Pathogen evolution, prevention/control strategy and clinical features of COVID-19: experiences from China

Dong Wei, Yusang Xie, Xuefei Liu, Rong Chen, Min Zhou, Xinxin Zhang, Jieming Qu

PDF(1627 KB)
PDF(1627 KB)
Front. Med. ›› 2023, Vol. 17 ›› Issue (6) : 1030-1046. DOI: 10.1007/s11684-023-1043-5
REVIEW

Pathogen evolution, prevention/control strategy and clinical features of COVID-19: experiences from China

Author information +
History +

Abstract

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) was reported at the end of 2019 as a worldwide health concern causing a pandemic of unusual viral pneumonia and many other organ damages, which was defined by the World Health Organization as coronavirus disease 2019 (COVID-19). The pandemic is considered a significant threat to global public health till now. In this review, we have summarized the lessons learnt during the emergence and spread of SARS-CoV-2, including its prototype and variants. The overall clinical features of variants of concern (VOC), heterogeneity in the clinical manifestations, radiology and pathology of COVID-19 patients are also discussed, along with advances in therapeutic agents.

Keywords

coronavirus disease 2019 / SARS-CoV-2 / epidemiology / clinical features

Cite this article

Download citation ▾
Dong Wei, Yusang Xie, Xuefei Liu, Rong Chen, Min Zhou, Xinxin Zhang, Jieming Qu. Pathogen evolution, prevention/control strategy and clinical features of COVID-19: experiences from China. Front. Med., 2023, 17(6): 1030‒1046 https://doi.org/10.1007/s11684-023-1043-5

References

[1]
Cui J, Li F, Shi ZL. Origin and evolution of pathogenic coronaviruses. Nat Rev Microbiol 2019; 17(3): 181–192
CrossRef Google scholar
[2]
Yu C, Lei Q, Li W, Wang X, Li W, Liu W. Epidemiological and clinical characteristics of 1663 hospitalized patients infected with COVID-19 in Wuhan, China: a single-center experience. J Infect Public Health 2020; 13(9): 1202–1209
CrossRef Google scholar
[3]
Chen N, Zhou M, Dong X, Qu J, Gong F, Han Y, Qiu Y, Wang J, Liu Y, Wei Y, Xia J, Yu T, Zhang X, Zhang L. Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study. Lancet 2020; 395(10223): 507–513
CrossRef Google scholar
[4]
Han Q, Lin Q, Jin S, You L. Coronavirus 2019-nCoV: a brief perspective from the front line. J Infect 2020; 80(4): 373–377
CrossRef Google scholar
[5]
WHO. WHO Coronavirus (COVID-19) Dashboard. 2023. Available at the website of WHO
[6]
Zhu N, Zhang D, Wang W, Li X, Yang B, Song J, Zhao X, Huang B, Shi W, Lu R, Niu P, Zhan F, Ma X, Wang D, Xu W, Wu G, Gao GF, Tan W; China Novel Coronavirus Investigating, Research Team. A novel coronavirus from patients with pneumonia in China, 2019. N Engl J Med 2020; 382(8): 727–733
CrossRef Google scholar
[7]
Kang M, Wei J, Yuan J, Guo J, Zhang Y, Hang J, Qu Y, Qian H, Zhuang Y, Chen X, Peng X, Shi T, Wang J, Wu J, Song T, He J, Li Y, Zhong N. Probable evidence of fecal aerosol transmission of SARS-CoV-2 in a high-rise building. Ann Intern Med 2020; 173(12): 974–980
CrossRef Google scholar
[8]
Rocklöv J, Sjödin H, Wilder-Smith A. COVID-19 outbreak on the Diamond Princess cruise ship: estimating the epidemic potential and effectiveness of public health countermeasures. J Travel Med 2020; 27(3): taaa030
CrossRef Google scholar
[9]
Li Q, Guan X, Wu P, Wang X, Zhou L, Tong Y, Ren R, Leung KSM, Lau EHY, Wong JY, Xing X, Xiang N, Wu Y, Li C, Chen Q, Li D, Liu T, Zhao J, Liu M, Tu W, Chen C, Jin L, Yang R, Wang Q, Zhou S, Wang R, Liu H, Luo Y, Liu Y, Shao G, Li H, Tao Z, Yang Y, Deng Z, Liu B, Ma Z, Zhang Y, Shi G, Lam TTY, Wu JT, Gao GF, Cowling BJ, Yang B, Leung GM, Feng Z. Early transmission dynamics in Wuhan, China, of novel coronavirus-infected pneumonia. N Engl J Med 2020; 382(13): 1199–1207
CrossRef Google scholar
[10]
Dong E, Du H, Gardner L. An interactive web-based dashboard to track COVID-19 in real time. Lancet Infect Dis 2020; 20(5): 533–534
CrossRef Google scholar
[11]
Boldog P, Tekeli T, Vizi Z, Dénes A, Bartha FA, Röst G. Risk assessment of novel coronavirus COVID-19 outbreaks outside China. J Clin Med 2020; 9(2): 571
CrossRef Google scholar
[12]
WHO. Novel coronavirus (2019-nCoV) situation report-1 (21 January 2020). 2020. Available at the website of WHO
[13]
Volz E, Mishra S, Chand M, Barrett JC, Johnson R, Geidelberg L, Hinsley WR, Laydon DJ, Dabrera G, O’Toole Á, Amato R, Ragonnet-Cronin M, Harrison I, Jackson B, Ariani CV, Boyd O, Loman NJ, McCrone JT, Gonçalves S, Jorgensen D, Myers R, Hill V, Jackson DK, Gaythorpe K, Groves N, Sillitoe J, Kwiatkowski DP; COVID-19 Genomics UK (COG-UK) consortium; Flaxman S, Ratmann O, Bhatt S, Hopkins S, Gandy A, Rambaut A, Ferguson NM. Assessing transmissibility of SARS-CoV-2 lineage B.1.1.7 in England. Nature 2021; 593(7858): 266–269
CrossRef Google scholar
[14]
Pybus OG, Rambaut A. Evolutionary analysis of the dynamics of viral infectious disease. Nat Rev Genet 2009; 10(8): 540–550
CrossRef Google scholar
[15]
O'Toole Á, Hill V, Pybus OG, Watts A, Bogoch II, Khan K, Messina JP; COVID-19 Genomics UK (COG-UK) consortium; Network for Genomic Surveillance in South Africa (NGS-SA); Brazil-UK CADDE Genomic Network; Tegally H, Lessells RR, Giandhari J, Pillay S, Tumedi KA, Nyepetsi G, Kebabonye M, Matsheka M, Mine M, Tokajian S, Hassan H, Salloum T, Merhi G, Koweyes J, Geoghegan JL, de Ligt J, Ren X, Storey M, Freed NE, Pattabiraman C, Prasad P, Desai AS, Vasanthapuram R, Schulz TF, Steinbrück L, Stadler T; Swiss Viollier Sequencing Consortium; Parisi A, Bianco A, García de Viedma D, Buenestado-Serrano S, Borges V, Isidro J, Duarte S, Gomes JP, Zuckerman NS, Mandelboim M, Mor O, Seemann T, Arnott A, Draper J, Gall M, Rawlinson W, Deveson I, Schlebusch S, McMahon J, Leong L, Lim CK, Chironna M, Loconsole D, Bal A, Josset L, Holmes E, St George K, Lasek-Nesselquist E, Sikkema RS, Oude Munnink B, Koopmans M, Brytting M, Sudha Rani V, Pavani S, Smura T, Heim A, Kurkela S, Umair M, Salman M, Bartolini B, Rueca M, Drosten C, Wolff T, Silander O, Eggink D, Reusken C, Vennema H, Park A, Carrington C, Sahadeo N, Carr M, Gonzalez G; SEARCH Alliance San Diego; National Virus Reference Laboratory; SeqCOVID-Spain; Danish Covid-19 Genome Consortium (DCGC); Communicable Diseases Genomic Network (CDGN); Dutch National SARS-CoV-2 surveillance program; Division of Emerging Infectious Diseases (KDCA); de Oliveira T, Faria N, Rambaut A, Kraemer MUG. Tracking the international spread of SARS-CoV-2 lineages B.1.1.7 and B.1.351/501Y-V2 with grinch. Wellcome Open Res 2021; 6: 121
CrossRef Google scholar
[16]
Washington NL, Gangavarapu K, Zeller M, Bolze A, Cirulli ET, Schiabor Barrett KM, Larsen BB, Anderson C, White S, Cassens T, Jacobs S, Levan G, Nguyen J, Ramirez JM 3rd, Rivera-Garcia C, Sandoval E, Wang X, Wong D, Spencer E, Robles-Sikisaka R, Kurzban E, Hughes LD, Deng X, Wang C, Servellita V, Valentine H, De Hoff P, Seaver P, Sathe S, Gietzen K, Sickler B, Antico J, Hoon K, Liu J, Harding A, Bakhtar O, Basler T, Austin B, MacCannell D, Isaksson M, Febbo PG, Becker D, Laurent M, McDonald E, Yeo GW, Knight R, Laurent LC, de Feo E, Worobey M, Chiu CY, Suchard MA, Lu JT, Lee W, Andersen KG. Emergence and rapid transmission of SARS-CoV-2 B.1.1.7 in the United States. Cell 2021; 184(10): 2587–2594.e7
CrossRef Google scholar
[17]
Tegally H, Wilkinson E, Giovanetti M, Iranzadeh A, Fonseca V, Giandhari J, Doolabh D, Pillay S, San EJ, Msomi N, Mlisana K, von Gottberg A, Walaza S, Allam M, Ismail A, Mohale T, Glass AJ, Engelbrecht S, Van Zyl G, Preiser W, Petruccione F, Sigal A, Hardie D, Marais G, Hsiao NY, Korsman S, Davies MA, Tyers L, Mudau I, York D, Maslo C, Goedhals D, Abrahams S, Laguda-Akingba O, Alisoltani-Dehkordi A, Godzik A, Wibmer CK, Sewell BT, Lourenço J, Alcantara LCJ, Kosakovsky Pond SL, Weaver S, Martin D, Lessells RJ, Bhiman JN, Williamson C, de Oliveira T. Detection of a SARS-CoV-2 variant of concern in South Africa. Nature 2021; 592(7854): 438–443
CrossRef Google scholar
[18]
Naveca FG, Nascimento V, de Souza VC, Corado AL, Nascimento F, Silva G, Costa Á, Duarte D, Pessoa K, Mejía M, Brandão MJ, Jesus M, Gonçalves L, da Costa CF, Sampaio V, Barros D, Silva M, Mattos T, Pontes G, Abdalla L, Santos JH, Arantes I, Dezordi FZ, Siqueira MM, Wallau GL, Resende PC, Delatorre E, Gräf T, Bello G. COVID-19 in Amazonas, Brazil, was driven by the persistence of endemic lineages and P.1 emergence. Nat Med 2021; 27(7): 1230–1238
CrossRef Google scholar
[19]
Harvey WT, Carabelli AM, Jackson B, Gupta RK, Thomson EC, Harrison EM, Ludden C, Reeve R, Rambaut A; COVID-19 Genomics UK (COG-UK) Consortium; Peacock SJ, Robertson DL. SARS-CoV-2 variants, spike mutations and immune escape. Nat Rev Microbiol 2021; 19(7): 409–424
CrossRef Google scholar
[20]
Reading PC, Miller JL, Anders EM. Involvement of the mannose receptor in infection of macrophages by influenza virus. J Virol 2000; 74(11): 5190–5197
CrossRef Google scholar
[21]
Tian D, Sun Y, Zhou J, Ye Q. The global epidemic of the SARS-CoV-2 Delta variant, key spike mutations and immune escape. Front Immunol 2021; 12: 751778
CrossRef Google scholar
[22]
Viana R, Moyo S, Amoako DG, Tegally H, Scheepers C, Althaus CL, Anyaneji UJ, Bester PA, Boni MF, Chand M, Choga WT, Colquhoun R, Davids M, Deforche K, Doolabh D, du Plessis L, Engelbrecht S, Everatt J, Giandhari J, Giovanetti M, Hardie D, Hill V, Hsiao NY, Iranzadeh A, Ismail A, Joseph C, Joseph R, Koopile L, Kosakovsky Pond SL, Kraemer MUG, Kuate-Lere L, Laguda-Akingba O, Lesetedi-Mafoko O, Lessells RJ, Lockman S, Lucaci AG, Maharaj A, Mahlangu B, Maponga T, Mahlakwane K, Makatini Z, Marais G, Maruapula D, Masupu K, Matshaba M, Mayaphi S, Mbhele N, Mbulawa MB, Mendes A, Mlisana K, Mnguni A, Mohale T, Moir M, Moruisi K, Mosepele M, Motsatsi G, Motswaledi MS, Mphoyakgosi T, Msomi N, Mwangi PN, Naidoo Y, Ntuli N, Nyaga M, Olubayo L, Pillay S, Radibe B, Ramphal Y, Ramphal U, San JE, Scott L, Shapiro R, Singh L, Smith-Lawrence P, Stevens W, Strydom A, Subramoney K, Tebeila N, Tshiabuila D, Tsui J, van Wyk S, Weaver S, Wibmer CK, Wilkinson E, Wolter N, Zarebski AE, Zuze B, Goedhals D, Preiser W, Treurnicht F, Venter M, Williamson C, Pybus OG, Bhiman J, Glass A, Martin DP, Rambaut A, Gaseitsiwe S, von Gottberg A, de Oliveira T. Rapid epidemic expansion of the SARS-CoV-2 Omicron variant in southern Africa. Nature 2022; 603(7902): 679–686
CrossRef Google scholar
[23]
Tian D, Sun Y, Xu H, Ye Q. The emergence and epidemic characteristics of the highly mutated SARS-CoV-2 Omicron variant. J Med Virol 2022; 94(6): 2376–2383
CrossRef Google scholar
[24]
Boehm E, Kronig I, Neher RA, Eckerle I, Vetter P, Kaiser L; Geneva Centre for Emerging Viral Diseases. Novel SARS-CoV-2 variants: the pandemics within the pandemic. Clin Microbiol Infect 2021; 27(8): 1109–1117
CrossRef Google scholar
[25]
Chen RE, Zhang X, Case JB, Winkler ES, Liu Y, VanBlargan LA, Liu J, Errico JM, Xie X, Suryadevara N, Gilchuk P, Zost SJ, Tahan S, Droit L, Turner JS, Kim W, Schmitz AJ, Thapa M, Wang D, Boon ACM, Presti RM, O’Halloran JA, Kim AHJ, Deepak P, Pinto D, Fremont DH, Crowe JE Jr, Corti D, Virgin HW, Ellebedy AH, Shi PY, Diamond MS. Resistance of SARS-CoV-2 variants to neutralization by monoclonal and serum-derived polyclonal antibodies. Nat Med 2021; 27(4): 717–726
CrossRef Google scholar
[26]
Tao K, Tzou PL, Nouhin J, Gupta RK, de Oliveira T, Kosakovsky Pond SL, Fera D, Shafer RW. The biological and clinical significance of emerging SARS-CoV-2 variants. Nat Rev Genet 2021; 22(12): 757–773
CrossRef Google scholar
[27]
Saxena SK, Kumar S, Ansari S, Paweska JT, Maurya VK, Tripathi AK, Abdel-Moneim AS. Transmission dynamics and mutational prevalence of the novel severe acute respiratory syndrome coronavirus-2 Omicron variant of concern. J Med Virol 2022; 94(5): 2160–2166
CrossRef Google scholar
[28]
Liu Y, Rocklöv J. The effective reproductive number of the Omicron variant of SARS-CoV-2 is several times relative to Delta. J Travel Med 2022; 29(3): taac037
CrossRef Google scholar
[29]
Yu J, Collier AY, Rowe M, Mardas F, Ventura JD, Wan H, Miller J, Powers O, Chung B, Siamatu M, Hachmann NP, Surve N, Nampanya F, Chandrashekar A, Barouch DH. Neutralization of the SARS-CoV-2 Omicron BA.1 and BA.2 variants. N Engl J Med 2022; 386(16): 1579–1580
CrossRef Google scholar
[30]
Desingu PA, Nagarajan K, Dhama K. Emergence of Omicron third lineage BA.3 and its importance. J Med Virol 2022; 94(5): 1808–1810
CrossRef Google scholar
[31]
Hadfield J, Megill C, Bell SM, Huddleston J, Potter B, Callender C, Sagulenko P, Bedford T, Neher RA. Nextstrain: real-time tracking of pathogen evolution. Bioinformatics 2018; 34(23): 4121–4123
CrossRef Google scholar
[32]
El-Shabasy RM, Nayel MA, Taher MM, Abdelmonem R, Shoueir KR, Kenawy ER. Three waves changes, new variant strains, and vaccination effect against COVID-19 pandemic. Int J Biol Macromol 2022; 204: 161–168
CrossRef Google scholar
[33]
Dhar MS, Marwal R, Vs R, Ponnusamy K, Jolly B, Bhoyar RC, Sardana V, Naushin S, Rophina M, Mellan TA, Mishra S, Whittaker C, Fatihi S, Datta M, Singh P, Sharma U, Ujjainiya R, Bhatheja N, Divakar MK, Singh MK, Imran M, Senthivel V, Maurya R, Jha N, Mehta P, A V, Sharma P, Vr A, Chaudhary U, Soni N, Thukral L, Flaxman S, Bhatt S, Pandey R, Dash D, Faruq M, Lall H, Gogia H, Madan P, Kulkarni S, Chauhan H, Sengupta S, Kabra S; Indian SARS-CoV-2 Genomics Consortium (INSACOG); Gupta RK, Singh SK, Agrawal A, Rakshit P, Nandicoori V, Tallapaka KB, Sowpati DT, Thangaraj K, Bashyam MD, Dalal A, Sivasubbu S, Scaria V, Parida A, Raghav SK, Prasad P, Sarin A, Mayor S, Ramakrishnan U, Palakodeti D, Seshasayee ASN, Bhat M, Shouche Y, Pillai A, Dikid T, Das S, Maitra A, Chinnaswamy S, Biswas NK, Desai AS, Pattabiraman C, Manjunatha MV, Mani RS, Arunachal Udupi G, Abraham P, Atul PV, Cherian SS. Genomic characterization and epidemiology of an emerging SARS-CoV-2 variant in Delhi, India. Science 2021; 374(6570): 995–999
CrossRef Google scholar
[34]
Fisher D, Heymann D. Q&A: the novel coronavirus outbreak causing COVID-19. BMC Med 2020; 18(1): 57
CrossRef Google scholar
[35]
Lai CC, Shih TP, Ko WC, Tang HJ, Hsueh PR. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and coronavirus disease-2019 (COVID-19): the epidemic and the challenges. Int J Antimicrob Agents 2020; 55(3): 105924
CrossRef Google scholar
[36]
The State Council Information Office of China. Fighting COVID-19: China in Action. 2020. Available at the website of China SCIO
[37]
Mannucci PM, Duga S, Peyvandi F. Recessively inherited coagulation disorders. Blood 2004; 104(5): 1243–1252
CrossRef Google scholar
[38]
WHO-China Joint Mission on Coronavirus Disease. Report of the WHO-China Joint Mission on Coronavirus Disease 2019 (COVID-19). 2020
[39]
The Lancet. Sustaining containment of COVID-19 in China. Lancet 2020; 395(10232): 1230
CrossRef Google scholar
[40]
Pan A, Liu L, Wang C, Guo H, Hao X, Wang Q, Huang J, He N, Yu H, Lin X, Wei S, Wu T. Association of public health interventions with the epidemiology of the COVID-19 outbreak in Wuhan, China. JAMA 2020; 323(19): 1915–1923
CrossRef Google scholar
[41]
Liang WN, Yao JH, Wu J, Liu X, Liu J, Zhou L, Chen C, Wang GF, Wu ZY, Yang WZ, Liu M. Experience and thinking on the normalization stage of prevention and control of COVID-19 in China. Natl Med J China (Zhonghua Yi Xue Za Zhi) 2021; 101(10): 695–699
[42]
Zhang M, Xiao J, Deng A, Zhang Y, Zhuang Y, Hu T, Li J, Tu H, Li B, Zhou Y, Yuan J, Luo L, Liang Z, Huang Y, Ye G, Cai M, Li G, Yang B, Xu B, Huang X, Cui Y, Ren D, Zhang Y, Kang M, Li Y. Transmission dynamics of an outbreak of the COVID-19 Delta variant B.1.617.2—Guangdong Province, China, May–June 2021. China CDC Wkly 2021; 3(27): 584–586
CrossRef Google scholar
[43]
The Joint Prevention and Control Mechanism of the State Council. Press conference held on situation regarding strict prevention and control of COVID-19 epidemic. 2022-4-19. 2022. Available at the website of Chinese Government
[44]
Fu Z, Liang D, Zhang W, Shi D, Ma Y, Wei D, Xi J, Yang S, Xu X, Tian D, Zhu Z, Guo M, Jiang L, Yu S, Wang S, Jiang F, Ling Y, Wang S, Chen S, Liu F, Tan Y, Fan X. Host protection against Omicron BA.2.2 sublineages by prior vaccination in spring 2022 COVID-19 outbreak in Shanghai. Front Med 2023; 17(3): 562–575
CrossRef Google scholar
[45]
Cao Y, Yisimayi A, Jian F, Song W, Xiao T, Wang L, Du S, Wang J, Li Q, Chen X, Yu Y, Wang P, Zhang Z, Liu P, An R, Hao X, Wang Y, Wang J, Feng R, Sun H, Zhao L, Zhang W, Zhao D, Zheng J, Yu L, Li C, Zhang N, Wang R, Niu X, Yang S, Song X, Chai Y, Hu Y, Shi Y, Zheng L, Li Z, Gu Q, Shao F, Huang W, Jin R, Shen Z, Wang Y, Wang X, Xiao J, Xie XS. BA.2.12.1, BA.4 and BA.5 escape antibodies elicited by Omicron infection. Nature 2022; 608(7923): 593–602
CrossRef Google scholar
[46]
Cai J, Deng X, Yang J, Sun K, Liu H, Chen Z, Peng C, Chen X, Wu Q, Zou J, Sun R, Zheng W, Zhao Z, Lu W, Liang Y, Zhou X, Ajelli M, Yu H. Modeling transmission of SARS-CoV-2 Omicron in China. Nat Med 2022; 28(7): 1468–1475
CrossRef Google scholar
[47]
Zhang X, Zhang W, Chen S. Shanghai’s life-saving efforts against the current omicron wave of the COVID-19 pandemic. Lancet 2022; 399(10340): 2011–2012
CrossRef Google scholar
[48]
Lu G, Ling Y, Jiang M, Tan Y, Wei D, Jiang L, Yu S, Jiang F, Wang S, Dai Y, Wang J, Wu G, Zhang X, Meng G, Wang S, Liu F, Fan X, Chen S. Primary assessment of the diversity of Omicron sublineages and the epidemiologic features of autumn/winter 2022 COVID-19 wave in Chinese mainland. Front Med 2023; 17(4): 758–767
CrossRef Google scholar
[49]
The State Council Information Office of China. COVID-19 response further optimized with 10 new measures. 2022. Available at the website of China SCIO
[50]
National Health Commission of China. Daily briefing on novel coronavirus cases in China. 2022. Available at the website of National Health Commission of China
[51]
China CDC. COVID-19 Clinical and Surveillance Data–Dec 9, 2022 to Jan 23, 2023. 2023. Available at the website of China CDC
[52]
Bai Y, Shao Z, Zhang X, Chen R, Wang L, Ali ST, Chen T, Lau EHY, Jin DY, Du Z. Reproduction number of SARS-CoV-2 omicron variants, China, December 2022–January 2023. J Travel Med 2023; 30(5): taad049
CrossRef Google scholar
[53]
Wang Y, Chen R, Hu F, Lan Y, Yang Z, Zhan C, Shi J, Deng X, Jiang M, Zhong S, Liao B, Deng K, Tang J, Guo L, Jiang M, Fan Q, Li M, Liu J, Shi Y, Deng X, Xiao X, Kang M, Li Y, Guan W, Li Y, Li S, Li F, Zhong N, Tang X. Transmission, viral kinetics and clinical characteristics of the emergent SARS-CoV-2 Delta VOC in Guangzhou, China. EClinicalMedicine 2021; 40: 101129
CrossRef Google scholar
[54]
Wu Y, Kang L, Guo Z, Liu J, Liu M, Liang W. Incubation period of COVID-19 caused by unique SARS-CoV-2 strains: a systematic review and meta-analysis. JAMA Netw Open 2022; 5(8): e2228008
CrossRef Google scholar
[55]
Fan Y, Li X, Zhang L, Wan S, Zhang L, Zhou F. SARS-CoV-2 Omicron variant: recent progress and future perspectives. Signal Transduct Target Ther 2022; 7(1): 141
CrossRef Google scholar
[56]
Zhang X, Wu S, Wu B, Yang Q, Chen A, Li Y, Zhang Y, Pan T, Zhang H, He X. SARS-CoV-2 Omicron strain exhibits potent capabilities for immune evasion and viral entrance. Signal Transduct Target Ther 2021; 6(1): 430
CrossRef Google scholar
[57]
Cao Y, Jian F, Wang J, Yu Y, Song W, Yisimayi A, Wang J, An R, Chen X, Zhang N, Wang Y, Wang P, Zhao L, Sun H, Yu L, Yang S, Niu X, Xiao T, Gu Q, Shao F, Hao X, Xu Y, Jin R, Shen Z, Wang Y, Xie XS. Imprinted SARS-CoV-2 humoral immunity induces convergent Omicron RBD evolution. Nature 2023; 614(7948): 521–529
[58]
Cao Y, Wang J, Jian F, Xiao T, Song W, Yisimayi A, Huang W, Li Q, Wang P, An R, Wang J, Wang Y, Niu X, Yang S, Liang H, Sun H, Li T, Yu Y, Cui Q, Liu S, Yang X, Du S, Zhang Z, Hao X, Shao F, Jin R, Wang X, Xiao J, Wang Y, Xie XS. Omicron escapes the majority of existing SARS-CoV-2 neutralizing antibodies. Nature 2022; 602(7898): 657–663
CrossRef Google scholar
[59]
Meng B, Abdullahi A, Ferreira IATM, Goonawardane N, Saito A, Kimura I, Yamasoba D, Gerber PP, Fatihi S, Rathore S, Zepeda SK, Papa G, Kemp SA, Ikeda T, Toyoda M, Tan TS, Kuramochi J, Mitsunaga S, Ueno T, Shirakawa K, Takaori-Kondo A, Brevini T, Mallery DL, Charles OJ; CITIID-NIHR BioResource COVID-19 Collaboration; Genotype to Phenotype Japan (G2P-Japan) Consortium; Ecuador-COVID19 Consortium; Bowen JE, Joshi A, Walls AC, Jackson L, Martin D, Smith KGC, Bradley J, Briggs JAG, Choi J, Madissoon E, Meyer KB, Mlcochova P, Ceron-Gutierrez L, Doffinger R, Teichmann SA, Fisher AJ, Pizzuto MS, de Marco A, Corti D, Hosmillo M, Lee JH, James LC, Thukral L, Veesler D, Sigal A, Sampaziotis F, Goodfellow IG, Matheson NJ, Sato K, Gupta RK. Altered TMPRSS2 usage by SARS-CoV-2 Omicron impacts infectivity and fusogenicity. Nature 2022; 603(7902): 706–714
CrossRef Google scholar
[60]
Shuai H, Chan JF, Hu B, Chai Y, Yuen TT, Yin F, Huang X, Yoon C, Hu JC, Liu H, Shi J, Liu Y, Zhu T, Zhang J, Hou Y, Wang Y, Lu L, Cai JP, Zhang AJ, Zhou J, Yuan S, Brindley MA, Zhang BZ, Huang JD, To KK, Yuen KY, Chu H. Attenuated replication and pathogenicity of SARS-CoV-2 B.1.1.529 Omicron. Nature 2022; 603(7902): 693–699
CrossRef Google scholar
[61]
Song Y, Yao H, Wu N, Xu J, Zhang Z, Peng C, Li S, Kong W, Chen Y, Zhu M, Wang J, Shi D, Zhao C, Lu X, Echavarría Galindo M, Li S. In situ architecture and membrane fusion of SARS-CoV-2 Delta variant. Proc Natl Acad Sci USA 2023; 120(18): e2213332120
CrossRef Google scholar
[62]
Richardson S, Hirsch JS, Narasimhan M, Crawford JM, McGinn T, Davidson KW; the Northwell COVID-19 Research Consortium; Barnaby DP, Becker LB, Chelico JD, Cohen SL, Cookingham J, Coppa K, Diefenbach MA, Dominello AJ, Duer-Hefele J, Falzon L, Gitlin J, Hajizadeh N, Harvin TG, Hirschwerk DA, Kim EJ, Kozel ZM, Marrast LM, Mogavero JN, Osorio GA, Qiu M, Zanos TP. Presenting characteristics, comorbidities, and outcomes among 5700 patients hospitalized with COVID-19 in the New York City area. JAMA 2020; 323(20): 2052–2059
CrossRef Google scholar
[63]
Oran DP, Topol EJ. The proportion of SARS-CoV-2 infections that are asymptomatic: a systematic review. Ann Intern Med 2021; 174(5): 655–662
CrossRef Google scholar
[64]
Sui Z, Dai X, Lu Q, Zhang Y, Huang M, Li S, Peng T, Xie J, Zhang Y, Wu C, Xia J, Dong L, Yang J, Huang W, Liu S, Wang Z, Li K, Yang Q, Zhou X, Wu Y, Liu W, Fang X, Peng K. Viral dynamics and antibody responses in people with asymptomatic SARS-CoV-2 infection. Signal Transduct Target Ther 2021; 6(1): 181
CrossRef Google scholar
[65]
Le Bert N, Clapham HE, Tan AT, Chia WN, Tham CYL, Lim JM, Kunasegaran K, Tan LWL, Dutertre CA, Shankar N, Lim JME, Sun LJ, Zahari M, Tun ZM, Kumar V, Lim BL, Lim SH, Chia A, Tan YJ, Tambyah PA, Kalimuddin S, Lye D, Low JGH, Wang LF, Wan WY, Hsu LY, Bertoletti A, Tam CC. Highly functional virus-specific cellular immune response in asymptomatic SARS-CoV-2 infection. J Exp Med 2021; 218(5): e20202617
CrossRef Google scholar
[66]
Yu S, Di C, Chen S, Guo M, Yan J, Zhu Z, Liu L, Feng R, Xie Y, Zhang R, Chen J, Wang M, Wei D, Fang H, Yin T, Huang J, Chen S, Lu H, Zhu J, Qu J. Distinct immune signatures discriminate between asymptomatic and presymptomatic SARS-CoV-2pos subjects. Cell Res 2021; 31(11): 1148–1162
CrossRef Google scholar
[67]
Zhou M, Zhang X, Qu J. Coronavirus disease 2019 (COVID-19): a clinical update. Front Med 2020; 14(2): 126–135
CrossRef Google scholar
[68]
Huang C, Wang Y, Li X, Ren L, Zhao J, Hu Y, Zhang L, Fan G, Xu J, Gu X, Cheng Z, Yu T, Xia J, Wei Y, Wu W, Xie X, Yin W, Li H, Liu M, Xiao Y, Gao H, Guo L, Xie J, Wang G, Jiang R, Gao Z, Jin Q, Wang J, Cao B. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet 2020; 395(10223): 497–506
CrossRef Google scholar
[69]
Harapan BN, Yoo HJ. Neurological symptoms, manifestations, and complications associated with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and coronavirus disease 19 (COVID-19). J Neurol 2021; 268(9): 3059–3071
CrossRef Google scholar
[70]
Yang X, Yu Y, Xu J, Shu H, Xia J, Liu H, Wu Y, Zhang L, Yu Z, Fang M, Yu T, Wang Y, Pan S, Zou X, Yuan S, Shang Y. Clinical course and outcomes of critically ill patients with SARS-CoV-2 pneumonia in Wuhan, China: a single-centered, retrospective, observational study. Lancet Respir Med 2020; 8(5): 475–481
CrossRef Google scholar
[71]
Kunutsor SK, Laukkanen JA. Cardiovascular complications in COVID-19: a systematic review and meta-analysis. J Infect 2020; 81(2): e139–e141
CrossRef Google scholar
[72]
Teng L, Sun N, Chang W. Analysis of age-based stratified renal involvement in Tianjin first batch of 430 patients with Omicron variant of novel coronavirus infection. Chin Crit Care Med (Zhonghua Wei Zhong Bing Ji Jiu Yi Xue) 2022; 34(5): 465–470
[73]
Law N, Chan J, Kelly C, Auffermann WF, Dunn DP. Incidence of pulmonary embolism in COVID-19 infection in the ED: ancestral, Delta, Omicron variants and vaccines. Emerg Radiol 2022; 29(4): 625–629
CrossRef Google scholar
[74]
Pola A, Murthy KS, Santhekadur PK. COVID-19 and gastrointestinal system: a brief review. Biomed J 2021; 44(3): 245–251
CrossRef Google scholar
[75]
Jassat W, Abdool Karim SS, Mudara C, Welch R, Ozougwu L, Groome MJ, Govender N, von Gottberg A, Wolter N, Wolmarans M, Rousseau P; DATCOV author group; Blumberg L, Cohen C. Clinical severity of COVID-19 in patients admitted to hospital during the omicron wave in South Africa: a retrospective observational study. Lancet Glob Health 2022; 10(7): e961–e969
CrossRef Google scholar
[76]
Abdullah F, Myers J, Basu D, Tintinger G, Ueckermann V, Mathebula M, Ramlall R, Spoor S, de Villiers T, Van der Walt Z, Cloete J, Soma-Pillay P, Rheeder P, Paruk F, Engelbrecht A, Lalloo V, Myburg M, Kistan J, van Hougenhouck-Tulleken W, Boswell MT, Gray G, Welch R, Blumberg L, Jassat W. Decreased severity of disease during the first global omicron variant covid-19 outbreak in a large hospital in Tshwane, South Africa. Int J Infect Dis 2022; 116: 38–42
CrossRef Google scholar
[77]
Davies MA, Kassanjee R, Rousseau P, Morden E, Johnson L, Solomon W, Hsiao NY, Hussey H, Meintjes G, Paleker M, Jacobs T, Raubenheimer P, Heekes A, Dane P, Bam JL, Smith M, Preiser W, Pienaar D, Mendelson M, Naude J, Schrueder N, Mnguni A, Le Roux S, Murie K, Prozesky H, Mahomed H, Rossouw L, Wasserman S, Maughan D, Boloko L, Smith B, Taljaard J, Symons G, Ntusi NAB, Parker A, Wolter N, Jassat W, Cohen C, Lessells R, Wilkinson RJ, Arendse J, Kariem S, Moodley M, Wolmarans M, Cloete K, Boulle A; Western Cape, South African National Departments of Health in collaboration with the National Institute for Communicable Diseases in South Africa Affiliations. Outcomes of laboratory-confirmed SARS-CoV-2 infection in the Omicron-driven fourth wave compared with previous waves in the Western Cape Province, South Africa. Trop Med Int Health 2022; 27(6): 564–573
CrossRef Google scholar
[78]
Ulloa AC, Buchan SA, Daneman N, Brown KA. Estimates of SARS-CoV-2 Omicron variant severity in Ontario, Canada. JAMA 2022; 327(13): 1286–1288
CrossRef Google scholar
[79]
Veneti L, Bøås H, Bråthen Kristoffersen A, Stålcrantz J, Bragstad K, Hungnes O, Storm ML, Aasand N, Rø G, Starrfelt J, Seppälä E, Kvåle R, Vold L, Nygård K, Buanes EA, Whittaker R. Reduced risk of hospitalisation among reported COVID-19 cases infected with the SARS-CoV-2 Omicron BA.1 variant compared with the Delta variant, Norway, December 2021 to January 2022. Euro Surveill 2022; 27(4): 2200077
CrossRef Google scholar
[80]
Iuliano AD, Brunkard JM, Boehmer TK, Peterson E, Adjei S, Binder AM, Cobb S, Graff P, Hidalgo P, Panaggio MJ, Rainey JJ, Rao P, Soetebier K, Wacaster S, Ai C, Gupta V, Molinari NM, Ritchey MD. Trends in disease severity and health care utilization during the early Omicron variant period compared with previous SARS-CoV-2 high transmission periods—United States, December 2020–January 2022. MMWR Morb Mortal Wkly Rep 2022; 71(4): 146–152
CrossRef Google scholar
[81]
Tartof SY, Slezak JM, Puzniak L, Hong V, Xie F, Ackerson BK, Valluri SR, Jodar L, McLaughlin JM. Durability of BNT162b2 vaccine against hospital and emergency department admissions due to the omicron and delta variants in a large health system in the USA: a test-negative case-control study. Lancet Respir Med 2022; 10(7): 689–699
CrossRef Google scholar
[82]
Zheng H, Cao Y, Chen X, Wang F, Hu Y, Song W, Chai Y, Gu Q, Shi Y, Feng Y, Liu S, Xie Y, Xie XS, Jiang W, Shen Z. Disease profile and plasma neutralizing activity of post-vaccination Omicron BA.1 infection in Tianjin, China: a retrospective study. Cell Res 2022; 32(8): 781–784
CrossRef Google scholar
[83]
Chen G, Wu D, Guo W, Cao Y, Huang D, Wang H, Wang T, Zhang X, Chen H, Yu H, Zhang X, Zhang M, Wu S, Song J, Chen T, Han M, Li S, Luo X, Zhao J, Ning Q. Clinical and immunological features of severe and moderate coronavirus disease 2019. J Clin Invest 2020; 130(5): 2620–2629
CrossRef Google scholar
[84]
Zeng Z, Yu H, Chen H, Qi W, Chen L, Chen G, Yan W, Chen T, Ning Q, Han M, Wu D. Longitudinal changes of inflammatory parameters and their correlation with disease severity and outcomes in patients with COVID-19 from Wuhan, China. Crit Care 2020; 24(1): 525
CrossRef Google scholar
[85]
Feng Y, Ling Y, Bai T, Xie Y, Huang J, Li J, Xiong W, Yang D, Chen R, Lu F, Lu Y, Liu X, Chen Y, Li X, Li Y, Summah HD, Lin H, Yan J, Zhou M, Lu H, Qu J. COVID-19 with different severities: a multicenter study of clinical features. Am J Respir Crit Care Med 2020; 201(11): 1380–1388
CrossRef Google scholar
[86]
Carsana L, Sonzogni A, Nasr A, Rossi RS, Pellegrinelli A, Zerbi P, Rech R, Colombo R, Antinori S, Corbellino M, Galli M, Catena E, Tosoni A, Gianatti A, Nebuloni M. Pulmonary post-mortem findings in a series of COVID-19 cases from northern Italy: a two-centre descriptive study. Lancet Infect Dis 2020; 20(10): 1135–1140
CrossRef Google scholar
[87]
Liu Q, Shi Y, Cai J, Duan Y, Wang R, Zhang H, Ruan Q, Li J, Zhao L, Ping Y, Chen R, Ren L, Fei X, Zhang H, Tang R, Wang X, Luo T, Liu X, Huang X, Liu Z, Ao Q, Ren Y, Xiong J, He Z, Wu H, Fu W, Zhao P, Chen X, Qu G, Wang Y, Wang X, Liu J, Xiang D, Xu S, Zhou X, Li Q, Ma J, Li H, Zhang J, Huang S, Yao X, Zhou Y, Wang C, Zhang D, Wang G, Liu L, Bian XW. Pathological changes in the lungs and lymphatic organs of 12 COVID-19 autopsy cases. Natl Sci Rev 2020; 7(12): 1868–1878
CrossRef Google scholar
[88]
Yao XH, He ZC, Li TY, Zhang HR, Wang Y, Mou H, Guo Q, Yu SC, Ding Y, Liu X, Ping YF, Bian XW. Pathological evidence for residual SARS-CoV-2 in pulmonary tissues of a ready-for-discharge patient. Cell Res 2020; 30(6): 541–543
CrossRef Google scholar
[89]
Thille AW, Esteban A, Fernández-Segoviano P, Rodriguez JM, Aramburu JA, Vargas-Errázuriz P, Martín-Pellicer A, Lorente JA, Frutos-Vivar F. Chronology of histological lesions in acute respiratory distress syndrome with diffuse alveolar damage: a prospective cohort study of clinical autopsies. Lancet Respir Med 2013; 1(5): 395–401
CrossRef Google scholar
[90]
Wang C, Xie J, Zhao L, Fei X, Zhang H, Tan Y, Nie X, Zhou L, Liu Z, Ren Y, Yuan L, Zhang Y, Zhang J, Liang L, Chen X, Liu X, Wang P, Han X, Weng X, Chen Y, Yu T, Zhang X, Cai J, Chen R, Shi ZL, Bian XW. Alveolar macrophage dysfunction and cytokine storm in the pathogenesis of two severe COVID-19 patients. EBioMedicine 2020; 57: 102833
CrossRef Google scholar
[91]
Zhang PP, He ZC, Yao XH, Tang R, Ma J, Luo T, Zhu C, Li TR, Liu X, Zhang D, Zhang S, Ping YF, Leng L, Bian XW. COVID-19-associated monocytic encephalitis (CAME): histological and proteomic evidence from autopsy. Signal Transduct Target Ther 2023; 8(1): 24
CrossRef Google scholar
[92]
Bian XW; COVID-19 Pathology Team. Autopsy of COVID-19 patients in China. Natl Sci Rev 2020; 7(9): 1414–1418
CrossRef Google scholar
[93]
Diao B, Wang C, Wang R, Feng Z, Zhang J, Yang H, Tan Y, Wang H, Wang C, Liu L, Liu Y, Liu Y, Wang G, Yuan Z, Hou X, Ren L, Wu Y, Chen Y. Human kidney is a target for novel severe acute respiratory syndrome coronavirus 2 infection. Nat Commun 2021; 12(1): 2506
CrossRef Google scholar
[94]
WHO. Therapeutics and COVID-19: living guideline. Updated July 14, 2022. Available at the website of WHO
[95]
Hoffmann M, Kleine-Weber H, Schroeder S, Krüger N, Herrler T, Erichsen S, Schiergens TS, Herrler G, Wu NH, Nitsche A, Müller MA, Drosten C, Pöhlmann S. SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell 2020; 181(2): 271–280.e8
CrossRef Google scholar
[96]
National Health Commission of China. Diagnosis and Treatment Protocol for COVID-19 Patients. Tentative 8th Edition. 2021. Available at the website of National Health Commission of China
[97]
Yang L, Wang Z. Bench-to-bedside: innovation of small molecule anti-SARS-CoV-2 drugs in China. Eur J Med Chem 2023; 257: 115503
CrossRef Google scholar
[98]
Sun Y, Jin L, Dian Y, Shen M, Zeng F, Chen X, Deng G. Oral azvudine for hospitalised patients with COVID-19 and pre-existing conditions: a retrospective cohort study. EClinicalMedicine 2023; 59: 101981
CrossRef Google scholar
[99]
Cao Z, Gao W, Bao H, Feng H, Mei S, Chen P, Gao Y, Cui Z, Zhang Q, Meng X, Gui H, Wang W, Jiang Y, Song Z, Shi Y, Sun J, Zhang Y, Xie Q, Xu Y, Ning G, Gao Y, Zhao R. VV116 versus nirmatrelvir-ritonavir for oral treatment of Covid-19. N Engl J Med 2023; 388(5): 406–417
CrossRef Google scholar
[100]
Huang C, Shuai H, Qiao J, Hou Y, Zeng R, Xia A, Xie L, Fang Z, Li Y, Yoon C, Huang Q, Hu B, You J, Quan B, Zhao X, Guo N, Zhang S, Ma R, Zhang J, Wang Y, Yang R, Zhang S, Nan J, Xu H, Wang F, Lei J, Chu H, Yang S. A new generation Mpro inhibitor with potent activity against SARS-CoV-2 Omicron variants. Signal Transduct Target Ther 2023; 8(1): 128
CrossRef Google scholar
[101]
FDA. Emergency Use Authorizations for Drugs and Non-Vaccine Biological Products. Updated April 4, 2023. Available at the website of FDA
[102]
Attaway AH, Scheraga RG, Bhimraj A, Biehl M, Hatipoğlu U. Severe covid-19 pneumonia: pathogenesis and clinical management. BMJ 2021; 372(436): n436
CrossRef Google scholar
[103]
Galván-Román JM, Rodríguez-García SC, Roy-Vallejo E, Marcos-Jiménez A, Sánchez-Alonso S, Fernández-Díaz C, Alcaraz-Serna A, Mateu-Albero T, Rodríguez-Cortes P, Sánchez-Cerrillo I, Esparcia L, Martínez-Fleta P, López-Sanz C, Gabrie L, Del Campo Guerola L, Suárez-Fernández C, Ancochea J, Canabal A, Albert P, Rodríguez-Serrano DA, Aguilar JM, Del Arco C, de Los Santos I, García-Fraile L, de la Cámara R, Serra JM, Ramírez E, Alonso T, Landete P, Soriano JB, Martín-Gayo E, Fraile Torres A, Zurita Cruz ND, García-Vicuña R, Cardeñoso L, Sánchez-Madrid F, Alfranca A, Muñoz-Calleja C, González-Álvaro I; REINMUN-COVID Group. IL-6 serum levels predict severity and response to tocilizumab in COVID-19: an observational study. J Allergy Clin Immunol 2021; 147(1): 72–80.e8
CrossRef Google scholar
[104]
Xu X, Han M, Li T, Sun W, Wang D, Fu B, Zhou Y, Zheng X, Yang Y, Li X, Zhang X, Pan A, Wei H. Effective treatment of severe COVID-19 patients with tocilizumab. Proc Natl Acad Sci USA 2020; 117(20): 10970–10975
CrossRef Google scholar
[105]
Ghosn L, Assi R, Evrenoglou T, Buckley BS, Henschke N, Probyn K, Riveros C, Davidson M, Graña C, Bonnet H, Jarde A, Ávila C, Nejstgaard CH, Menon S, Ferrand G, Kapp P, Breuer C, Schmucker C, Sguassero Y, Nguyen TV, Devane D, Meerpohl JJ, Rada G, Hróbjartsson A, Grasselli G, Tovey D, Ravaud P, Chaimani A, Boutron I. Interleukin-6 blocking agents for treating COVID-19: a living systematic review. Cochrane Database Syst Rev 2023; 6(6): CD013881
[106]
Chen YT, Shao SC, Hsu CK, Wu IW, Hung MJ, Chen YC. Incidence of acute kidney injury in COVID-19 infection: a systematic review and meta-analysis. Crit Care 2020; 24(1): 346
CrossRef Google scholar
[107]
Yu Y, Xu D, Fu S, Zhang J, Yang X, Xu L, Xu J, Wu Y, Huang C, Ouyang Y, Yang L, Fang M, Xiao H, Ma J, Zhu W, Hu S, Hu Q, Ding D, Hu M, Zhu G, Xu W, Guo J, Xu J, Yuan H, Zhang B, Yu Z, Chen D, Yuan S, Shang Y. Patients with COVID-19 in 19 ICUs in Wuhan, China: a cross-sectional study. Crit Care 2020; 24(1): 219
CrossRef Google scholar
[108]
Li Y, Sun P, Chang K, Yang M, Deng N, Chen S, Su B. Effect of continuous renal replacement therapy with the oXiris hemofilter on critically ill patients: a narrative review. J Clin Med 2022; 11(22): 6719
CrossRef Google scholar
[109]
Premužić V, Babel J, Gardijan D, Lapić I, Gabelica R, Ostojić Z, Lozić M, Pavliša G, Hrabak M, Knežević J, Rogić D, Mihaljević S. Extracorporeal blood purification is associated with improvement in biochemical and clinical variables in the critically-ill COVID-19 patients. Ther Apher Dial 2022; 26(2): 316–329
CrossRef Google scholar
[110]
Yao X, Ye F, Zhang M, Cui C, Huang B, Niu P, Liu X, Zhao L, Dong E, Song C, Zhan S, Lu R, Li H, Tan W, Liu D. In vitro antiviral activity and projection of optimized dosing design of hydroxychloroquine for the treatment of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Clin Infect Dis 2020; 71(15): 732–739
CrossRef Google scholar
[111]
Tang W, Cao Z, Han M, Wang Z, Chen J, Sun W, Wu Y, Xiao W, Liu S, Chen E, Chen W, Wang X, Yang J, Lin J, Zhao Q, Yan Y, Xie Z, Li D, Yang Y, Liu L, Qu J, Ning G, Shi G, Xie Q. Hydroxychloroquine in patients with mainly mild to moderate coronavirus disease 2019: open label, randomised controlled trial. BMJ 2020; 369: m1849
CrossRef Google scholar
[112]
Chalmers JD, Crichton ML, Goeminne PC, Cao B, Humbert M, Shteinberg M, Antoniou KM, Ulrik CS, Parks H, Wang C, Vandendriessche T, Qu J, Stolz D, Brightling C, Welte T, Aliberti S, Simonds AK, Tonia T, Roche N. Management of hospitalised adults with coronavirus disease 2019 (COVID-19): a European Respiratory Society living guideline. Eur Respir J 2021; 57(4): 2100048
CrossRef Google scholar
[113]
Meng F, Xu R, Wang S, Xu Z, Zhang C, Li Y, Yang T, Shi L, Fu J, Jiang T, Huang L, Zhao P, Yuan X, Fan X, Zhang JY, Song J, Zhang D, Jiao Y, Liu L, Zhou C, Maeurer M, Zumla A, Shi M, Wang FS. Human umbilical cord-derived mesenchymal stem cell therapy in patients with COVID-19: a phase 1 clinical trial. Signal Transduct Target Ther 2020; 5(1): 172
CrossRef Google scholar
[114]
Shi L, Huang H, Lu X, Yan X, Jiang X, Xu R, Wang S, Zhang C, Yuan X, Xu Z, Huang L, Fu JL, Li Y, Zhang Y, Yao WQ, Liu T, Song J, Sun L, Yang F, Zhang X, Zhang B, Shi M, Meng F, Song Y, Yu Y, Wen J, Li Q, Mao Q, Maeurer M, Zumla A, Yao C, Xie WF, Wang FS. Effect of human umbilical cord-derived mesenchymal stem cells on lung damage in severe COVID-19 patients: a randomized, double-blind, placebo-controlled phase 2 trial. Signal Transduct Target Ther 2021; 6(1): 58
CrossRef Google scholar
[115]
Li TT, Zhang B, Fang H, Shi M, Yao WQ, Li Y, Zhang C, Song J, Huang L, Xu Z, Yuan X, Fu JL, Zhen C, Zhang Y, Wang ZR, Zhang ZY, Yuan MQ, Dong T, Bai R, Zhao L, Cai J, Dong J, Zhang J, Xie WF, Li Y, Shi L, Wang FS. Human mesenchymal stem cell therapy in severe COVID-19 patients: 2-year follow-up results of a randomized, double-blind, placebo-controlled trial. EBioMedicine 2023; 92: 104600
CrossRef Google scholar
[116]
Weatherald J, Parhar KKS, Al Duhailib Z, Chu DK, Granholm A, Solverson K, Lewis K, Møller MH, Alshahrani M, Belley-Cote E, Loroff N, Qian ET, Gatto CL, Rice TW, Niven D, Stelfox HT, Fiest K, Cook D, Arabi YM, Alhazzani W. Efficacy of awake prone positioning in patients with covid-19 related hypoxemic respiratory failure: systematic review and meta-analysis of randomized trials. BMJ 2022; 379: e071966
CrossRef Google scholar
[117]
Duan K, Liu B, Li C, Zhang H, Yu T, Qu J, Zhou M, Chen L, Meng S, Hu Y, Peng C, Yuan M, Huang J, Wang Z, Yu J, Gao X, Wang D, Yu X, Li L, Zhang J, Wu X, Li B, Xu Y, Chen W, Peng Y, Hu Y, Lin L, Liu X, Huang S, Zhou Z, Zhang L, Wang Y, Zhang Z, Deng K, Xia Z, Gong Q, Zhang W, Zheng X, Liu Y, Yang H, Zhou D, Yu D, Hou J, Shi Z, Chen S, Chen Z, Zhang X, Yang X. Effectiveness of convalescent plasma therapy in severe COVID-19 patients. Proc Natl Acad Sci USA 2020; 117(17): 9490–9496
CrossRef Google scholar
[118]
Shen C, Wang Z, Zhao F, Yang Y, Li J, Yuan J, Wang F, Li D, Yang M, Xing L, Wei J, Xiao H, Yang Y, Qu J, Qing L, Chen L, Xu Z, Peng L, Li Y, Zheng H, Chen F, Huang K, Jiang Y, Liu D, Zhang Z, Liu Y, Liu L. Treatment of 5 critically ill patients with COVID-19 with convalescent plasma. JAMA 2020; 323(16): 1582–1589
CrossRef Google scholar
[119]
Piechotta V, Iannizzi C, Chai KL, Valk SJ, Kimber C, Dorando E, Monsef I, Wood EM, Lamikanra AA, Roberts DJ, McQuilten Z, So-Osman C, Estcourt LJ, Skoetz N. Convalescent plasma or hyperimmune immunoglobulin for people with COVID-19: a living systematic review. Cochrane Database Syst Rev 2021; 5(5): CD013600
[120]
Joyner MJ, Carter RE, Senefeld JW, Klassen SA, Mills JR, Johnson PW, Theel ES, Wiggins CC, Bruno KA, Klompas AM, Lesser ER, Kunze KL, Sexton MA, Diaz Soto JC, Baker SE, Shepherd JRA, van Helmond N, Verdun NC, Marks P, van Buskirk CM, Winters JL, Stubbs JR, Rea RF, Hodge DO, Herasevich V, Whelan ER, Clayburn AJ, Larson KF, Ripoll JG, Andersen KJ, Buras MR, Vogt MNP, Dennis JJ, Regimbal RJ, Bauer PR, Blair JE, Paneth NS, Fairweather D, Wright RS, Casadevall A. Convalescent plasma antibody levels and the risk of death from Covid-19. N Engl J Med 2021; 384(11): 1015–1027
CrossRef Google scholar
[121]
Sullivan DJ, Gebo KA, Shoham S, Bloch EM, Lau B, Shenoy AG, Mosnaim GS, Gniadek TJ, Fukuta Y, Patel B, Heath SL, Levine AC, Meisenberg BR, Spivak ES, Anjan S, Huaman MA, Blair JE, Currier JS, Paxton JH, Gerber JM, Petrini JR, Broderick PB, Rausch W, Cordisco ME, Hammel J, Greenblatt B, Cluzet VC, Cruser D, Oei K, Abinante M, Hammitt LL, Sutcliffe CG, Forthal DN, Zand MS, Cachay ER, Raval JS, Kassaye SG, Foster EC, Roth M, Marshall CE, Yarava A, Lane K, McBee NA, Gawad AL, Karlen N, Singh A, Ford DE, Jabs DA, Appel LJ, Shade DM, Ehrhardt S, Baksh SN, Laeyendecker O, Pekosz A, Klein SL, Casadevall A, Tobian AAR, Hanley DF. Early outpatient treatment for Covid-19 with convalescent plasma. N Engl J Med 2022; 386(18): 1700–1711
CrossRef Google scholar
[122]
Estcourt LJ, Cohn CS, Pagano MB, Iannizzi C, Kreuzberger N, Skoetz N, Allen ES, Bloch EM, Beaudoin G, Casadevall A, Devine DV, Foroutan F, Gniadek TJ, Goel R, Gorlin J, Grossman BJ, Joyner MJ, Metcalf RA, Raval JS, Rice TW, Shaz BH, Vassallo RR, Winters JL, Tobian AAR. Clinical practice guidelines from the Association for the Advancement of Blood and Biotherapies (AABB): COVID-19 Convalescent Plasma. Ann Intern Med 2022; 175(9): 1310–1321
CrossRef Google scholar
[123]
Shoham S, Bloch EM, Casadevall A, Hanley D, Lau B, Gebo K, Cachay E, Kassaye SG, Paxton JH, Gerber J, Levine AC, Naeim A, Currier J, Patel B, Allen ES, Anjan S, Appel L, Baksh S, Blair PW, Bowen A, Broderick P, Caputo CA, Cluzet V, Cordisco ME, Cruser D, Ehrhardt S, Forthal D, Fukuta Y, Gawad AL, Gniadek T, Hammel J, Huaman MA, Jabs DA, Jedlicka A, Karlen N, Klein S, Laeyendecker O, Lane K, McBee N, Meisenberg B, Merlo C, Mosnaim G, Park HS, Pekosz A, Petrini J, Rausch W, Shade DM, Shapiro JR, Singleton JR, Sutcliffe C, Thomas DL, Yarava A, Zand M, Zenilman JM, Tobian AAR, Sullivan DJ. Transfusing convalescent plasma as post-exposure prophylaxis against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection: a double-blinded, phase 2 randomized, controlled trial. Clin Infect Dis 2023; 76(3): e477–e486
CrossRef Google scholar
[124]
WHO. WHO Director-General’s opening remarks at UN Interactive Multi-stakeholder Hearing on pandemic preparedness and response. Updated May 8 2023. Available at the website of WHO

Acknowledgements

This work is supported by Shanghai Municipal Key Clinical Specialty (No. shslczdzk02202), Shanghai Top-Priority Clinical Key Disciplines Construction Project (No. 2017ZZ02014), Shanghai Key Laboratory of Emergency Prevention, Diagnosis, and Treatment of Respiratory Infectious Diseases (No. 20dz2261100) and Cultivation Project of Shanghai Major Infectious Disease Research Base (No. 20dz2210500).

Compliance with ethics guidelines

Conflicts of interest Dong Wei, Yusang Xie, Xuefei Liu, Rong Chen, Min Zhou, Xinxin Zhang, and Jieming Qu declare that they have no conflict of interest.
This manuscript is a review article and does not involve a research protocol requiring approval by the relevant institutional review board or ethics committee.

RIGHTS & PERMISSIONS

2023 Higher Education Press
AI Summary AI Mindmap
PDF(1627 KB)

Accesses

Citations

Detail

Sections
Recommended

/