ING5 inhibits aerobic glycolysis of lung cancer cells by promoting TIE1-mediated phosphorylation of pyruvate dehydrogenase kinase 1 at Y163

Haihua Zhang, Xinli Liu, Junqiang Li, Jin Meng, Wan Huang, Xuan Su, Xutao Zhang, Guizhou Gao, Xiaodong Wang, Haichuan Su, Feng Zhang, Tao Zhang

PDF(6707 KB)
PDF(6707 KB)
Front. Med. ›› 2024, Vol. 18 ›› Issue (5) : 878-895. DOI: 10.1007/s11684-024-1057-7
RESEARCH ARTICLE

ING5 inhibits aerobic glycolysis of lung cancer cells by promoting TIE1-mediated phosphorylation of pyruvate dehydrogenase kinase 1 at Y163

Author information +
History +

Abstract

Aerobic glycolysis is critical for tumor growth and metastasis. Previously, we have found that the overexpression of the inhibitor of growth 5 (ING5) inhibits lung cancer aggressiveness and epithelial–mesenchymal transition (EMT). However, whether ING5 regulates lung cancer metabolism reprogramming remains unknown. Here, by quantitative proteomics, we showed that ING5 differentially regulates protein phosphorylation and identified a new site (Y163) of the key glycolytic enzyme PDK1 whose phosphorylation was upregulated 13.847-fold. By clinical study, decreased p-PDK1Y163 was observed in lung cancer tissues and correlated with poor survival. p-PDK1Y163 represents the negative regulatory mechanism of PDK1 by causing PDHA1 dephosphorylation and activation, leading to switching from glycolysis to oxidative phosphorylation, with increasing oxygen consumption and decreasing lactate production. These effects could be impaired by PDK1Y163F mutation, which also impaired the inhibitory effects of ING5 on cancer cell EMT and invasiveness. Mouse xenograft models confirmed the indispensable role of p-PDK1Y163 in ING5-inhibited tumor growth and metastasis. By siRNA screening, ING5-upregulated TIE1 was identified as the upstream tyrosine protein kinase targeting PDK1Y163. TIE1 knockdown induced the dephosphorylation of PDK1Y163 and increased the migration and invasion of lung cancer cells. Collectively, ING5 overexpression—upregulated TIE1 phosphorylates PDK1Y163, which is critical for the inhibition of aerobic glycolysis and invasiveness of lung cancer cells.

Keywords

ING5 / aerobic glycolysis / PDK1 / phosphorylation / lung cancer / TIE1

Cite this article

Download citation ▾
Haihua Zhang, Xinli Liu, Junqiang Li, Jin Meng, Wan Huang, Xuan Su, Xutao Zhang, Guizhou Gao, Xiaodong Wang, Haichuan Su, Feng Zhang, Tao Zhang. ING5 inhibits aerobic glycolysis of lung cancer cells by promoting TIE1-mediated phosphorylation of pyruvate dehydrogenase kinase 1 at Y163. Front. Med., 2024, 18(5): 878‒895 https://doi.org/10.1007/s11684-024-1057-7

References

[1]
Yuan M, Zhao Y, Arkenau HT, Lao T, Chu L, Xu Q. Signal pathways and precision therapy of small-cell lung cancer. Signal Transduct Target Ther 2022; 7(1): 187–204
CrossRef Google scholar
[2]
Doyon Y, Cayrou C, Ullah M, Landry AJ, Côté V, Selleck W, Lane WS, Tan S, Yang XJ, Côté J. ING tumor suppressor proteins are critical regulators of chromatin acetylation required for genome expression and perpetuation. Mol Cell 2006; 21(1): 51–64
CrossRef Google scholar
[3]
Anwar S, Shamsi A, Mohammad T, Islam A, Hassan MI. Targeting pyruvate dehydrogenase kinase signaling in the development of effective cancer therapy. Biochim Biophys Acta Rev Cancer 2021; 1876(1): 188568–188592
CrossRef Google scholar
[4]
Cui S, Liao X, Ye C, Yin X, Liu M, Hong Y, Yu M, Liu Y, Liang H, Zhang CY, Chen X. ING5 suppresses breast cancer progression and is regulated by miR-24. Mol Cancer 2017; 16(1): 89–100
CrossRef Google scholar
[5]
Ghafouri-Fard S, Taheri M, Baniahmad A. Inhibitor of growth factors regulate cellular senescence. Cancers (Basel) 2022; 14(13): 3107–3118
CrossRef Google scholar
[6]
Archambeau J, Blondel A, Pedeux R. Focus-ING on DNA integrity: implication of ING proteins in cell cycle regulation and DNA repair modulation. Cancers (Basel) 2019; 12(1): 58–76
CrossRef Google scholar
[7]
Wang F, Wang AY, Chesnelong C, Yang Y, Nabbi A, Thalappilly S, Alekseev V, Riabowol K. ING5 activity in self-renewal of glioblastoma stem cells via calcium and follicle stimulating hormone pathways. Oncogene 2018; 37(3): 286–301
CrossRef Google scholar
[8]
Ormaza G, Rodríguez JA, Ibáñez de Opakua A, Merino N, Villate M, Gorroño I, Rábano M, Palmero I, Vilaseca M, Kypta R, Vivanco MDM, Rojas AL, Blanco FJ. The tumor suppressor ING5 is a dimeric, bivalent recognition molecule of the histone H3K4me3 mark. J Mol Biol 2019; 431(12): 2298–2319
CrossRef Google scholar
[9]
Zhang F, Zhang X, Meng J, Zhao Y, Liu X, Liu Y, Wang Y, Li Y, Sun Y, Wang Z, Mei Q, Zhang T. ING5 inhibits cancer aggressiveness via preventing EMT and is a potential prognostic biomarker for lung cancer. Oncotarget 2015; 6(18): 16239–16252
CrossRef Google scholar
[10]
Liu XL, Zhang XT, Meng J, Zhang HF, Zhao Y, Li C, Sun Y, Mei QB, Zhang F, Zhang T. ING5 knockdown enhances migration and invasion of lung cancer cells by inducing EMT via EGFR/PI3K/Akt and IL-6/STAT3 signaling pathways. Oncotarget 2017; 8(33): 54265–54276
CrossRef Google scholar
[11]
Liu XL, Meng J, Zhang XT, Liang XH, Zhang F, Zhao GR, Zhang T. ING5 inhibits lung cancer invasion and epithelial-mesenchymal transition by inhibiting the WNT/β-catenin pathway. Thorac Cancer 2019; 10(4): 848–855
CrossRef Google scholar
[12]
Zhang T, Meng J, Liu X, Zhang X, Peng X, Cheng Z, Zhang F. ING5 differentially regulates protein lysine acetylation and promotes p300 autoacetylation. Oncotarget 2018; 9(2): 1617–1629
CrossRef Google scholar
[13]
Warburg O. On the origin of cancer cells. Science 1956; 123(3191): 309–314
CrossRef Google scholar
[14]
Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell 2011; 144(5): 646–674
CrossRef Google scholar
[15]
Pusapati RV, Daemen A, Wilson C, Sandoval W, Gao M, Haley B, Baudy AR, Hatzivassiliou G, Evangelista M, Settleman J. mTORC1-dependent metabolic reprogramming underlies escape from glycolysis addiction in cancer cells. Cancer Cell 2016; 29(4): 548–562
CrossRef Google scholar
[16]
Erdem A, Marin S, Pereira-Martins DA, Cortés R, Cunningham A, Pruis MG, de Boer B, van den Heuvel FAJ, Geugien M, Wierenga ATJ, Brouwers-Vos AZ, Rego EM, Huls G, Cascante M, Schuringa JJ. The glycolytic gatekeeper PDK1 defines different metabolic states between genetically distinct subtypes of human acute myeloid leukemia. Nat Commun 2022; 13(1): 1105–1120
CrossRef Google scholar
[17]
Lv L, Lei Q. Proteins moonlighting in tumor metabolism and epigenetics. Front Med 2021; 15(3): 383–403
CrossRef Google scholar
[18]
Cenigaonandia-Campillo A, Serna-Blasco R, Gómez-Ocabo L, Solanes-Casado S, Baños-Herraiz N, Puerto-Nevado LD, Cañas JA, Aceñero MJ, García-Foncillas J, AguileraÓ. Vitamin C activates pyruvate dehydrogenase (PDH) targeting the mitochondrial tricarboxylic acid (TCA) cycle in hypoxic KRAS mutant colon cancer. Theranostics 2021; 11(8): 3595–3606
CrossRef Google scholar
[19]
Hong SM, Lee YK, Park I, Kwon SM, Min S, Yoon G. Lactic acidosis caused by repressed lactate dehydrogenase subunit B expression down-regulates mitochondrial oxidative phosphorylation via the pyruvate dehydrogenase (PDH)-PDH kinase axis. J Biol Chem 2019; 294(19): 7810–7820
CrossRef Google scholar
[20]
Adant I, Bird M, Decru B, Windmolders P, Wallays M, de Witte P, Rymen D, Witters P, Vermeersch P, Cassiman D, Ghesquière B. Pyruvate and uridine rescue the metabolic profile of OXPHOS dysfunction. Mol Metab 2022; 63: 101537–101550
CrossRef Google scholar
[21]
Imanaka S, Shigetomi H, Kobayashi H. Reprogramming of glucose metabolism of cumulus cells and oocytes and its therapeutic significance. Reprod Sci 2022; 29(3): 653–667
CrossRef Google scholar
[22]
Seyfried TN, Arismendi-Morillo G, Mukherjee P, Chinopoulos C. On the origin of ATP synthesis in cancer. iScience 2020; 23(11): 101761–101781
CrossRef Google scholar
[23]
Fan J, Shan C, Kang HB, Elf S, Xie J, Tucker M, Gu TL, Aguiar M, Lonning S, Chen H, Mohammadi M, Britton LM, Garcia BA, Alečković M, Kang Y, Kaluz S, Devi N, Van Meir EG, Hitosugi T, Seo JH, Lonial S, Gaddh M, Arellano M, Khoury HJ, Khuri FR, Boggon TJ, Kang S, Chen J. Tyr phosphorylation of PDP1 toggles recruitment between ACAT1 and SIRT3 to regulate the pyruvate dehydrogenase complex. Mol Cell 2014; 53(4): 534–548
CrossRef Google scholar
[24]
De Rosa V, Iommelli F, Terlizzi C, Leggiero E, Camerlingo R, Altobelli GG, Fonti R, Pastore L, Del Vecchio S. Non-canonical role of PDK1 as a negative regulator of apoptosis through macromolecular complexes assembly at the ER-mitochondria interface in oncogene-driven NSCLC. Cancers (Basel) 2021; 13(16): 4133–4146
CrossRef Google scholar
[25]
Calleja V, Laguerre M, de Las Heras-Martinez G, Parker PJ, Requejo-Isidro J, Larijani B. Acute regulation of PDK1 by a complex interplay of molecular switches. Biochem Soc Trans 2014; 42(5): 1435–1440
CrossRef Google scholar
[26]
Hitosugi T, Fan J, Chung TW, Lythgoe K, Wang X, Xie J, Ge Q, Gu TL, Polakiewicz RD, Roesel JL, Chen GZ, Boggon TJ, Lonial S, Fu H, Khuri FR, Kang S, Chen J. Tyrosine phosphorylation of mitochondrial pyruvate dehydrogenase kinase 1 is important for cancer metabolism. Mol Cell 2011; 44(6): 864–877
CrossRef Google scholar
[27]
Tang Z, Li C, Kang B, Gao G, Li C, Zhang Z. GEPIA: a web server for cancer and normal gene expression profiling and interactive analyses. Nucleic Acids Res 2017; 45(W1): W98–W102
CrossRef Google scholar
[28]
Li T, Fan J, Wang B, Traugh N, Chen Q, Liu JS, Li B, Liu XS. TIMER: a web server for comprehensive analysis of tumor-infiltrating immune cells. Cancer Res 2017; 77(21): e108–e110
CrossRef Google scholar
[29]
Győrffy B. Discovery and ranking of the most robust prognostic biomarkers in serous ovarian cancer. Geroscience 2023; 45(3): 1889–1898
CrossRef Google scholar
[30]
Gautam A, Waldrep JC, Densmore CL, Koshkina N, Melton S, Roberts L, Gilbert B, Knight V. Growth inhibition of established B16-F10 lung metastases by sequential aerosol delivery of p53 gene and 9-nitrocamptothecin. Gene Ther 2002; 9(5): 353–357
CrossRef Google scholar
[31]
Chen F, Zhang Y, Chandrashekar DS, Varambally S, Creighton CJ. Global impact of somatic structural variation on the cancer proteome. Nat Commun 2023; 14(1): 5637
CrossRef Google scholar
[32]
Atas E, Oberhuber M, Kenner L. The implications of PDK1-4 on tumor energy metabolism, aggressiveness and therapy resistance. Front Oncol 2020; 10: 583217–583225
CrossRef Google scholar
[33]
Wang T, Chuffart F, Bourova-Flin E, Wang J, Mi J, Rousseaux S, Khochbin S. Histone variants: critical determinants in tumour heterogeneity. Front Med 2019; 13(3): 289–297
CrossRef Google scholar
[34]
Szlosarek PW, Lee S, Pollard PJ. Rewiring mitochondrial pyruvate metabolism: switching off the light in cancer cells. Mol Cell 2014; 56(3): 343–344
CrossRef Google scholar
[35]
Burns JE, Hurst CD, Knowles MA, Phillips RM, Allison SJ. The Warburg effect as a therapeutic target for bladder cancers and intratumoral heterogeneity in associated molecular targets. Cancer Sci 2021; 112(9): 3822–3834
CrossRef Google scholar
[36]
Peng F, Wang JH, Fan WJ, Meng YT, Li MM, Li TT, Cui B, Wang HF, Zhao Y, An F, Guo T, Liu XF, Zhang L, Lv L, Lv DK, Xu LZ, Xie JJ, Lin WX, Lam EW, Xu J, Liu Q. Glycolysis gatekeeper PDK1 reprograms breast cancer stem cells under hypoxia. Oncogene 2018; 37(8): 1062–1074
CrossRef Google scholar
[37]
Dupuy F, Tabariès S, Andrzejewski S, Dong Z, Blagih J, Annis MG, Omeroglu A, Gao D, Leung S, Amir E, Clemons M, Aguilar-Mahecha A, Basik M, Vincent EE, St-Pierre J, Jones RG, Siegel PM. PDK1-dependent metabolic reprogramming dictates metastatic potential in breast cancer. Cell Metab 2015; 22(4): 577–589
CrossRef Google scholar
[38]
Hsu JY, Chang JY, Chang KY, Chang WC, Chen BK. Epidermal growth factor-induced pyruvate dehydrogenase kinase 1 expression enhances head and neck squamous cell carcinoma metastasis via up-regulation of fibronectin. FASEB J 2017; 31(10): 4265–4276
CrossRef Google scholar
[39]
Škorja Milić N, Dolinar K, Miš K, Matkovič U, Bizjak M, Pavlin M, Podbregar M, Pirkmajer S. Suppression of pyruvate dehydrogenase kinase by dichloroacetate in cancer and skeletal muscle cells is isoform specific and partially independent of HIF-1α. Int J Mol Sci 2021; 22(16): 8610–8635
CrossRef Google scholar
[40]
Savant S, La Porta S, Budnik A, Busch K, Hu J, Tisch N, Korn C, Valls AF, Benest AV, Terhardt D, Qu X, Adams RH, Baldwin HS, Ruiz de Almodóvar C, Rodewald HR, Augustin HG. The orphan receptor Tie1 controls angiogenesis and vascular remodeling by differentially regulating Tie2 in tip and stalk cells. Cell Rep 2015; 12(11): 1761–1773
CrossRef Google scholar
[41]
Singhal M, Gengenbacher N, La Porta S, Gehrs S, Shi J, Kamiyama M, Bodenmiller DM, Fischl A, Schieb B, Besemfelder E, Chintharlapalli S, Augustin HG. Preclinical validation of a novel metastasis-inhibiting Tie1 function-blocking antibody. EMBO Mol Med 2020; 12(6): e11164
CrossRef Google scholar
[42]
Zwiers PJ, Jongman RM, Kuiper T, Moser J, Stan RV, Göthert JR, van Meurs M, Popa ER, Molema G. Pattern of tamoxifen-induced Tie2 deletion in endothelial cells in mature blood vessels using endo SCL-Cre-ERT transgenic mice. PLoS One 2022; 17(6): e0268986
CrossRef Google scholar
[43]
Korhonen EA, Murtomäki A, Jha SK, Anisimov A, Pink A, Zhang Y, Stritt S, Liaqat I, Stanczuk L, Alderfer L, Sun Z, Kapiainen E, Singh A, Sultan I, Lantta A, Leppänen VM, Eklund L, He Y, Augustin HG, Vaahtomeri K, Saharinen P, Mäkinen T, Alitalo K. Lymphangiogenesis requires Ang2/Tie/PI3K signaling for VEGFR3 cell-surface expression. J Clin Invest 2022; 132(15): e155478
CrossRef Google scholar
[44]
Yun JH, Lee HM, Lee EH, Park JW, Cho CH. Hypoxia reduces endothelial Ang1-induced Tie2 activity in a Tie1-dependent manner. Biochem Biophys Res Commun 2013; 436(4): 691–697
CrossRef Google scholar
[45]
Chen F, Chen J, Yang L, Liu J, Zhang X, Zhang Y, Tu Q, Yin D, Lin D, Wong PP, Huang D, Xing Y, Zhao J, Li M, Liu Q, Su F, Su S, Song E. Extracellular vesicle-packaged HIF-1α-stabilizing lncRNA from tumour-associated macrophages regulates aerobic glycolysis of breast cancer cells. Nat Cell Biol 2019; 21(4): 498–510
CrossRef Google scholar
[46]
Semenza GL. HIF-1 mediates metabolic responses to intratumoral hypoxia and oncogenic mutations. J Clin Invest 2013; 123(9): 3664–3671
CrossRef Google scholar
[47]
Hulea L, Gravel SP, Morita M, Cargnello M, Uchenunu O, Im YK, Lehuédé C, Ma EH, Leibovitch M, McLaughlan S, Blouin MJ, Parisotto M, Papavasiliou V, Lavoie C, Larsson O, Ohh M, Ferreira T, Greenwood C, Bridon G, Avizonis D, Ferbeyre G, Siegel P, Jones RG, Muller W, Ursini-Siegel J, St-Pierre J, Pollak M, Topisirovic I. Translational and HIF-1α-dependent metabolic reprogramming underpin metabolic plasticity and responses to kinase inhibitors and biguanides. Cell Metab 2018; 28(6): 817–832.e8
CrossRef Google scholar
[48]
Brand A, Singer K, Koehl GE, Kolitzus M, Schoenhammer G, Thiel A, Matos C, Bruss C, Klobuch S, Peter K, Kastenberger M, Bogdan C, Schleicher U, Mackensen A, Ullrich E, Fichtner-Feigl S, Kesselring R, Mack M, Ritter U, Schmid M, Blank C, Dettmer K, Oefner PJ, Hoffmann P, Walenta S, Geissler EK, Pouyssegur J, Villunger A, Steven A, Seliger B, Schreml S, Haferkamp S, Kohl E, Karrer S, Berneburg M, Herr W, Mueller-Klieser W, Renner K, Kreutz M. LDHA-associated lactic acid production blunts tumor immunosurveillance by T and NK cells. Cell Metab 2016; 24(5): 657–671
CrossRef Google scholar
[49]
Mishra D, Banerjee D. Lactate dehydrogenases as metabolic links between tumor and stroma in the tumor microenvironment. Cancers (Basel) 2019; 11(6): 750–770
CrossRef Google scholar

Acknowledgements

This study was supported by the National Natural Science Foundation of China (Nos. 81672269, 81272587, and 81172223).

Electronic Supplementary Material

Supplementary material is available in the online version of this article at https://doi.org/10.1007/s11684-024-1057-7 and is accessible for authorized users.

Compliance with ethics guidelines

Conflicts of interest Haihua Zhang, Xinli Liu, Junqiang Li, Jin Meng, Wan Huang, Xuan Su, Xutao Zhang, Guizhou Gao, Xiaodong Wang, Haichuan Su, Feng Zhang, and Tao Zhang declare no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.
The study was approved by the the Animal Care and Use Committee of Fourth Military Medical University (approval no: 20160505) and the study was performed in accordance with the ethical standards as laid down in the 1964 Declaration of Helsinki and its later amendments or comparable ethical standards.. Informed consent was obtained from all patients for being included in the study.

RIGHTS & PERMISSIONS

2024 Higher Education Press
AI Summary AI Mindmap
PDF(6707 KB)

Accesses

Citations

Detail

Sections
Recommended

/