Gut microbiota-dependent phenylacetylglutamine in cardiovascular disease: current knowledge and new insights
Yaonan Song, Haoran Wei, Zhitong Zhou, Huiqing Wang, Weijian Hang, Junfang Wu, Dao Wen Wang
Gut microbiota-dependent phenylacetylglutamine in cardiovascular disease: current knowledge and new insights
Phenylacetylglutamine (PAGln) is an amino acid derivate that comes from the amino acid phenylalanine. There are increasing studies showing that the level of PAGln is associated with the risk of different cardiovascular diseases. In this review, we discussed the metabolic pathway of PAGln production and the quantitative measurement methods of PAGln. We summarized the epidemiological evidence to show the role of PAGln in diagnostic and prognostic value in several cardiovascular diseases, such as heart failure, coronary heart disease/atherosclerosis, and cardiac arrhythmia. The underlying mechanism of PAGln is now considered to be related to the thrombotic potential of platelets via adrenergic receptors. Besides, other possible mechanisms such as inflammatory response and oxidative stress could also be induced by PAGln. Moreover, since PAGln is produced across different organs including the intestine, liver, and kidney, the cross-talk among multiple organs focused on the function of this uremic toxic metabolite. Finally, the prognostic value of PAGln compared to the classical biomarker was discussed and we also highlighted important gaps in knowledge and areas requiring future investigation of PAGln in cardiovascular diseases.
PAGln / cardiovascular disease / gut microbiota / uremic metabolite / biomarker
[1] |
Bäckhed F, Ley RE, Sonnenburg JL, Peterson DA, Gordon JI. Host-bacterial mutualism in the human intestine. Science 2005; 307(5717): 1915–1920
CrossRef
Google scholar
|
[2] |
Fromentin S, Forslund SK, Chechi K, Aron-Wisnewsky J, Chakaroun R, Nielsen T, Tremaroli V, Ji B, Prifti E, Myridakis A, Chilloux J, Andrikopoulos P, Fan Y, Olanipekun MT, Alves R, Adiouch S, Bar N, Talmor-Barkan Y, Belda E, Caesar R, Coelho LP, Falony G, Fellahi S, Galan P, Galleron N, Helft G, Hoyles L, Isnard R, Le Chatelier E, Julienne H, Olsson L, Pedersen HK, Pons N, Quinquis B, Rouault C, Roume H, Salem JE, Schmidt TSB, Vieira-Silva S, Li P, Zimmermann-Kogadeeva M, Lewinter C, Søndertoft NB, Hansen TH, Gauguier D, Gøtze JP, Køber L, Kornowski R, Vestergaard H, Hansen T, Zucker JD, Hercberg S, Letunic I, Bäckhed F, Oppert JM, Nielsen J, Raes J, Bork P, Stumvoll M, Segal E, Clément K, Dumas ME, Ehrlich SD, Pedersen O. Microbiome and metabolome features of the cardiometabolic disease spectrum. Nat Med 2022; 28(2): 303–314
CrossRef
Google scholar
|
[3] |
Talmor-Barkan Y, Bar N, Shaul AA, Shahaf N, Godneva A, Bussi Y, Lotan-Pompan M, Weinberger A, Shechter A, Chezar-Azerrad C, Arow Z, Hammer Y, Chechi K, Forslund SK, Fromentin S, Dumas ME, Ehrlich SD, Pedersen O, Kornowski R, Segal E. Metabolomic and microbiome profiling reveals personalized risk factors for coronary artery disease. Nat Med 2022; 28(2): 295–302
CrossRef
Google scholar
|
[4] |
Wang Z, Klipfell E, Bennett BJ, Koeth R, Levison BS, Dugar B, Feldstein AE, Britt EB, Fu X, Chung YM, Wu Y, Schauer P, Smith JD, Allayee H, Tang WH, DiDonato JA, Lusis AJ, Hazen SL. Gut flora metabolism of phosphatidylcholine promotes cardiovascular disease. Nature 2011; 472(7341): 57–63
CrossRef
Google scholar
|
[5] |
Tang TWH, Chen HC, Chen CY, Yen CYT, Lin CJ, Prajnamitra RP, Chen LL, Ruan SC, Lin JH, Lin PJ, Lu HH, Kuo CW, Chang CM, Hall AD, Vivas EI, Shui JW, Chen P, Hacker TA, Rey FE, Kamp TJ, Hsieh PCH. Loss of gut microbiota alters immune system composition and cripples postinfarction cardiac repair. Circulation 2019; 139(5): 647–659
CrossRef
Google scholar
|
[6] |
Ettinger G, MacDonald K, Reid G, Burton JP. The influence of the human microbiome and probiotics on cardiovascular health. Gut Microbes 2014; 5(6): 719–728
CrossRef
Google scholar
|
[7] |
Shalon D, Culver RN, Grembi JA, Folz J, Treit PV, Shi H, Rosenberger FA, Dethlefsen L, Meng X, Yaffe E, Aranda-Díaz A, Geyer PE, Mueller-Reif JB, Spencer S, Patterson AD, Triadafilopoulos G, Holmes SP, Mann M, Fiehn O, Relman DA, Huang KC. Profiling the human intestinal environment under physiological conditions. Nature 2023; 617(7961): 581–591
CrossRef
Google scholar
|
[8] |
Tang WH, Wang Z, Levison BS, Koeth RA, Britt EB, Fu X, Wu Y, Hazen SL. Intestinal microbial metabolism of phosphatidylcholine and cardiovascular risk. N Engl J Med 2013; 368(17): 1575–1584
CrossRef
Google scholar
|
[9] |
Zhu W, Gregory JC, Org E, Buffa JA, Gupta N, Wang Z, Li L, Fu X, Wu Y, Mehrabian M, Sartor RB, McIntyre TM, Silverstein RL, Tang WHW, DiDonato JA, Brown JM, Lusis AJ, Hazen SL. Gut microbial metabolite TMAO enhances platelet hyperreactivity and thrombosis risk. Cell 2016; 165(1): 111–124
CrossRef
Google scholar
|
[10] |
Charach G, Rabinovich A, Argov O, Weintraub M, Rabinovich P. The role of bile acid excretion in atherosclerotic coronary artery disease. Int J Vasc Med 2012; 2012: 949672
CrossRef
Google scholar
|
[11] |
Cao XS, Chen J, Zou JZ, Zhong YH, Teng J, Ji J, Chen ZW, Liu ZH, Shen B, Nie YX, Lv WL, Xiang FF, Tan X, Ding XQ. Association of indoxyl sulfate with heart failure among patients on hemodialysis. Clin J Am Soc Nephrol 2015; 10(1): 111–119
CrossRef
Google scholar
|
[12] |
Yan J, Pan Y, Shao W, Wang C, Wang R, He Y, Zhang M, Wang Y, Li T, Wang Z, Liu W, Wang Z, Sun X, Dong S. Beneficial effect of the short-chain fatty acid propionate on vascular calcification through intestinal microbiota remodelling. Microbiome 2022; 10(1): 195
CrossRef
Google scholar
|
[13] |
Lu Y, Yang W, Qi Z, Gao R, Tong J, Gao T, Zhang Y, Sun A, Zhang S, Ge J. Gut microbe-derived metabolite indole-3-carboxaldehyde alleviates atherosclerosis. Signal Transduct Target Ther 2023; 8(1): 378
CrossRef
Google scholar
|
[14] |
Poll BG, Xu J, Jun S, Sanchez J, Zaidman NA, He X, Lester L, Berkowitz DE, Paolocci N, Gao WD, Pluznick JL. Acetate, a short-chain fatty acid, acutely lowers heart rate and cardiac contractility along with blood pressure. J Pharmacol Exp Ther 2021; 377(1): 39–50
CrossRef
Google scholar
|
[15] |
Verhaar BJH, Collard D, Prodan A, Levels JHM, Zwinderman AH, Bäckhed F, Vogt L, Peters MJL, Muller M, Nieuwdorp M, van den Born BH. Associations between gut microbiota, faecal short-chain fatty acids, and blood pressure across ethnic groups: the HELIUS study. Eur Heart J 2020; 41(44): 4259–4267
CrossRef
Google scholar
|
[16] |
Nemet I, Saha PP, Gupta N, Zhu W, Romano KA, Skye SM, Cajka T, Mohan ML, Li L, Wu Y, Funabashi M, Ramer-Tait AE, Naga Prasad SV, Fiehn O, Rey FE, Tang WHW, Fischbach MA, DiDonato JA, Hazen SL. A cardiovascular disease-linked gut microbial metabolite acts via adrenergic receptors. Cell 2020; 180(5): 862–877.e22
CrossRef
Google scholar
|
[17] |
Seakins JW. The determination of urinary phenylacetylglutamine as phenylacetic acid. Studies on its origin in normal subjects and children with cystic fibrosis. Clin Chim Acta 1971; 35(1): 121–131
CrossRef
Google scholar
|
[18] |
Agergaard J, Justesen TEH, Jespersen SE, Tagmose Thomsen T, Holm L, van Hall G. Even or skewed dietary protein distribution is reflected in the whole-body protein net-balance in healthy older adults: a randomized controlled trial. Clin Nutr 2023; 42(6): 899–908
CrossRef
Google scholar
|
[19] |
Murashige D, Jang C, Neinast M, Edwards JJ, Cowan A, Hyman MC, Rabinowitz JD, Frankel DS, Arany Z. Comprehensive quantification of fuel use by the failing and nonfailing human heart. Science 2020; 370(6514): 364–368
CrossRef
Google scholar
|
[20] |
Liu Y, Hou Y, Wang G, Zheng X, Hao H. Gut microbial metabolites of aromatic amino acids as signals in host-microbe interplay. Trends Endocrinol Metab 2020; 31(11): 818–834
CrossRef
Google scholar
|
[21] |
Barrios C, Beaumont M, Pallister T, Villar J, Goodrich JK, Clark A, Pascual J, Ley RE, Spector TD, Bell JT, Menni C. Gut-microbiota-metabolite axis in early renal function decline. PLoS One 2015; 10(8): e0134311
CrossRef
Google scholar
|
[22] |
Zhu Y, Dwidar M, Nemet I, Buffa JA, Sangwan N, Li XS, Anderson JT, Romano KA, Fu X, Funabashi M, Wang Z, Keranahalli P, Battle S, Tittle AN, Hajjar AM, Gogonea V, Fischbach MA, DiDonato JA, Hazen SL. Two distinct gut microbial pathways contribute to meta-organismal production of phenylacetylglutamine with links to cardiovascular disease. Cell Host Microbe 2023; 31(1): 18–32.e9
CrossRef
Google scholar
|
[23] |
Bouatra S, Aziat F, Mandal R, Guo AC, Wilson MR, Knox C, Bjorndahl TC, Krishnamurthy R, Saleem F, Liu P, Dame ZT, Poelzer J, Huynh J, Yallou FS, Psychogios N, Dong E, Bogumil R, Roehring C, Wishart DS. The human urine metabolome. PLoS One 2013; 8(9): e73076
CrossRef
Google scholar
|
[24] |
Mair RD, Lee S, Plummer NS, Sirich TL, Meyer TW. Impaired tubular secretion of organic solutes in advanced chronic kidney disease. J Am Soc Nephrol 2021; 32(11): 2877–2884
CrossRef
Google scholar
|
[25] |
Poesen R, Claes K, Evenepoel P, de Loor H, Augustijns P, Kuypers D, Meijers B. Microbiota-derived phenylacetylglutamine associates with overall mortality and cardiovascular disease in patients with CKD. J Am Soc Nephrol 2016; 27(11): 3479–3487
CrossRef
Google scholar
|
[26] |
Mair RD, Sirich TL, Meyer TW. Uremic toxin clearance and cardiovascular toxicities. Toxins (Basel) 2018; 10(6): 226
CrossRef
Google scholar
|
[27] |
Brusilow SW. Phenylacetylglutamine may replace urea as a vehicle for waste nitrogen excretion. Pediatr Res 1991; 29(2): 147–150
CrossRef
Google scholar
|
[28] |
Sirich TL, Funk BA, Plummer NS, Hostetter TH, Meyer TW. Prominent accumulation in hemodialysis patients of solutes normally cleared by tubular secretion. J Am Soc Nephrol 2014; 25(3): 615–622
CrossRef
Google scholar
|
[29] |
Posada-Ayala M, Zubiri I, Martin-Lorenzo M, Sanz-Maroto A, Molero D, Gonzalez-Calero L, Fernandez-Fernandez B, de la Cuesta F, Laborde CM, Barderas MG, Ortiz A, Vivanco F, Alvarez-Llamas G. Identification of a urine metabolomic signature in patients with advanced-stage chronic kidney disease. Kidney Int 2014; 85(1): 103–111
CrossRef
Google scholar
|
[30] |
Safadi R, Rahimi RS, Thabut D, Bajaj JS, Ram Bhamidimarri K, Pyrsopoulos N, Potthoff A, Bukofzer S, Wang L, Jamil K, Devarakonda KR. Pharmacokinetics/pharmacodynamics of L-ornithine phenylacetate in overt hepatic encephalopathy and the effect of plasma ammonia concentration reduction on clinical outcomes. Clin Transl Sci 2022; 15(6): 1449–1459
CrossRef
Google scholar
|
[31] |
Wang X, Tseng J, Mak C, Poola N, Vilchez RA. Exposures of phenylacetic acid and phenylacetylglutamine across different subpopulations and correlation with adverse events. Clin Pharmacokinet 2021; 60(12): 1557–1567
CrossRef
Google scholar
|
[32] |
Andrade F, Cano A, Unceta Suarez M, Arza A, Vinuesa A, Ceberio L, López-Oslé N, de Frutos G, López-Oceja R, Aznal E, González-Lamuño D, de Las Heras J. Urine phenylacetylglutamine determination in patients with hyperphenylalaninemia. J Clin Med 2021; 10(16): 3674
CrossRef
Google scholar
|
[33] |
Magnusson I, Schumann WC, Bartsch GE, Chandramouli V, Kumaran K, Wahren J, Landau BR. Noninvasive tracing of Krebs cycle metabolism in liver. J Biol Chem 1991; 266(11): 6975–6984
CrossRef
Google scholar
|
[34] |
Esenmo E, Chandramouli V, Schumann WC, Kumaran K, Wahren J, Landau BR. Use of 14CO2 in estimating rates of hepatic gluconeogenesis. Am J Physiol 1992; 263(1): E36–E41
|
[35] |
Shockcor JP, Unger SE, Wilson ID, Foxall PJ, Nicholson JK, Lindon JC. Combined HPLC, NMR spectroscopy, and ion-trap mass spectrometry with application to the detection and characterization of xenobiotic and endogenous metabolites in human urine. Anal Chem 1996; 68(24): 4431–4435
CrossRef
Google scholar
|
[36] |
Fukui Y, Kato M, Inoue Y, Matsubara A, Itoh K. A metabonomic approach identifies human urinary phenylacetylglutamine as a novel marker of interstitial cystitis. J Chromatogr B Analyt Technol Biomed Life Sci 2009; 877(30): 3806–3812
CrossRef
Google scholar
|
[37] |
Blaise BJ, Correia GDS, Haggart GA, Surowiec I, Sands C, Lewis MR, Pearce JTM, Trygg J, Nicholson JK, Holmes E, Ebbels TMD. Statistical analysis in metabolic phenotyping. Nat Protoc 2021; 16(9): 4299–4326
CrossRef
Google scholar
|
[38] |
Marchev AS, Vasileva LV, Amirova KM, Savova MS, Balcheva-Sivenova ZP, Georgiev MI. Metabolomics and health: from nutritional crops and plant-based pharmaceuticals to profiling of human biofluids. Cell Mol Life Sci 2021; 78(19–20): 6487–6503
CrossRef
Google scholar
|
[39] |
Piszcz J, Lemancewicz D, Dudzik D, Ciborowski M. Differences and similarities between LC-MS derived serum fingerprints of patients with B-cell malignancies. Electrophoresis 2013; 34(19): 2857–2864
CrossRef
Google scholar
|
[40] |
Wei H, Wu J, Wang H, Huang J, Li C, Zhang Y, Song Y, Zhou Z, Sun Y, Xiao L, Peng L, Chen C, Zhao C, Wang DW. Increased circulating phenylacetylglutamine concentration elevates the predictive value of cardiovascular event risk in heart failure patients. J Intern Med 2023; 294(4): 515–530
CrossRef
Google scholar
|
[41] |
Tang Y, Zou Y, Cui J, Ma X, Zhang L, Yu S, Qiu L. Analysis of two intestinal bacterial metabolites (trimethylamine N-oxide and phenylacetylglutamine) in human serum samples of patients with T2DM and AMI using a liquid chromatography tandem mass spectrometry method. Clin Chim Acta 2022; 536: 162–168
CrossRef
Google scholar
|
[42] |
Yang D, Beylot M, Agarwal KC, Soloviev MV, Brunengraber H. Assay of the human liver citric acid cycle probe phenylacetylglutamine and of phenylacetate in plasma by gas chromatography-mass spectrometry. Anal Biochem 1993; 212(1): 277–282
CrossRef
Google scholar
|
[43] |
Fang C, Zuo K, Fu Y, Li J, Wang H, Xu L, Yang X. Dysbiosis of gut microbiota and metabolite phenylacetylglutamine in coronary artery disease patients with stent stenosis. Front Cardiovasc Med 2022; 9: 832092
CrossRef
Google scholar
|
[44] |
Fang C, Zuo K, Jiao K, Zhu X, Fu Y, Zhong J, Xu L, Yang X. PAGln, an atrial fibrillation-linked gut microbial metabolite, acts as a promoter of atrial myocyte injury. Biomolecules 2022; 12(8): 1120
CrossRef
Google scholar
|
[45] |
Kahl KW, Seither JZ, Reidy LJ. LC-MS-MS vs ELISA: validation of a comprehensive urine toxicology screen by LC-MS-MS and a comparison of 100 forensic specimens. J Anal Toxicol 2019; 43(9): 734–745
CrossRef
Google scholar
|
[46] |
Fabresse N, Larabi IA, Abe E, Lamy E, Rigothier C, Massy ZA, Alvarez JC. Correlation between saliva levels and serum levels of free uremic toxins in healthy volunteers. Toxins (Basel) 2023; 15(2): 150
CrossRef
Google scholar
|
[47] |
Kuc D, Rahnama M, Tomaszewski T, Rzeski W, Wejksza K, Urbanik-Sypniewska T, Parada-Turska J, Wielosz M, Turski WA. Kynurenic acid in human saliva—does it influence oral microflora? Pharmacol Rep 2006; 58(3): 393–398
Pubmed
|
[48] |
Wu W, Bush KT, Nigam SK. Key role for the organic anion transporters, OAT1 and OAT3, in the in vivo handling of uremic toxins and solutes. Sci Rep 2017; 7(1): 4939
CrossRef
Google scholar
|
[49] |
Nemet I, Li XS, Haghikia A, Li L, Wilcox J, Romano KA, Buffa JA, Witkowski M, Demuth I, König M, Steinhagen-Thiessen E, Bäckhed F, Fischbach MA, Tang WHW, Landmesser U, Hazen SL. Atlas of gut microbe-derived products from aromatic amino acids and risk of cardiovascular morbidity and mortality. Eur Heart J 2023; 44(32): 3085–3096
CrossRef
Google scholar
|
[50] |
Damasceno A, Lunet N. Comorbidities and heart failure: heterogeneity and challenges to fill in the gaps. Lancet Glob Health 2023; 11(12): e1830–e1831
CrossRef
Google scholar
|
[51] |
Niebauer J, Volk HD, Kemp M, Dominguez M, Schumann RR, Rauchhaus M, Poole-Wilson PA, Coats AJ, Anker SD. Endotoxin and immune activation in chronic heart failure: a prospective cohort study. Lancet 1999; 353(9167): 1838–1842
CrossRef
Google scholar
|
[52] |
Tang WH, Wang Z, Fan Y, Levison B, Hazen JE, Donahue LM, Wu Y, Hazen SL. Prognostic value of elevated levels of intestinal microbe-generated metabolite trimethylamine-N-oxide in patients with heart failure: refining the gut hypothesis. J Am Coll Cardiol 2014; 64(18): 1908–1914
CrossRef
Google scholar
|
[53] |
Braunwald E. Heart failure: a 70 year Odyssey. Eur Heart J 2022; 43(18): 1697–1699
CrossRef
Google scholar
|
[54] |
Zheng Y, Yu B, Alexander D, Manolio TA, Aguilar D, Coresh J, Heiss G, Boerwinkle E, Nettleton JA. Associations between metabolomic compounds and incident heart failure among African Americans: the ARIC Study. Am J Epidemiol 2013; 178(4): 534–542
CrossRef
Google scholar
|
[55] |
Tang HY, Wang CH, Ho HY, Lin JF, Lo CJ, Huang CY, Cheng ML. Characteristic of metabolic status in heart failure and its impact in outcome perspective. Metabolites 2020; 10(11): 437
CrossRef
Google scholar
|
[56] |
Zong X, Fan Q, Yang Q, Pan R, Zhuang L, Tao R. Phenylacetylglutamine as a risk factor and prognostic indicator of heart failure. ESC Heart Fail 2022; 9(4): 2645–2653
CrossRef
Google scholar
|
[57] |
TangWHWNemet ILiXSWuYHaghikiaA WitkowskiMKoeth RADemuthIKönigMSteinhagen-Thiessen EBäckhedFFischbachMADebA LandmesserUHazen SL. Prognostic value of gut microbe-generated metabolite phenylacetylglutamine in patients with heart failure. Eur J Heart Fail 2023; [Epub ahead of print] doi: 10.1002/ejhf.3111
|
[58] |
Liu Y, Liu S, Zhao Z, Song X, Qu H, Liu H. Phenylacetylglutamine is associated with the degree of coronary atherosclerotic severity assessed by coronary computed tomographic angiography in patients with suspected coronary artery disease. Atherosclerosis 2021; 333: 75–82
CrossRef
Google scholar
|
[59] |
Yap IK, Brown IJ, Chan Q, Wijeyesekera A, Garcia-Perez I, Bictash M, Loo RL, Chadeau-Hyam M, Ebbels T, De Iorio M, Maibaum E, Zhao L, Kesteloot H, Daviglus ML, Stamler J, Nicholson JK, Elliott P, Holmes E. Metabolome-wide association study identifies multiple biomarkers that discriminate north and south Chinese populations at differing risks of cardiovascular disease: INTERMAP study. J Proteome Res 2010; 9(12): 6647–6654
CrossRef
Google scholar
|
[60] |
Ottosson F, Brunkwall L, Smith E, Orho-Melander M, Nilsson PM, Fernandez C, Melander O. The gut microbiota-related metabolite phenylacetylglutamine associates with increased risk of incident coronary artery disease. J Hypertens 2020; 38(12): 2427–2434
CrossRef
Google scholar
|
[61] |
Menni C, Lin C, Cecelja M, Mangino M, Matey-Hernandez ML, Keehn L, Mohney RP, Steves CJ, Spector TD, Kuo CF, Chowienczyk P, Valdes AM. Gut microbial diversity is associated with lower arterial stiffness in women. Eur Heart J 2018; 39(25): 2390–2397
CrossRef
Google scholar
|
[62] |
Yu F, Li X, Feng X, Wei M, Luo Y, Zhao T, Xiao B, Xia J. Phenylacetylglutamine, a novel biomarker in acute ischemic stroke. Front Cardiovasc Med 2021; 8: 798765
CrossRef
Google scholar
|
[63] |
Yu F, Feng X, Li X, Luo Y, Wei M, Zhao T, Xia J. Gut-derived metabolite phenylacetylglutamine and white matter hyperintensities in patients with acute ischemic stroke. Front Aging Neurosci 2021; 13: 675158
CrossRef
Google scholar
|
[64] |
Azab SM, Zamzam A, Syed MH, Abdin R, Qadura M, Britz-McKibbin P. Serum metabolic signatures of chronic limb-threatening ischemia in patients with peripheral artery disease. J Clin Med 2020; 9(6): 1877
CrossRef
Google scholar
|
[65] |
Fu Y, Yang Y, Fang C, Liu X, Dong Y, Xu L, Chen M, Zuo K, Wang L. Prognostic value of plasma phenylalanine and gut microbiota-derived metabolite phenylacetylglutamine in coronary in-stent restenosis. Front Cardiovasc Med 2022; 9: 944155
CrossRef
Google scholar
|
[66] |
Bogiatzi C, Gloor G, Allen-Vercoe E, Reid G, Wong RG, Urquhart BL, Dinculescu V, Ruetz KN, Velenosi TJ, Pignanelli M, Spence JD. Metabolic products of the intestinal microbiome and extremes of atherosclerosis. Atherosclerosis 2018; 273: 91–97
CrossRef
Google scholar
|
[67] |
Zuo K, Li J, Li K, Hu C, Gao Y, Chen M, Hu R, Liu Y, Chi H, Wang H, Qin Y, Liu X, Li S, Cai J, Zhong J, Yang X. Disordered gut microbiota and alterations in metabolic patterns are associated with atrial fibrillation. Gigascience 2019; 8(6): giz058
CrossRef
Google scholar
|
[68] |
Gawałko M, Agbaedeng TA, Saljic A, Müller DN, Wilck N, Schnabel R, Penders J, Rienstra M, van Gelder I, Jespersen T, Schotten U, Crijns HJGM, Kalman JM, Sanders P, Nattel S, Dobrev D, Linz D. Gut microbiota, dysbiosis and atrial fibrillation. Arrhythmogenic mechanisms and potential clinical implications. Cardiovasc Res 2022; 118(11): 2415–2427
CrossRef
Google scholar
|
[69] |
Fu H, Kong B, Zhu J, Huang H, Shuai W. Phenylacetylglutamine increases the susceptibility of ventricular arrhythmias in heart failure mice by exacerbated activation of the TLR4/AKT/mTOR signaling pathway. Int Immunopharmacol 2023; 116: 109795
CrossRef
Google scholar
|
[70] |
Witkowski M, Weeks TL, Hazen SL. Gut microbiota and cardiovascular disease. Circ Res 2020; 127(4): 553–570
CrossRef
Google scholar
|
[71] |
Zhang X, Li Y, Yang P, Liu X, Lu L, Chen Y, Zhong X, Li Z, Liu H, Ou C, Yan J, Chen M. Trimethylamine-N-oxide promotes vascular calcification through activation of NLRP3 (nucleotide-binding domain, leucine-rich-containing family, pyrin domain-containing-3) inflammasome and NF-κB (nuclear factor κB) signals. Arterioscler Thromb Vasc Biol 2020; 40(3): 751–765
CrossRef
Google scholar
|
[72] |
Zhao J, Zhang Q, Cheng W, Dai Q, Wei Z, Guo M, Chen F, Qiao S, Hu J, Wang J, Chen H, Bao X, Mu D, Sun X, Xu B, Xie J. Heart-gut microbiota communication determines the severity of cardiac injury after myocardial ischaemia/reperfusion. Cardiovasc Res 2023; 119(6): 1390–1402
CrossRef
Google scholar
|
[73] |
Li X, Geng J, Zhao J, Ni Q, Zhao C, Zheng Y, Chen X, Wang L. Trimethylamine N-oxide exacerbates cardiac fibrosis via activating the NLRP3 inflammasome. Front Physiol 2019; 10: 866
CrossRef
Google scholar
|
[74] |
Aoki K, Teshima Y, Kondo H, Saito S, Fukui A, Fukunaga N, Nawata T, Shimada T, Takahashi N, Shibata H. Role of indoxyl sulfate as a predisposing factor for atrial fibrillation in renal dysfunction. J Am Heart Assoc 2015; 4(10): e002023
CrossRef
Google scholar
|
[75] |
Adamo L, Rocha-Resende C, Prabhu SD, Mann DL. Reappraising the role of inflammation in heart failure. Nat Rev Cardiol 2020; 17(5): 269–285
CrossRef
Google scholar
|
[76] |
Xu X, Lu WJ, Shi JY, Su YL, Liu YC, Wang L, Xiao CX, Chen C, Lu Q. The gut microbial metabolite phenylacetylglycine protects against cardiac injury caused by ischemia/reperfusion through activating β2AR. Arch Biochem Biophys 2021; 697: 108720
CrossRef
Google scholar
|
[77] |
Hazekawa M, Ono K, Nishinakagawa T, Kawakubo-Yasukochi T, Nakashima M. In vitro anti-inflammatory effects of the phenylbutyric acid metabolite phenylacetyl glutamine. Biol Pharm Bull 2018; 41(6): 961–966
CrossRef
Google scholar
|
[78] |
Fang C, Zuo K, Jiao K, Zhu X, Fu Y, Zhong J, Xu L, Yang X. PAGln, an atrial fibrillation-linked gut microbial metabolite, acts as a promoter of atrial myocyte injury. Biomolecules 2022; 12(8): 1120
CrossRef
Google scholar
|
[79] |
Glassock RJ, Massry SG. Chapter 6 — Uremic toxins: an integrated overview of classification and pathobiology. In: Kopple JD, Massry SG, Kalantar-Zadeh K, Fouque D. Nutritional Management of Renal Disease (Fourth Edition). Academic Press, 2022: 77–89
|
[80] |
Zhong J, Kirabo A, Yang HC, Fogo AB, Shelton EL, Kon V. Intestinal lymphatic dysfunction in kidney disease. Circ Res 2023; 132(9): 1226–1245
CrossRef
Google scholar
|
[81] |
Glorieux G, Nigam SK, Vanholder R, Verbeke F. Role of the microbiome in gut-heart-kidney cross talk. Circ Res 2023; 132(8): 1064–1083
CrossRef
Google scholar
|
[82] |
Ahn SY, Nigam SK. Toward a systems level understanding of organic anion and other multispecific drug transporters: a remote sensing and signaling hypothesis. Mol Pharmacol 2009; 76(3): 481–490
CrossRef
Google scholar
|
[83] |
Rosenthal SB, Bush KT, Nigam SK. A network of SLC and ABC transporter and DME genes involved in remote sensing and signaling in the gut-liver-kidney axis. Sci Rep 2019; 9(1): 11879
CrossRef
Google scholar
|
[84] |
Lekawanvijit S, Kompa AR, Wang BH, Kelly DJ, Krum H. Cardiorenal syndrome: the emerging role of protein-bound uremic toxins. Circ Res 2012; 111(11): 1470–1483
CrossRef
Google scholar
|
[85] |
Sundaram V, Fang JC. Gastrointestinal and liver issues in heart failure. Circulation 2016; 133(17): 1696–1703
CrossRef
Google scholar
|
[86] |
Spence JD, Urquhart BL. Cerebrovascular disease, cardiovascular disease, and chronic kidney disease: interplays and influences. Curr Neurol Neurosci Rep 2022; 22(11): 757–766
CrossRef
Google scholar
|
[87] |
Tsutamoto T, Kawahara C, Nishiyama K, Yamaji M, Fujii M, Yamamoto T, Horie M. Prognostic role of highly sensitive cardiac troponin I in patients with systolic heart failure. Am Heart J 2010; 159(1): 63–67
CrossRef
Google scholar
|
[88] |
Sandoval Y, Apple FS, Mahler SA, Body R, Collinson PO, Jaffe AS; International Federation of Clinical Chemistry and Laboratory Medicine Committee on the Clinical Application of Cardiac Biomarkers. High-sensitivity cardiac troponin and the 2021 AHA/ACC/ASE/CHEST/SAEM/SCCT/SCMR guidelines for the evaluation and diagnosis of acute chest pain. Circulation 2022; 146(7): 569–581 doi:10.1161/CIRCULATIONAHA.122.059678
Pubmed
|
[89] |
McDonagh TA, Metra M, Adamo M, Gardner RS, Baumbach A, Böhm M, Burri H, Butler J, Čelutkienė J, Chioncel O, Cleland JGF, Coats AJS, Crespo-Leiro MG, Farmakis D, Gilard M, Heymans S, Hoes AW, Jaarsma T, Jankowska EA, Lainscak M, Lam CSP, Lyon AR, McMurray JJV, Mebazaa A, Mindham R, Muneretto C, Francesco Piepoli M, Price S, Rosano GMC, Ruschitzka F, Kathrine Skibelund A; ESC Scientific Document Group. 2021 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure. Eur Heart J 2021; 42(36): 3599–3726
CrossRef
Google scholar
|
[90] |
Shiels PG. ‘Debugging’ heart failure. J Intern Med 2023; 294(4): 374–376
CrossRef
Google scholar
|
[91] |
Romano KA, Nemet I, Prasad Saha P, Haghikia A, Li XS, Mohan ML, Lovano B, Castel L, Witkowski M, Buffa JA, Sun Y, Li L, Menge CM, Demuth I, König M, Steinhagen-Thiessen E, DiDonato JA, Deb A, Bäckhed F, Tang WHW, Naga Prasad SV, Landmesser U, Van Wagoner DR, Hazen SL. Gut microbiota-generated phenylacetylglutamine and heart failure. Circ Heart Fail 2023; 16(1): e009972
CrossRef
Google scholar
|
[92] |
Elliott P, Posma JM, Chan Q, Garcia-Perez I, Wijeyesekera A, Bictash M, Ebbels TM, Ueshima H, Zhao L, van Horn L, Daviglus M, Stamler J, Holmes E, Nicholson JK. Urinary metabolic signatures of human adiposity. Sci Transl Med 2015; 7(285): 285ra62
CrossRef
Google scholar
|
[93] |
Chang AY, Abdullah SM, Jain T, Stanek HG, Das SR, McGuire DK, Auchus RJ, de Lemos JA. Associations among androgens, estrogens, and natriuretic peptides in young women: observations from the Dallas Heart Study. J Am Coll Cardiol 2007; 49(1): 109–116
CrossRef
Google scholar
|
[94] |
Mueller C, McDonald K, de Boer RA, Maisel A, Cleland JGF, Kozhuharov N, Coats AJS, Metra M, Mebazaa A, Ruschitzka F, Lainscak M, Filippatos G, Seferovic PM, Meijers WC, Bayes-Genis A, Mueller T, Richards M, Januzzi JL Jr; Heart Failure Association of the European Society of Cardiology. Heart Failure Association of the European Society of Cardiology practical guidance on the use of natriuretic peptide concentrations. Eur J Heart Fail 2019; 21(6): 715–731
CrossRef
Google scholar
|
[95] |
Landau BR, Chandramouli V, Schumann WC, Ekberg K, Kumaran K, Kalhan SC, Wahren J. Estimates of Krebs cycle activity and contributions of gluconeogenesis to hepatic glucose production in fasting healthy subjects and IDDM patients. Diabetologia 1995; 38(7): 831–838
CrossRef
Google scholar
|
[96] |
Hua S, Lv B, Qiu Z, Li Z, Wang Z, Chen Y, Han Y, Tucker KL, Wu H, Jin W. Microbial metabolites in chronic heart failure and its common comorbidities. EMBO Mol Med 2023; 15(6): e16928
CrossRef
Google scholar
|
[97] |
Xu J, Cai M, Wang Z, Chen Q, Han X, Tian J, Jin S, Yan Z, Li Y, Lu B, Lu H. Phenylacetylglutamine as a novel biomarker of type 2 diabetes with distal symmetric polyneuropathy by metabolomics. J Endocrinol Invest 2023; 46(5): 869–882
CrossRef
Google scholar
|
[98] |
Zuo J, Lan Y, Hu H, Hou X, Li J, Wang T, Zhang H, Zhang N, Guo C, Peng F, Zhao S, Wei Y, Jia C, Zheng C, Mao G. Metabolomics-based multidimensional network biomarkers for diabetic retinopathy identification in patients with type 2 diabetes mellitus. BMJ Open Diabetes Res Care 2021; 9(1): e001443
CrossRef
Google scholar
|
[99] |
Tan YM, Gao Y, Teo G, Koh HWL, Tai ES, Khoo CM, Choi KP, Zhou L, Choi H. Plasma metabolome and lipidome associations with type 2 diabetes and diabetic nephropathy. Metabolites 2021; 11(4): 228
CrossRef
Google scholar
|
[100] |
Pan A, Sun Q, Bernstein AM, Schulze MB, Manson JE, Stampfer MJ, Willett WC, Hu FB. Red meat consumption and mortality: results from 2 prospective cohort studies. Arch Intern Med 2012; 172(7): 555–563
CrossRef
Google scholar
|
[101] |
Mohan D, Mente A, Dehghan M, Rangarajan S, O’Donnell M, Hu W, Dagenais G, Wielgosz A, Lear S, Wei L, Diaz R, Avezum A, Lopez-Jaramillo P, Lanas F, Swaminathan S, Kaur M, Vijayakumar K, Mohan V, Gupta R, Szuba A, Iqbal R, Yusuf R, Mohammadifard N, Khatib R, Yusoff K, Gulec S, Rosengren A, Yusufali A, Wentzel-Viljoen E, Chifamba J, Dans A, Alhabib KF, Yeates K, Teo K, Gerstein HC, Yusuf S; PURE, ONTARGET investigators. Associations of fish consumption with risk of cardiovascular disease and mortality among individuals with or without vascular disease from 58 countries. JAMA Intern Med 2021; 181(5): 631–649
CrossRef
Google scholar
|
[102] |
Hitch TCA, Hall LJ, Walsh SK, Leventhal GE, Slack E, de Wouters T, Walter J, Clavel T. Microbiome-based interventions to modulate gut ecology and the immune system. Mucosal Immunol 2022; 15(6): 1095–1113
CrossRef
Google scholar
|
[103] |
Witkowski M, Witkowski M, Friebel J, Buffa JA, Li XS, Wang Z, Sangwan N, Li L, DiDonato JA, Tizian C, Haghikia A, Kirchhofer D, Mach F, Räber L, Matter CM, Tang WHW, Landmesser U, Lüscher TF, Rauch U, Hazen SL. Vascular endothelial tissue factor contributes to trimethylamine N-oxide-enhanced arterial thrombosis. Cardiovasc Res 2022; 118(10): 2367–2384
CrossRef
Google scholar
|
[104] |
Dahl WJ, Hung WL, Ford AL, Suh JH, Auger J, Nagulesapillai V, Wang Y. In older women, a high-protein diet including animal-sourced foods did not impact serum levels and urinary excretion of trimethylamine-N-oxide. Nutr Res 2020; 78: 72–81
CrossRef
Google scholar
|
[105] |
Chan Q, Wren GM, Lau CE, Ebbels TMD, Gibson R, Loo RL, Aljuraiban GS, Posma JM, Dyer AR, Steffen LM, Rodriguez BL, Appel LJ, Daviglus ML, Elliott P, Stamler J, Holmes E, Van Horn L. Blood pressure interactions with the DASH dietary pattern, sodium, and potassium: the International Study of Macro-/Micronutrients and Blood Pressure (INTERMAP). Am J Clin Nutr 2022; 116(1): 216–229
CrossRef
Google scholar
|
[106] |
Kaye DM, Shihata WA, Jama HA, Tsyganov K, Ziemann M, Kiriazis H, Horlock D, Vijay A, Giam B, Vinh A, Johnson C, Fiedler A, Donner D, Snelson M, Coughlan MT, Phillips S, Du XJ, El-Osta A, Drummond G, Lambert GW, Spector TD, Valdes AM, Mackay CR, Marques FZ. Deficiency of prebiotic fiber and insufficient signaling through gut metabolite-sensing receptors leads to cardiovascular disease. Circulation 2020; 141(17): 1393–1403
CrossRef
Google scholar
|
[107] |
Marques FZ, Nelson E, Chu PY, Horlock D, Fiedler A, Ziemann M, Tan JK, Kuruppu S, Rajapakse NW, El-Osta A, Mackay CR, Kaye DM. High-fiber diet and acetate supplementation change the gut microbiota and prevent the development of hypertension and heart failure in hypertensive mice. Circulation 2017; 135(10): 964–977
CrossRef
Google scholar
|
[108] |
Zhou Y, Zhang N, Arikawa AY, Chen C. Inhibitory effects of green tea polyphenols on microbial metabolism of aromatic amino acids in humans revealed by metabolomic analysis. Metabolites 2019; 9(5): 96
CrossRef
Google scholar
|
[109] |
Lam V, Su J, Hsu A, Gross GJ, Salzman NH, Baker JE. Intestinal microbial metabolites are linked to severity of myocardial infarction in rats. PLoS One 2016; 11(8): e0160840
CrossRef
Google scholar
|
[110] |
Li Z, Wu Z, Yan J, Liu H, Liu Q, Deng Y, Ou C, Chen M. Gut microbe-derived metabolite trimethylamine N-oxide induces cardiac hypertrophy and fibrosis. Lab Invest 2019; 99(3): 346–357
CrossRef
Google scholar
|
[111] |
Riba A, Deres L, Eros K, Szabo A, Magyar K, Sumegi B, Toth K, Halmosi R, Szabados E. Doxycycline protects against ROS-induced mitochondrial fragmentation and ISO-induced heart failure. PLoS One 2017; 12(4): e0175195
CrossRef
Google scholar
|
[112] |
Palleja A, Mikkelsen KH, Forslund SK, Kashani A, Allin KH, Nielsen T, Hansen TH, Liang S, Feng Q, Zhang C, Pyl PT, Coelho LP, Yang H, Wang J, Typas A, Nielsen MF, Nielsen HB, Bork P, Wang J, Vilsbøll T, Hansen T, Knop FK, Arumugam M, Pedersen O. Recovery of gut microbiota of healthy adults following antibiotic exposure. Nat Microbiol 2018; 3(11): 1255–1265
CrossRef
Google scholar
|
[113] |
Winkel P, Hilden J, Hansen JF, Kastrup J, Kolmos HJ, Kjøller E, Jensen GB, Skoog M, Lindschou J, Gluud C; CLARICOR trial group. Clarithromycin for stable coronary heart disease increases all-cause and cardiovascular mortality and cerebrovascular morbidity over 10years in the CLARICOR randomised, blinded clinical trial. Int J Cardiol 2015; 182: 459–465
CrossRef
Google scholar
|
[114] |
Wang G, Kong B, Shuai W, Fu H, Jiang X, Huang H. 3,3-Dimethyl-1-butanol attenuates cardiac remodeling in pressure-overload-induced heart failure mice. J Nutr Biochem 2020; 78: 108341
CrossRef
Google scholar
|
[115] |
Fatani AMN, Suh JH, Auger J, Alabasi KM, Wang Y, Segal MS, Dahl WJ. Pea hull fiber supplementation does not modulate uremic metabolites in adults receiving hemodialysis: a randomized, double-blind, controlled trial. Front Nutr 2023; 10: 1179295
CrossRef
Google scholar
|
[116] |
Tang WW, Hazen SL. Dietary metabolism, gut microbiota and acute heart failure. Heart 2016; 102(11): 813–814
CrossRef
Google scholar
|
[117] |
Zhang Z, Cai B, Sun Y, Deng H, Wang H, Qiao Z. Alteration of the gut microbiota and metabolite phenylacetylglutamine in patients with severe chronic heart failure. Front Cardiovasc Med 2023; 9: 1076806
CrossRef
Google scholar
|
[118] |
Zong X, Fan Q, Yang Q, Pan R, Zhuang L, Tao R. Phenylacetylglutamine as a risk factor and prognostic indicator of heart failure. ESC Heart Fail 2022; 9(4): 2645–2653
CrossRef
Google scholar
|
/
〈 | 〉 |