edema-like signal in the pathogenesis of subchondral cysts. Osteoarthritis Cartilage 2006; 14(10): 1081–1085
CrossRef
Google scholar
|
[102] |
Anwar A, Hu Z, Zhang Y, Gao Y, Tian C, Wang X, Nazir MU, Wang Y, Zhao Z, Lv D, Zhang Z, Zhang H, Lv G. Multiple subchondral bone cysts cause deterioration of articular cartilage in medial OA of knee: a 3D simulation study. Front Bioeng Biotechnol 2020; 8: 573938
CrossRef
Google scholar
|
[103] |
Perry TA, O’Neill TW, Tolstykh I, Lynch J, Felson DT, Arden NK, Nevitt MC. Magnetic resonance imaging-assessed subchondral cysts and incident knee pain and knee osteoarthritis: data from the multicenter osteoarthritis study. Arthritis Rheumatol 2022; 74(1): 60–69
CrossRef
Google scholar
|
[104] |
Nakasone A, Guang Y, Wise A, Kim L, Babbin J, Rathod S, Mitchell AJ, Gerstenfeld LC, Morgan EF. Structural features of subchondral bone cysts and adjacent tissues in hip osteoarthritis. Osteoarthritis Cartilage 2022; 30(8): 1130–1139
CrossRef
Google scholar
|
[105] |
von Rechenberg B, Guenther H, McIlwraith CW, Leutenegger C, Frisbie DD, Akens MK, Auer JA. Fibrous tissue of subchondral cystic lesions in horses produce local mediators and neutral metalloproteinases and cause bone resorption in vitro. Vet Surg 2000; 29(5): 420–429
CrossRef
Google scholar
|
[106] |
Dürr HD, Martin H, Pellengahr C, Schlemmer M, Maier M, Jansson V. The cause of subchondral bone cysts in osteoarthrosis: a finite element analysis. Acta Orthop Scand 2004; 75(5): 554–558
CrossRef
Google scholar
|
[107] |
Cox LG, Lagemaat MW, van Donkelaar CC, van Rietbergen B, Reilingh ML, Blankevoort L, van Dijk CN, Ito K. The role of pressurized fluid in subchondral bone cyst growth. Bone 2011; 49(4): 762–768
CrossRef
Google scholar
|
[108] |
Iijima H, Aoyama T, Ito A, Yamaguchi S, Nagai M, Tajino J, Zhang X, Kuroki H. Effects of short-term gentle treadmill walking on subchondral bone in a rat model of instability-induced osteoarthritis. Osteoarthritis Cartilage 2015; 23(9): 1563–1574
CrossRef
Google scholar
|
[109] |
Wang W, Ding R, Zhang N, Hernigou P. Subchondral bone cysts regress after correction of malalignment in knee osteoarthritis: comply with Wolff’s law. Int Orthop 2021; 45(2): 445–451
CrossRef
Google scholar
|
[110] |
Li G, Yin J, Gao J, Cheng TS, Pavlos NJ, Zhang C, Zheng MH. Subchondral bone in osteoarthritis: insight into risk factors and microstructural changes. Arthritis Res Ther 2013; 15(6): 223–235
CrossRef
Google scholar
|
[111] |
Chan PMB, Wen C, Yang WC, Yan C, Chiu K. Is subchondral bone cyst formation in non-load-bearing region of osteoarthritic knee a vascular problem?. Med Hypotheses 2017; 109: 80–83
CrossRef
Google scholar
|
[112] |
Sumino H, Ichikawa S, Kasama S, Takahashi T, Kumakura H, Takayama Y, Kanda T, Sakamaki T, Kurabayashi M. Elevated arterial stiffness in postmenopausal women with osteoporosis. Maturitas 2006; 55(3): 212–218
CrossRef
Google scholar
|
[113] |
Kamekura S, Hoshi K, Shimoaka T, Chung U, Chikuda H, Yamada T, Uchida M, Ogata N, Seichi A, Nakamura K, Kawaguchi H. Osteoarthritis development in novel experimental mouse models induced by knee joint instability. Osteoarthritis Cartilage 2005; 13(7): 632–641
CrossRef
Google scholar
|
[114] |
Lieberthal J, Sambamurthy N, Scanzello CR. Inflammation in joint injury and post-traumatic osteoarthritis. Osteoarthritis Cartilage 2015; 23(11): 1825–1834
CrossRef
Google scholar
|
[115] |
Feng K, Ge Y, Chen Z, Li X, Liu Z, Li X, Li H, Tang T, Yang F, Wang X. Curcumin inhibits the PERK-eIF2α-CHOP pathway through promoting SIRT1 expression in oxidative stress-induced rat chondrocytes and ameliorates osteoarthritis progression in a rat model. Oxid Med Cell Longev 2019; 2019: 8574386
CrossRef
Google scholar
|
[116] |
Faust HJ, Zhang H, Han J, Wolf MT, Jeon OH, Sadtler K, Peña AN, Chung L, Maestas DR Jr, Tam AJ, Pardoll DM, Campisi J, Housseau F, Zhou D, Bingham CO 3rd, Elisseeff JH. IL-17 and immunologically induced senescence regulate response to injury in osteoarthritis. J Clin Invest 2020; 130(10): 5493–5507
CrossRef
Google scholar
|
[117] |
Xue JF, Shi ZM, Zou J, Li XL. Inhibition of PI3K/AKT/mTOR signaling pathway promotes autophagy of articular chondrocytes and attenuates inflammatory response in rats with osteoarthritis. Biomed Pharmacother 2017; 89: 1252–1261
CrossRef
Google scholar
|
[118] |
Astephen Wilson JL, Kobsar D. Osteoarthritis year in review 2020: mechanics. Osteoarthritis Cartilage 2021; 29(2): 161–169
CrossRef
Google scholar
|
[119] |
Mobasheri A, Matta C, Zákány R, Musumeci G. Chondrosenescence: definition, hallmarks and potential role in the pathogenesis of osteoarthritis. Maturitas 2015; 80(3): 237–244
CrossRef
Google scholar
|
[120] |
Shen J, Abu-Amer Y, O’Keefe RJ, McAlinden A. Inflammation and epigenetic regulation in osteoarthritis. Connect Tissue Res 2017; 58(1): 49–63
CrossRef
Google scholar
|
[121] |
Ruscitto A, Scarpa V, Morel M, Pylawka S, Shawber CJ, Embree MC. Notch regulates fibrocartilage stem cell fate and is upregulated in inflammatory TMJ arthritis. J Dent Res 2020; 99(10): 1174–1181
CrossRef
Google scholar
|
[122] |
Qiu B, Xu X, Yi P, Hao Y. Curcumin reinforces MSC-derived exosomes in attenuating osteoarthritis via modulating the miR-124/NF-κB and miR-143/ROCK1/TLR9 signalling pathways. J Cell Mol Med 2020; 24(18): 10855–10865
CrossRef
Google scholar
|
[123] |
Wang C, Shen J, Ying J, Xiao D, O’Keefe RJ. FoxO1 is a crucial mediator of TGF-β/TAK1 signaling and protects against osteoarthritis by maintaining articular cartilage homeostasis. Proc Natl Acad Sci USA 2020; 117(48): 30488–30497
CrossRef
Google scholar
|
[124] |
Lietman C, Wu B, Lechner S, Shinar A, Sehgal M, Rossomacha E, Datta P, Sharma A, Gandhi R, Kapoor M, Young PP. Inhibition of Wnt/β-catenin signaling ameliorates osteoarthritis in a murine model of experimental osteoarthritis. JCI Insight 2018; 3(3): e96308
CrossRef
Google scholar
|
[125] |
Lu J, Zhang H, Pan J, Hu Z, Liu L, Liu Y, Yu X, Bai X, Cai D, Zhang H. Fargesin ameliorates osteoarthritis via macrophage reprogramming by downregulating MAPK and NF-κB pathways. Arthritis Res Ther 2021; 23(1): 142–155
CrossRef
Google scholar
|
[126] |
Gibertoni F, Sommer MEL, Esquisatto MAM, Amaral MECD, Oliveira CA, Andrade TAM, Mendonça FAS, Santamaria M Jr, Felonato M. Evolution of periodontal disease: immune response and RANK/RANKL/OPG system. Braz Dent J 2017; 28(6): 679–687
CrossRef
Google scholar
|
[127] |
Chen X, Wang Z, Duan N, Zhu G, Schwarz EM, Xie C. Osteoblast-osteoclast interactions. Connect Tissue Res 2018; 59(2): 99–107
CrossRef
Google scholar
|
[128] |
Neumann E, Müller-Ladner U, Frommer KW. Inflammation and bone metabolism. Z Rheumatol 2014; 73(4): 342–348 (in German)
CrossRef
Google scholar
|
[129] |
Takegahara N, Kim H, Choi Y. RANKL biology. Bone 2022; 159: 116353
CrossRef
Google scholar
|
[130] |
Kovács B, Vajda E, Nagy EE. Regulatory effects and interactions of the Wnt and OPG-RANKL-RANK signaling at the bone-cartilage interface in osteoarthritis. Int J Mol Sci 2019; 20(18): 4653–4681
CrossRef
Google scholar
|
[131] |
Yun TJ, Chaudhary PM, Shu GL, Frazer JK, Ewings MK, Schwartz SM, Pascual V, Hood LE, Clark EA. OPG/FDCR-1, a TNF receptor family member, is expressed in lymphoid cells and is up-regulated by ligating CD40. J Immunol 1998; 161(11): 6113–6121
CrossRef
Google scholar
|
[132] |
Yasuda H. Correction to: Discovery of the RANKL/RANK/OPG system. J Bone Miner Metab 2021; 39(1): 12–22
CrossRef
Google scholar
|
[133] |
Frase D, Lee C, Nachiappan C, Gupta R, Akkouch A. The inflammatory contribution of B-lymphocytes and neutrophils in progression to osteoporosis. Cells 2023; 12(13): 1744–1759
CrossRef
Google scholar
|
[134] |
Rochette L, Meloux A, Rigal E, Zeller M, Cottin Y, Vergely C. The role of osteoprotegerin and its ligands in vascular function. Int J Mol Sci 2019; 20(3): 705–724
CrossRef
Google scholar
|
[135] |
Lee J, Lee S, Lee CY, Seo HH, Shin S, Choi JW, Kim SW, Park JC, Lim S, Hwang KC. Adipose-derived stem cell-released osteoprotegerin protects cardiomyocytes from reactive oxygen species-induced cell death. Stem Cell Res Ther 2017; 8(1): 195–201
CrossRef
Google scholar
|
[136] |
Li X, Qin L, Bergenstock M, Bevelock LM, Novack DV, Partridge NC. Parathyroid hormone stimulates osteoblastic expression of MCP-1 to recruit and increase the fusion of pre/osteoclasts. J Biol Chem 2007; 282(45): 33098–33106
CrossRef
Google scholar
|
[137] |
Dutka M, Bobiński R, Wojakowski W, Francuz T, Pająk C, Zimmer K. Osteoprotegerin and RANKL-RANK-OPG-TRAIL signalling axis in heart failure and other cardiovascular diseases. Heart Fail Rev 2022; 27(4): 1395–1411
CrossRef
Google scholar
|
[138] |
Kikuchi S, Wada A, Kamihara Y, Yamamoto I, Kirigaya D, Kunimoto K, Horaguchi R, Fujihira T, Nabe Y, Minemura T, Dang NH, Sato T. A novel mechanism for bone loss: platelet count negatively correlates with bone mineral density via megakaryocyte-derived RANKL. Int J Mol Sci 2023; 24(15): 12150–12158
CrossRef
Google scholar
|
[139] |
Theoleyre S, Wittrant Y, Tat SK, Fortun Y, Redini F, Heymann D. The molecular triad OPG/RANK/RANKL: involvement in the orchestration of pathophysiological bone remodeling. Cytokine Growth Factor Rev 2004; 15(6): 457–475
CrossRef
Google scholar
|
[140] |
Milanova V, Ivanovska N, Dimitrova P. TLR2 elicits IL-17-mediated RANKL expression, IL-17, and OPG production in neutrophils from arthritic mice. Mediators Inflamm 2014; 2014: 643406
CrossRef
Google scholar
|
[141] |
Hao S, Zhang J, Huang B, Feng D, Niu X, Huang W. Bone remodeling serum markers in children with systemic lupus erythematosus. Pediatr Rheumatol Online J 2022; 20(1): 54–60
CrossRef
Google scholar
|
[142] |
Hadji P, Colli E, Regidor PA. Bone health in estrogen-free contraception. Osteoporos Int 2019; 30(12): 2391–2400
CrossRef
Google scholar
|
[143] |
Khosla S. Minireview: the OPG/RANKL/RANK system. Endocrinology 2001; 142(12): 5050–5055
CrossRef
Google scholar
|
[144] |
Hariri H, Kose O, Bezdjian A, Daniel SJ, St-Arnaud R. USP53 regulates bone homeostasis by controlling rankl expression in osteoblasts and bone marrow adipocytes. J Bone Miner Res 2023; 38(4): 578–596
CrossRef
Google scholar
|
[145] |
Dougall WC, Glaccum M, Charrier K, Rohrbach K, Brasel K, De Smedt T, Daro E, Smith J, Tometsko ME, Maliszewski CR, Armstrong A, Shen V, Bain S, Cosman D, Anderson D, Morrissey PJ, Peschon JJ, Schuh J. RANK is essential for osteoclast and lymph node development. Genes Dev 1999; 13(18): 2412–2424
CrossRef
Google scholar
|
[146] |
Li X, Cui L, Chen W, Fang Y, Shen G, Li Z, Zhang B, Wu L. QiangGuYin modulates the OPG/RANKL/RANK pathway by increasing secretin levels during treatment of primary type I osteoporosis. Evid Based Complement Alternat Med 2021; 2021: 7114139
CrossRef
Google scholar
|
[147] |
Okamoto K, Nakashima T, Shinohara M, Negishi-Koga T, Komatsu N, Terashima A, Sawa S, Nitta T, Takayanagi H. Osteoimmunology: the conceptual framework unifying the immune and skeletal systems. Physiol Rev 2017; 97(4): 1295–1349
CrossRef
Google scholar
|
[148] |
Kearns AE, Khosla S, Kostenuik PJ. Receptor activator of nuclear factor κB ligand and osteoprotegerin regulation of bone remodeling in health and disease. Endocr Rev 2008; 29(2): 155–192
CrossRef
Google scholar
|
[149] |
Furuya Y, Mera H, Itokazu M, Terai S, Nakamura H, Wakitani S, Yasuda H. Induction of chondrogenesis with a RANKL-binding peptide, WP9QY, in vitro and in vivo in a rabbit model. Biochem Biophys Res Commun 2022; 602: 98–104
CrossRef
Google scholar
|
[150] |
Li B, Wang P, Jiao J, Wei H, Xu W, Zhou P. Roles of the RANKL-RANK axis in immunity-implications for pathogenesis and treatment of bone metastasis. Front Immunol 2022; 13: 824117
CrossRef
Google scholar
|
[151] |
Yasuda H. Discovery of the RANKL/RANK/OPG system. J Bone Miner Metab 2021; 39(1): 2–11
CrossRef
Google scholar
|
[152] |
van Dam PA, Verhoeven Y, Jacobs J, Wouters A, Tjalma W, Lardon F, Van den Wyngaert T, Dewulf J, Smits E, Colpaert C, Prenen H, Peeters M, Lammens M, Trinh XB. RANK-RANKL signaling in cancer of the uterine cervix: a review. Int J Mol Sci 2019; 20(9): 2183–2198
CrossRef
Google scholar
|
[153] |
Nakashima T, Hayashi M, Takayanagi H. New insights into osteoclastogenic signaling mechanisms. Trends Endocrinol Metab 2012; 23(11): 582–590
CrossRef
Google scholar
|
[154] |
González-Suárez E, Sanz-Moreno A. RANK as a therapeutic target in cancer. FEBS J 2016; 283(11): 2018–2033
CrossRef
Google scholar
|
[155] |
Lalani AI, Zhu S, Gokhale S, Jin J, Xie P. TRAF molecules in inflammation and inflammatory diseases. Curr Pharmacol Rep 2018; 4(1): 64–90
CrossRef
Google scholar
|
[156] |
Galibert L, Tometsko ME, Anderson DM, Cosman D, Dougall WC. The involvement of multiple tumor necrosis factor receptor (TNFR)-associated factors in the signaling mechanisms of receptor activator of NF-κB, a member of the TNFR superfamily. J Biol Chem 1998; 273(51): 34120–34127
CrossRef
Google scholar
|
[157] |
Ma X, Liu J, Yang L, Zhang B, Dong Y, Zhao Q. Cynomorium songaricum prevents bone resorption in ovariectomized rats through RANKL/RANK/TRAF6 mediated suppression of PI3K/AKT and NF-κB pathways. Life Sci 2018; 209: 140–148
CrossRef
Google scholar
|
[158] |
Martin TJ, Sims NA. RANKL/OPG; critical role in bone physiology. Rev Endocr Metab Disord 2015; 16(2): 131–139
CrossRef
Google scholar
|
[159] |
Duan Y, Su YT, Ren J, Zhou Q, Tang M, Li J, Li SX. Kidney tonifying traditional Chinese medicine: potential implications for the prevention and treatment of osteoporosis. Front Pharmacol 2023; 13: 1063899
CrossRef
Google scholar
|
[160] |
Zhen G, Wen C, Jia X, Li Y, Crane JL, Mears SC, Askin FB, Frassica FJ, Chang W, Yao J, Carrino JA, Cosgarea A, Artemov D, Chen Q, Zhao Z, Zhou X, Riley L, Sponseller P, Wan M, Lu WW, Cao X. Inhibition of TGF-β signaling in mesenchymal stem cells of subchondral bone attenuates osteoarthritis. Nat Med 2013; 19(6): 704–712
CrossRef
Google scholar
|
[161] |
Tang Y, Wu X, Lei W, Pang L, Wan C, Shi Z, Zhao L, Nagy TR, Peng X, Hu J, Feng X, Van Hul W, Wan M, Cao X. TGF-β1-induced migration of bone mesenchymal stem cells couples bone resorption with formation. Nat Med 2009; 15(7): 757–765
CrossRef
Google scholar
|
[162] |
Zhong Y, Xu Y, Xue S, Zhu L, Lu H, Wang C, Chen H, Sang W, Ma J. Nangibotide attenuates osteoarthritis by inhibiting osteoblast apoptosis and TGF-β activity in subchondral bone. Inflammopharmacology 2022; 30(3): 1107–1117
CrossRef
Google scholar
|
[163] |
Muratovic D, Findlay DM, Quarrington RD, Cao X, Solomon LB, Atkins GJ, Kuliwaba JS. Elevated levels of active transforming growth factor β1 in the subchondral bone relate spatially to cartilage loss and impaired bone quality in human knee osteoarthritis. Osteoarthritis Cartilage 2022; 30(6): 896–907
CrossRef
Google scholar
|
[164] |
Mu W, Xu B, Ma H, Li J, Ji B, Zhang Z, Amat A, Cao L. Halofuginone attenuates osteoarthritis by rescuing bone remodeling in subchondral bone through oral gavage. Front Pharmacol 2018; 9: 269–279
CrossRef
Google scholar
|
[165] |
Zhen G, Wen C, Jia X, Li Y, Crane JL, Mears SC, Askin FB, Frassica FJ, Chang W, Yao J, Carrino JA, Cosgarea A, Artemov D, Chen Q, Zhao Z, Zhou X, Riley L, Sponseller P, Wan M, Lu WW, Cao X. Inhibition of TGF-β signaling in mesenchymal stem cells of subchondral bone attenuates osteoarthritis. Nat Med 2013; 19(6): 704–712
CrossRef
Google scholar
|
[166] |
Lin C, Chen Z, Guo D, Zhou L, Lin S, Li C, Li S, Wang X, Lin B, Ding Y. Increased expression of osteopontin in subchondral bone promotes bone turnover and remodeling, and accelerates the progression of OA in a mouse model. Aging (Albany NY) 2022; 14(1): 253–271
CrossRef
Google scholar
|
[167] |
Xie H, Cui Z, Wang L, Xia Z, Hu Y, Xian L, Li C, Xie L, Crane J, Wan M, Zhen G, Bian Q, Yu B, Chang W, Qiu T, Pickarski M, Duong LT, Windle JJ, Luo X, Liao E, Cao X. PDGF-BB secreted by preosteoclasts induces angiogenesis during coupling with osteogenesis. Nat Med 2014; 20(11): 1270–1278
CrossRef
Google scholar
|
[168] |
Rochette L, Meloux A, Rigal E, Zeller M, Cottin Y, Vergely C. The role of osteoprotegerin and its ligands in vascular function. Int J Mol Sci 2019; 20(3): 705
CrossRef
Google scholar
|
[169] |
Zupan J, Vrtačnik P, Cör A, Haring G, Weryha G, Visvikis-Siest S, Marc J. VEGF-A is associated with early degenerative changes in cartilage and subchondral bone. Growth Factors 2018; 36(5–6): 263–273
CrossRef
Google scholar
|
[170] |
Upton AR, Holding CA, Dharmapatni AA, Haynes DR. The expression of RANKL and OPG in the various grades of osteoarthritic cartilage. Rheumatol Int 2012; 32(2): 535–540
CrossRef
Google scholar
|
[171] |
Kwan Tat S, Amiable N, Pelletier JP, Boileau C, Lajeunesse D, Duval N, Martel-Pelletier J. Modulation of OPG, RANK and RANKL by human chondrocytes and their implication during osteoarthritis. Rheumatology (Oxford) 2009; 48(12): 1482–1490
CrossRef
Google scholar
|
[172] |
Hashimoto G, Inoki I, Fujii Y, Aoki T, Ikeda E, Okada Y. Matrix metalloproteinases cleave connective tissue growth factor and reactivate angiogenic activity of vascular endothelial growth factor 165. J Biol Chem 2002; 277(39): 36288–36295
CrossRef
Google scholar
|
[173] |
Wilkinson DJ, Falconer AMD, Wright HL, Lin H, Yamamoto K, Cheung K, Charlton SH, Arques MDC, Janciauskiene S, Refaie R, Rankin KS, Young DA, Rowan AD. Matrix metalloproteinase-13 is fully activated by neutrophil elastase and inactivates its serpin inhibitor, alpha-1 antitrypsin: implications for osteoarthritis. FEBS J 2022; 289(1): 121–139
CrossRef
Google scholar
|
[174] |
Boileau C, Amiable N, Martel-Pelletier J, Fahmi H, Duval N, Pelletier JP. Activation of proteinase-activated receptor 2 in human osteoarthritic cartilage upregulates catabolic and proinflammatory pathways capable of inducing cartilage degradation: a basic science study. Arthritis Res Ther 2007; 9(6): R121–R131
CrossRef
Google scholar
|
[175] |
Xue M, Lin H, Liang HPH, McKelvey K, Zhao R, March L, Jackson C. Deficiency of protease-activated receptor (PAR) 1 and PAR2 exacerbates collagen-induced arthritis in mice via differing mechanisms. Rheumatology (Oxford) 2021; 60(6): 2990–3003
CrossRef
Google scholar
|
[176] |
Amiable N, Tat SK, Lajeunesse D, Duval N, Pelletier JP, Martel-Pelletier J, Boileau C. Proteinase-activated receptor (PAR)-2 activation impacts bone resorptive properties of human osteoarthritic subchondral bone osteoblasts. Bone 2009; 44(6): 1143–1150
CrossRef
Google scholar
|
[177] |
França BN, Gasparoni LM, Rovai ES, Ambrósio LMB, Mendonça NF, Hagy MH, Mendoza AH, Sipert CR, Holzhausen M. Protease-activated receptor type 2 activation downregulates osteogenesis in periodontal ligament stem cells. Braz Oral Res 2023; 37: e002
CrossRef
Google scholar
|
[178] |
Tashiro K, Tada H, Heilker R, Shirozu M, Nakano T, Honjo T. Signal sequence trap: a cloning strategy for secreted proteins and type I membrane proteins. Science 1993; 261(5121): 600–603
CrossRef
Google scholar
|
[179] |
Nagasawa T, Kikutani H, Kishimoto T. Molecular cloning and structure of a pre-B-cell growth-stimulating factor. Proc Natl Acad Sci USA 1994; 91(6): 2305–2309
CrossRef
Google scholar
|
[180] |
Nagasawa T. CXC chemokine ligand 12 (CXCL12) and its receptor CXCR4. J Mol Med (Berl) 2014; 92(5): 433–439
CrossRef
Google scholar
|
[181] |
Roversi FM, Bueno MLP, Pericole FV, Saad STO. Hematopoietic cell kinase (HCK) is a player of the crosstalk between hematopoietic cells and bone marrow niche through CXCL12/CXCR4 axis. Front Cell Dev Biol 2021; 9: 634044
CrossRef
Google scholar
|
[182] |
D’Amato G, Phansalkar R, Naftaly JA, Fan X, Amir ZA, Rios Coronado PE, Cowley DO, Quinn KE, Sharma B, Caron KM, Vigilante A, Red-Horse K. Endocardium-to-coronary artery differentiation during heart development and regeneration involves sequential roles of Bmp2 and Cxcl12/Cxcr4. Dev Cell 2022; 57(22): 2517–2532.e6
CrossRef
Google scholar
|
[183] |
Gao A, Yan F, Zhou E, Wu L, Li L, Chen J, Lei Y, Ye J. Molecular characterization and expression analysis of chemokine (CXCL12) from Nile tilapia (Oreochromis niloticus). Fish Shellfish Immunol 2020; 104: 314–323
CrossRef
Google scholar
|
[184] |
Chen Q, Zheng C, Li Y, Bian S, Pan H, Zhao X, Lu WW. Bone targeted delivery of SDF-1 via alendronate functionalized nanoparticles in guiding stem cell migration. ACS Appl Mater Interfaces 2018; 10(28): 23700–23710
CrossRef
Google scholar
|
[185] |
Bleul CC, Fuhlbrigge RC, Casasnovas JM, Aiuti A, Springer TA. A highly efficacious lymphocyte chemoattractant, stromal cell-derived factor 1 (SDF-1). J Exp Med 1996; 184(3): 1101–1109
CrossRef
Google scholar
|
[186] |
Janowski M. Functional diversity of SDF-1 splicing variants. Cell Adhes Migr 2009; 3(3): 243–249
CrossRef
Google scholar
|
[187] |
Yang Y, Li J, Lei W, Wang H, Ni Y, Liu Y, Yan H, Tian Y, Wang Z, Yang Z, Yang S, Yang Y, Wang Q. CXCL12-CXCR4/CXCR7 axis in cancer: from mechanisms to clinical applications. Int J Biol Sci 2023; 19(11): 3341–3359
CrossRef
Google scholar
|
[188] |
Mousavi A. CXCL12/CXCR4 signal transduction in diseases and its molecular approaches in targeted-therapy. Immunol Lett 2020; 217: 91–115
CrossRef
Google scholar
|
[189] |
Staudt ND, Maurer A, Spring B, Kalbacher H, Aicher WK, Klein G. Processing of CXCL12 by different osteoblast-secreted cathepsins. Stem Cells Dev 2012; 21(11): 1924–1935
CrossRef
Google scholar
|
[190] |
Cho SY, Xu M, Roboz J, Lu M, Mascarenhas J, Hoffman R. The effect of CXCL12 processing on CD34+ cell migration in myeloproliferative neoplasms. Cancer Res 2010; 70(8): 3402–3410
CrossRef
Google scholar
|
[191] |
Yan Y, Xiong J, Xu F, Wang C, Zeng Z, Tang H, Lu Z, Huang Q. SDF-1α/CXCR4 pathway mediates hemodynamics-induced formation of intracranial aneurysm by modulating the phenotypic transformation of vascular smooth muscle cells. Transl Stroke Res 2022; 13(2): 276–286
CrossRef
Google scholar
|
[192] |
Wang G, Li Y, Meng X, Yang X, Xiang Y. The study of targeted blocking SDF-1/CXCR4 signaling pathway with three antagonists on MMPs, type II collagen, and aggrecan levels in articular cartilage of guinea pigs. J Orthop Surg Res 2020; 15(1): 195–202
CrossRef
Google scholar
|
[193] |
Janssens R, Struyf S, Proost P. Pathological roles of the homeostatic chemokine CXCL12. Cytokine Growth Factor Rev 2018; 44: 51–68
CrossRef
Google scholar
|
[194] |
McGrath KE, Koniski AD, Maltby KM, McGann JK, Palis J. Embryonic expression and function of the chemokine SDF-1 and its receptor, CXCR4. Dev Biol 1999; 213(2): 442–456
CrossRef
Google scholar
|
[195] |
Wescott MP, Kufareva I, Paes C, Goodman JR, Thaker Y, Puffer BA, Berdougo E, Rucker JB, Handel TM, Doranz BJ. Signal transmission through the CXC chemokine receptor 4 (CXCR4) transmembrane helices. Proc Natl Acad Sci USA 2016; 113(35): 9928–9933
CrossRef
Google scholar
|
[196] |
Chang CC, Liou JW, Dass KTP, Li YT, Jiang SJ, Pan SF, Yeh YC, Hsu HJ. Internal water channel formation in CXCR4 is crucial for Gi-protein coupling upon activation by CXCL12. Commun Chem 2020; 3(1): 133–145
CrossRef
Google scholar
|
[197] |
Pawig L, Klasen C, Weber C, Bernhagen J, Noels H. Diversity and inter-connections in the CXCR4 chemokine receptor/ligand family: molecular perspectives. Front Immunol 2015; 6: 429–452
CrossRef
Google scholar
|
[198] |
Imitola J, Raddassi K, Park KI, Mueller FJ, Nieto M, Teng YD, Frenkel D, Li J, Sidman RL, Walsh CA, Snyder EY, Khoury SJ. Directed migration of neural stem cells to sites of CNS injury by the stromal cell-derived factor 1alpha/CXC chemokine receptor 4 pathway. Proc Natl Acad Sci USA 2004; 101(52): 18117–18122
CrossRef
Google scholar
|
[199] |
Tong WW, Zhang C, Hong T, Liu DH, Wang C, Li J, He XK, Xu WD. Silibinin alleviates inflammation and induces apoptosis in human rheumatoid arthritis fibroblast-like synoviocytes and has a therapeutic effect on arthritis in rats. Sci Rep 2018; 8(1): 3241–3253
CrossRef
Google scholar
|
[200] |
Ziegler ME, Hatch MM, Wu N, Muawad SA, Hughes CC. mTORC2 mediates CXCL12-induced angiogenesis. Angiogenesis 2016; 19(3): 359–371
CrossRef
Google scholar
|
[201] |
Kawaguchi N, Zhang TT, Nakanishi T. Involvement of CXCR4 in normal and abnormal development. Cells 2019; 8(2): 185–199
CrossRef
Google scholar
|
[202] |
Chetram MA, Odero-Marah V, Hinton CV. Loss of PTEN permits CXCR4-mediated tumorigenesis through ERK1/2 in prostate cancer cells. Mol Cancer Res 2011; 9(1): 90–102
CrossRef
Google scholar
|
[203] |
García-Cuesta EM, Santiago CA, Vallejo-Díaz J, Juarranz Y, Rodríguez-Frade JM, Mellado M. The role of the CXCL12/CXCR4/ACKR3 Axis in autoimmune diseases. Front Endocrinol (Lausanne) 2019; 10: 585–601
CrossRef
Google scholar
|
[204] |
Li Y, Xue M, Deng X, Dong L, Nguyen LXT, Ren L, Han L, Li C, Xue J, Zhao Z, Li W, Qing Y, Shen C, Tan B, Chen Z, Leung K, Wang K, Swaminathan S, Li L, Wunderlich M, Mulloy JC, Li X, Chen H, Zhang B, Horne D, Rosen ST, Marcucci G, Xu M, Li Z, Wei M, Tian J, Shen B, Su R, Chen J. TET2-mediated mRNA demethylation regulates leukemia stem cell homing and self-renewal. Cell Stem Cell 2023; 30(8): 1072–1090.e10
CrossRef
Google scholar
|
[205] |
Hong JM, Lee JW, Seen DS, Jeong JY, Huh WK. LPA1-mediated inhibition of CXCR4 attenuates CXCL12-induced signaling and cell migration. Cell Commun Signal 2023; 21(1): 257–280
CrossRef
Google scholar
|
[206] |
Midavaine É, Côté J, Sarret P. The multifaceted roles of the chemokines CCL2 and CXCL12 in osteophilic metastatic cancers. Cancer Metastasis Rev 2021; 40(2): 427–445
CrossRef
Google scholar
|
[207] |
Kanbe K, Takagishi K, Chen Q. Stimulation of matrix metalloprotease 3 release from human chondrocytes by the interaction of stromal cell-derived factor 1 and CXC chemokine receptor 4. Arthritis Rheum 2002; 46(1): 130–137
CrossRef
Google scholar
|
[208] |
Xu Q, Sun XC, Shang XP, Jiang HS. Association of CXCL12 levels in synovial fluid with the radiographic severity of knee osteoarthritis. J Investig Med 2012; 60(6): 898–901
CrossRef
Google scholar
|
[209] |
Wang S, Mobasheri A, Zhang Y, Wang Y, Dai T, Zhang Z. Exogenous stromal cell-derived factor-1 (SDF-1) suppresses the NLRP3 inflammasome and inhibits pyroptosis in synoviocytes from osteoarthritic joints via activation of the AMPK signaling pathway. Inflammopharmacology 2021; 29(3): 695–704
CrossRef
Google scholar
|
[210] |
Wright LM, Maloney W, Yu X, Kindle L, Collin-Osdoby P, Osdoby P. Stromal cell-derived factor-1 binding to its chemokine receptor CXCR4 on precursor cells promotes the chemotactic recruitment, development and survival of human osteoclasts. Bone 2005; 36(5): 840–853
CrossRef
Google scholar
|
[211] |
Sucur A, Jajic Z, Artukovic M, Matijasevic MI, Anic B, Flegar D, Markotic A, Kelava T, Ivcevic S, Kovacic N, Katavic V, Grcevic D. Chemokine signals are crucial for enhanced homing and differentiation of circulating osteoclast progenitor cells. Arthritis Res Ther 2017; 19(1): 142–158
CrossRef
Google scholar
|
[212] |
Yu X, Huang Y, Collin-Osdoby P, Osdoby P. Stromal cell-derived factor-1 (SDF-1) recruits osteoclast precursors by inducing chemotaxis, matrix metalloproteinase-9 (MMP-9) activity, and collagen transmigration. J Bone Miner Res 2003; 18(8): 1404–1418
CrossRef
Google scholar
|
[213] |
Dong Y, Liu H, Zhang X, Xu F, Qin L, Cheng P, Huang H, Guo F, Yang Q, Chen A. Inhibition of SDF-1α/CXCR4 signalling in subchondral bone attenuates post-traumatic osteoarthritis. Int J Mol Sci 2016; 17(6): 943–955
CrossRef
Google scholar
|
[214] |
Kanbe K, Takagishi K, Chen Q. Stimulation of matrix metalloprotease 3 release from human chondrocytes by the interaction of stromal cell-derived factor 1 and CXC chemokine receptor 4. Arthritis Rheum 2002; 46(1): 130–137
CrossRef
Google scholar
|
[215] |
Kanbe K, Takemura T, Takeuchi K, Chen Q, Takagishi K, Inoue K. Synovectomy reduces stromal-cell-derived factor-1 (SDF-1) which is involved in the destruction of cartilage in osteoarthritis and rheumatoid arthritis. J Bone Joint Surg Br 2004; 86(2): 296–300
CrossRef
Google scholar
|
[216] |
Lin C, Liu L, Zeng C, Cui ZK, Chen Y, Lai P, Wang H, Shao Y, Zhang H, Zhang R, Zhao C, Fang H, Cai D, Bai X. Correction to: Activation of mTORC1 in subchondral bone preosteoblasts promotes osteoarthritis by stimulating bone sclerosis and secretion of CXCL12. Bone Res 2019; 7(1): 26–39
CrossRef
Google scholar
|
[217] |
Wei F, Moore DC, Wei L, Li Y, Zhang G, Wei X, Lee JK, Chen Q. Attenuation of osteoarthritis via blockade of the SDF-1/CXCR4 signaling pathway. Arthritis Res Ther 2012; 14(4): R177–R188
CrossRef
Google scholar
|
[218] |
Wei L, Sun X, Kanbe K, Wang Z, Sun C, Terek R, Chen Q. Chondrocyte death induced by pathological concentration of chemokine stromal cell-derived factor-1. J Rheumatol 2006; 33(9): 1818–1826
|
[219] |
Li P, Deng J, Wei X, Jayasuriya CT, Zhou J, Chen Q, Zhang J, Wei L, Wei F. Blockade of hypoxia-induced CXCR4 with AMD3100 inhibits production of OA-associated catabolic mediators IL-1β and MMP-13. Mol Med Rep 2016; 14(2): 1475–1482
CrossRef
Google scholar
|
[220] |
Li J, Chen H, Cai L, Guo D, Zhang D, Zhou X, Xie J. SDF-1α promotes chondrocyte autophagy through CXCR4/mTOR signaling axis. Int J Mol Sci 2023; 24(2): 1710–1723
CrossRef
Google scholar
|
[221] |
Lories RJ, Luyten FP. The bone-cartilage unit in osteoarthritis. Nat Rev Rheumatol 2011; 7(1): 43–49
CrossRef
Google scholar
|
[222] |
Pan J, Wang B, Li W, Zhou X, Scherr T, Yang Y, Price C, Wang L. Elevated cross-talk between subchondral bone and cartilage in osteoarthritic joints. Bone 2012; 51(2): 212–217
CrossRef
Google scholar
|
[223] |
Findlay DM, Kuliwaba JS. Bone-cartilage crosstalk: a conversation for understanding osteoarthritis. Bone Res 2016; 4(1): 16028
CrossRef
Google scholar
|
[224] |
Jiang A, Xu P, Sun S, Zhao Z, Tan Q, Li W, Song C, Leng H. Cellular alterations and crosstalk in the osteochondral joint in osteoarthritis and promising therapeutic strategies. Connect Tissue Res 2021; 62(6): 709–719
CrossRef
Google scholar
|
[225] |
Qin HJ, Xu T, Wu HT, Yao ZL, Hou YL, Xie YH, Su JW, Cheng CY, Yang KF, Zhang XR, Chai Y, Yu B, Cui Z. SDF-1/CXCR4 axis coordinates crosstalk between subchondral bone and articular cartilage in osteoarthritis pathogenesis. Bone 2019; 125: 140–150
CrossRef
Google scholar
|
[226] |
Lei J, Fu Y, Zhuang Y, Zhang K. Sema4D aggravated LPS-induced injury via activation of the MAPK signaling pathway in ATDC5 chondrocytes. BioMed Res Int 2020; 2020: 8691534
CrossRef
Google scholar
|
[227] |
Qin H, Zhao X, Hu YJ, Wang S, Ma Y, He S, Shen K, Wan H, Cui Z, Yu B. Inhibition of SDF-1/CXCR4 axis to alleviate abnormal bone formation and angiogenesis could improve the subchondral bone microenvironment in osteoarthritis. BioMed Res Int 2021; 2021: 8852574
CrossRef
Google scholar
|
[228] |
Su W, Liu G, Liu X, Zhou Y, Sun Q, Zhen G, Wang X, Hu Y, Gao P, Demehri S, Cao X, Wan M. Angiogenesis stimulated by elevated PDGF-BB in subchondral bone contributes to osteoarthritis development. JCI Insight 2020; 5(8): e135446
CrossRef
Google scholar
|
[229] |
Hoeben A, Landuyt B, Highley MS, Wildiers H, Van Oosterom AT, De Bruijn EA. Vascular endothelial growth factor and angiogenesis. Pharmacol Rev 2004; 56(4): 549–580
CrossRef
Google scholar
|
[230] |
Lin X, Bell RD, Catheline SE, Takano T, McDavid A, Jonason JH, Schwarz EM, Xing L. Targeting synovial lymphatic function as a novel therapeutic intervention for age-related osteoarthritis in mice. Arthritis Rheumatol 2023; 75(6): 923–936
CrossRef
Google scholar
|
[231] |
Wang S, Zhou C, Zheng H, Zhang Z, Mei Y, Martin JA. Chondrogenic progenitor cells promote vascular endothelial growth factor expression through stromal-derived factor-1. Osteoarthritis Cartilage 2017; 25(5): 742–749
CrossRef
Google scholar
|
/
〈 | 〉 |