Dysregulated N6-methyladenosine modification in peripheral immune cells contributes to the pathogenesis of amyotrophic lateral sclerosis

Di He, Xunzhe Yang, Liyang Liu, Dongchao Shen, Qing Liu, Mingsheng Liu, Xue Zhang, Liying Cui

PDF(9316 KB)
PDF(9316 KB)
Front. Med. ›› 2024, Vol. 18 ›› Issue (2) : 285-302. DOI: 10.1007/s11684-023-1035-5
RESEARCH ARTICLE

Dysregulated N6-methyladenosine modification in peripheral immune cells contributes to the pathogenesis of amyotrophic lateral sclerosis

Author information +
History +

Abstract

Amyotrophic lateral sclerosis (ALS) is a progressive neurogenerative disorder with uncertain origins. Emerging evidence implicates N6-methyladenosine (m6A) modification in ALS pathogenesis. Methylated RNA immunoprecipitation sequencing (MeRIP-seq) and liquid chromatography–mass spectrometry were utilized for m6A profiling in peripheral immune cells and serum proteome analysis, respectively, in patients with ALS (n = 16) and controls (n = 6). The single-cell transcriptomic dataset (GSE174332) of primary motor cortex was further analyzed to illuminate the biological implications of differentially methylated genes and cell communication changes. Analysis of peripheral immune cells revealed extensive RNA hypermethylation, highlighting candidate genes with differential m6A modification and expression, including C-X3-C motif chemokine receptor 1 (CX3CR1). In RAW264.7 macrophages, disrupted CX3CR1 signaling affected chemotaxis, potentially influencing immune cell migration in ALS. Serum proteome analysis demonstrated the role of dysregulated immune cell migration in ALS. Cell type-specific expression variations of these genes in the central nervous system (CNS), particularly microglia, were observed. Intercellular communication between neurons and glial cells was selectively altered in ALS CNS. This integrated approach underscores m6A dysregulation in immune cells as a potential ALS contributor.

Keywords

amyotrophic lateral sclerosis / N6-methyladenosine / epi-transcriptome / proteome / single cell RNA sequencing analysis / CX3CR1

Cite this article

Download citation ▾
Di He, Xunzhe Yang, Liyang Liu, Dongchao Shen, Qing Liu, Mingsheng Liu, Xue Zhang, Liying Cui. Dysregulated N6-methyladenosine modification in peripheral immune cells contributes to the pathogenesis of amyotrophic lateral sclerosis. Front. Med., 2024, 18(2): 285‒302 https://doi.org/10.1007/s11684-023-1035-5

References

[1]
Hardiman O, Al-Chalabi A, Chio A, Corr EM, Logroscino G, Robberecht W, Shaw PJ, Simmons Z, van den Berg LH. Amyotrophic lateral sclerosis. Nat Rev Dis Primers 2017; 3(1): 17071
CrossRef Google scholar
[2]
van Es MA, Hardiman O, Chio A, Al-Chalabi A, Pasterkamp RJ, Veldink JH, van den Berg LH. Amyotrophic lateral sclerosis. Lancet 2017; 390(10107): 2084–2098
CrossRef Google scholar
[3]
Brown RH, Al-Chalabi A. Amyotrophic lateral sclerosis. N Engl J Med 2017; 377(2): 162–172
CrossRef Google scholar
[4]
Feldman EL, Goutman SA, Petri S, Mazzini L, Savelieff MG, Shaw PJ, Sobue G. Amyotrophic lateral sclerosis. Lancet 2022; 400(10360): 1363–1380
CrossRef Google scholar
[5]
Keller MF, Ferrucci L, Singleton AB, Tienari PJ, Laaksovirta H, Restagno G, Chiò A, Traynor BJ, Nalls MA. Genome-wide analysis of the heritability of amyotrophic lateral sclerosis. JAMA Neurol 2014; 71(9): 1123–1134
CrossRef Google scholar
[6]
Chia R, Chiò A, Traynor BJ. Novel genes associated with amyotrophic lateral sclerosis: diagnostic and clinical implications. Lancet Neurol 2018; 17(1): 94–102
CrossRef Google scholar
[7]
Cook C, Petrucelli L. Genetic convergence brings clarity to the enigmatic red line in ALS. Neuron 2019; 101(6): 1057–1069
CrossRef Google scholar
[8]
McCauley ME, O’Rourke JG, Yáñez A, Markman JL, Ho R, Wang X, Chen S, Lall D, Jin M, Muhammad AKMG, Bell S, Landeros J, Valencia V, Harms M, Arditi M, Jefferies C, Baloh RH. C9orf72 in myeloid cells suppresses STING-induced inflammation. Nature 2020; 585(7823): 96–101
CrossRef Google scholar
[9]
Yu CH, Davidson S, Harapas CR, Hilton JB, Mlodzianoski MJ, Laohamonthonkul P, Louis C, Low RRJ, Moecking J, De Nardo D, Balka KR, Calleja DJ, Moghaddas F, Ni E, McLean CA, Samson AL, Tyebji S, Tonkin CJ, Bye CR, Turner BJ, Pepin G, Gantier MP, Rogers KL, McArthur K, Crouch PJ, Masters SL. TDP-43 triggers mitochondrial DNA release via mPTP to activate cGAS/STING in ALS. Cell 2020; 183(3): 636–649.e18
CrossRef Google scholar
[10]
Coque E, Salsac C, Espinosa-Carrasco G, Varga B, Degauque N, Cadoux M, Crabé R, Virenque A, Soulard C, Fierle JK, Brodovitch A, Libralato M, Végh AG, Venteo S, Scamps F, Boucraut J, Laplaud D, Hernandez J, Gergely C, Vincent T, Raoul C. Cytotoxic CD8+ T lymphocytes expressing ALS-causing SOD1 mutant selectively trigger death of spinal motoneurons. Proc Natl Acad Sci USA 2019; 116(6): 2312–2317
CrossRef Google scholar
[11]
Beers DR, Appel SH. Immune dysregulation in amyotrophic lateral sclerosis: mechanisms and emerging therapies. Lancet Neurol 2019; 18(2): 211–220
CrossRef Google scholar
[12]
McCauley ME, Baloh RH. Inflammation in ALS/FTD pathogenesis. Acta Neuropathol 2019; 137(5): 715–730
CrossRef Google scholar
[13]
Fournier CN, Schoenfeld D, Berry JD, Cudkowicz ME, Chan J, Quinn C, Brown RH, Salameh JS, Tansey MG, Beers DR, Appel SH, Glass JD. An open label study of a novel immunosuppression intervention for the treatment of amyotrophic lateral sclerosis. Amyotroph Lateral Scler Frontotemporal Degener 2018; 19(3–4): 242–249
CrossRef Google scholar
[14]
Huang H, Weng H, Chen J. The biogenesis and precise control of RNA m6A methylation. Trends Genet 2020; 36(1): 44–52
CrossRef Google scholar
[15]
Roundtree IA, Evans ME, Pan T, He C. Dynamic RNA modifications in gene expression regulation. Cell 2017; 169(7): 1187–1200
CrossRef Google scholar
[16]
Zhao BS, Roundtree IA, He C. Post-transcriptional gene regulation by mRNA modifications. Nat Rev Mol Cell Biol 2017; 18(1): 31–42
CrossRef Google scholar
[17]
Yang Y, Hsu PJ, Chen YS, Yang YG. Dynamic transcriptomic m6A decoration: writers, erasers, readers and functions in RNA metabolism. Cell Res 2018; 28(6): 616–624
CrossRef Google scholar
[18]
Zaccara S, Ries RJ, Jaffrey SR. Reading, writing and erasing mRNA methylation. Nat Rev Mol Cell Biol 2019; 20(10): 608–624
CrossRef Google scholar
[19]
Xiong X, Hou L, Park YP, Molinie B; GTEx Consortium; Gregory RI, Kellis M. Genetic drivers of m6A methylation in human brain, lung, heart and muscle. Nat Genet 2021; 53(8): 1156–1165
CrossRef Google scholar
[20]
McMillan M, Gomez N, Hsieh C, Bekier M, Li X, Miguez R, Tank EMH, Barmada SJ. RNA methylation influences TDP43 binding and disease pathogenesis in models of amyotrophic lateral sclerosis and frontotemporal dementia. Mol Cell 2023; 83(2): 219–236.e7
CrossRef Google scholar
[21]
He F, Krans A, Freibaum BD, Taylor JP, Todd PK. TDP-43 suppresses CGG repeat-induced neurotoxicity through interactions with HnRNP A2/B1. Hum Mol Genet 2014; 23(19): 5036–5051
CrossRef Google scholar
[22]
Wang L, Wen M, Cao X. Nuclear hnRNPA2B1 initiates and amplifies the innate immune response to DNA viruses. Science 2019; 365(6454): eaav0758
CrossRef Google scholar
[23]
Winkler R, Gillis E, Lasman L, Safra M, Geula S, Soyris C, Nachshon A, Tai-Schmiedel J, Friedman N, Le-Trilling VTK, Trilling M, Mandelboim M, Hanna JH, Schwartz S, Stern-Ginossar N. m6A modification controls the innate immune response to infection by targeting type I interferons. Nat Immunol 2019; 20(2): 173–182
CrossRef Google scholar
[24]
Vahsen BF, Gray E, Thompson AG, Ansorge O, Anthony DC, Cowley SA, Talbot K, Turner MR. Non-neuronal cells in amyotrophic lateral sclerosis—from pathogenesis to biomarkers. Nat Rev Neurol 2021; 17(6): 333–348
CrossRef Google scholar
[25]
Spiller KJ, Restrepo CR, Khan T, Dominique MA, Fang TC, Canter RG, Roberts CJ, Miller KR, Ransohoff RM, Trojanowski JQ, Lee VM. Microglia-mediated recovery from ALS-relevant motor neuron degeneration in a mouse model of TDP-43 proteinopathy. Nat Neurosci 2018; 21(3): 329–340
CrossRef Google scholar
[26]
Greenhalgh AD, David S, Bennett FC. Immune cell regulation of glia during CNS injury and disease. Nat Rev Neurosci 2020; 21(3): 139–152
CrossRef Google scholar
[27]
Garbuzova-Davis S, Sanberg PR. Blood-CNS barrier impairment in ALS patients versus an animal model. Front Cell Neurosci 2014; 8: 21
CrossRef Google scholar
[28]
Turner MR, Goldacre R, Ramagopalan S, Talbot K, Goldacre MJ. Autoimmune disease preceding amyotrophic lateral sclerosis: an epidemiologic study. Neurology 2013; 81(14): 1222–1225
CrossRef Google scholar
[29]
Zhao W, Beers DR, Hooten KG, Sieglaff DH, Zhang A, Kalyana-Sundaram S, Traini CM, Halsey WS, Hughes AM, Sathe GM, Livi GP, Fan GH, Appel SH. Characterization of gene expression phenotype in amyotrophic lateral sclerosis monocytes. JAMA Neurol 2017; 74(6): 677–685
CrossRef Google scholar
[30]
Chiot A, Zaïdi S, Iltis C, Ribon M, Berriat F, Schiaffino L, Jolly A, de la Grange P, Mallat M, Bohl D, Millecamps S, Seilhean D, Lobsiger CS, Boillée S. Modifying macrophages at the periphery has the capacity to change microglial reactivity and to extend ALS survival. Nat Neurosci 2020; 23(11): 1339–1351
CrossRef Google scholar
[31]
Sheean RK, McKay FC, Cretney E, Bye CR, Perera ND, Tomas D, Weston RA, Scheller KJ, Djouma E, Menon P, Schibeci SD, Marmash N, Yerbury JJ, Nutt SL, Booth DR, Stewart GJ, Kiernan MC, Vucic S, Turner BJ. Association of regulatory T-cell expansion with progression of amyotrophic lateral sclerosis: a study of humans and a transgenic mouse model. JAMA Neurol 2018; 75(6): 681–689
CrossRef Google scholar
[32]
Zhang Z, Luo K, Zou Z, Qiu M, Tian J, Sieh L, Shi H, Zou Y, Wang G, Morrison J, Zhu AC, Qiao M, Li Z, Stephens M, He X, He C. Genetic analyses support the contribution of mRNA N6-methyladenosine (m6A) modification to human disease heritability. Nat Genet 2020; 52(9): 939–949
CrossRef Google scholar
[33]
Ridderstad Wollberg A, Ericsson-Dahlstrand A, Juréus A, Ekerot P, Simon S, Nilsson M, Wiklund SJ, Berg AL, Ferm M, Sunnemark D, Johansson R. Pharmacological inhibition of the chemokine receptor CX3CR1 attenuates disease in a chronic-relapsing rat model for multiple sclerosis. Proc Natl Acad Sci USA 2014; 111(14): 5409–5414
CrossRef Google scholar
[34]
Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T, Preibisch S, Rueden C, Saalfeld S, Schmid B, Tinevez JY, White DJ, Hartenstein V, Eliceiri K, Tomancak P, Cardona A. Fiji: an open-source platform for biological-image analysis. Nat Methods 2012; 9(7): 676–682
CrossRef Google scholar
[35]
Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA, Paulovich A, Pomeroy SL, Golub TR, Lander ES, Mesirov JP. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci USA 2005; 102(43): 15545–15550
CrossRef Google scholar
[36]
Hao Y, Hao S, Andersen-Nissen E, Mauck WM 3rd, Zheng S, Butler A, Lee MJ, Wilk AJ, Darby C, Zager M, Hoffman P, Stoeckius M, Papalexi E, Mimitou EP, Jain J, Srivastava A, Stuart T, Fleming LM, Yeung B, Rogers AJ, McElrath JM, Blish CA, Gottardo R, Smibert P, Satija R. Integrated analysis of multimodal single-cell data. Cell 2021; 184(13): 3573–3587.e29
CrossRef Google scholar
[37]
PinedaSSLee HFitzwalterBEMohammadiSPregentLJ GardashliMEMantero JEngelberg-CookEDeJesus-HernandezMvan Blitterswijk MPottierCRademakersROskarsson BShahJSPetersenRCGraff-Radford NRBoeveBFKnopmanDSJosephsKA DeTureMMurray MEDicksonDWHeimanMBelzilVV KellisM. Single-cell profiling of the human primary motor cortex in ALS and FTLD. bioRvix 2021; doi:10.1101/2021.07.07.451374
[38]
Jin S, Guerrero-Juarez CF, Zhang L, Chang I, Ramos R, Kuan CH, Myung P, Plikus MV, Nie Q. Inference and analysis of cell-cell communication using CellChat. Nat Commun 2021; 12(1): 1088
CrossRef Google scholar
[39]
Zhou Y, Zeng P, Li YH, Zhang Z, Cui Q. SRAMP: prediction of mammalian N6-methyladenosine (m6A) sites based on sequence-derived features. Nucleic Acids Res 2016; 44(10): e91
CrossRef Google scholar
[40]
Deng S, Zhang H, Zhu K, Li X, Ye Y, Li R, Liu X, Lin D, Zuo Z, Zheng J. M6A2Target: a comprehensive database for targets of m6A writers, erasers and readers. Brief Bioinform 2021; 22(3): bbaa055
CrossRef Google scholar
[41]
Cui L, Ma R, Cai J, Guo C, Chen Z, Yao L, Wang Y, Fan R, Wang X, Shi Y. RNA modifications: importance in immune cell biology and related diseases. Signal Transduct Target Ther 2022; 7(1): 334
CrossRef Google scholar
[42]
Yerbury JJ, Farrawell NE, McAlary L. Proteome homeostasis dysfunction: a unifying principle in ALS pathogenesis. Trends Neurosci 2020; 43(5): 274–284
CrossRef Google scholar
[43]
Katzeff JS, Bright F, Lo K, Kril JJ, Connolly A, Crossett B, Ittner LM, Kassiou M, Loy CT, Hodges JR, Piguet O, Kiernan MC, Halliday GM, Kim WS. Altered serum protein levels in frontotemporal dementia and amyotrophic lateral sclerosis indicate calcium and immunity dysregulation. Sci Rep 2020; 10(1): 13741
CrossRef Google scholar
[44]
Xu Z, Lee A, Nouwens A, Henderson RD, McCombe PA. Mass spectrometry analysis of plasma from amyotrophic lateral sclerosis and control subjects. Amyotroph Lateral Scler Frontotemporal Degener 2018; 19(5–6): 362–376
CrossRef Google scholar
[45]
King ZT, Butler MT, Hockenberry MA, Subramanian BC, Siesser PF, Graham DM, Legant WR, Bear JE. Coro1B and Coro1C regulate lamellipodia dynamics and cell motility by tuning branched actin turnover. J Cell Biol 2022; 221(8): e202111126
CrossRef Google scholar
[46]
Zaritsky A, Tseng YY, Rabadán MA, Krishna S, Overholtzer M, Danuser G, Hall A. Diverse roles of guanine nucleotide exchange factors in regulating collective cell migration. J Cell Biol 2017; 216(6): 1543–1556
CrossRef Google scholar
[47]
Jia Z, Wan X. ISYNA1: an immunomodulatory-related prognostic biomarker in colon adenocarcinoma and pan-cancer. Front Cell Dev Biol 2022; 10: 792564
CrossRef Google scholar
[48]
Goutman SA, Hardiman O, Al-Chalabi A, Chió A, Savelieff MG, Kiernan MC, Feldman EL. Emerging insights into the complex genetics and pathophysiology of amyotrophic lateral sclerosis. Lancet Neurol 2022; 21(5): 465–479
CrossRef Google scholar
[49]
He D, Xu Y, Liu M, Cui L. The inflammatory puzzle: piecing together the links between neuroinflammation and amyotrophic lateral sclerosis. Aging Dis 2023; 15(1): 96–114
CrossRef Google scholar
[50]
Shulman Z, Stern-Ginossar N. The RNA modification N6-methyladenosine as a novel regulator of the immune system. Nat Immunol 2020; 21(5): 501–512
CrossRef Google scholar
[51]
Li Y, Dou X, Liu J, Xiao Y, Zhang Z, Hayes L, Wu R, Fu X, Ye Y, Yang B, Ostrow LW, He C, Sun S. Globally reduced N6-methyladenosine (m6A) in C9ORF72-ALS/FTD dysregulates RNA metabolism and contributes to neurodegeneration. Nat Neurosci 2023; 26(8): 1328–1338
CrossRef Google scholar
[52]
Wang X, Lu Z, Gomez A, Hon GC, Yue Y, Han D, Fu Y, Parisien M, Dai Q, Jia G, Ren B, Pan T, He C. N6-methyladenosine-dependent regulation of messenger RNA stability. Nature 2014; 505(7481): 117–120
CrossRef Google scholar
[53]
Huang H, Weng H, Sun W, Qin X, Shi H, Wu H, Zhao BS, Mesquita A, Liu C, Yuan CL, Hu YC, Hüttelmaier S, Skibbe JR, Su R, Deng X, Dong L, Sun M, Li C, Nachtergaele S, Wang Y, Hu C, Ferchen K, Greis KD, Jiang X, Wei M, Qu L, Guan JL, He C, Yang J, Chen J. Recognition of RNA N6-methyladenosine by IGF2BP proteins enhances mRNA stability and translation. Nat Cell Biol 2018; 20(3): 285–295
CrossRef Google scholar
[54]
Song RH, Du P, Gao CQ, Liu XR, Zhang JA. METTL3 is involved in the development of Graves’ disease by inducing SOCS mRNA m6A modification. Front Endocrinol (Lausanne) 2021; 12: 666393
CrossRef Google scholar
[55]
Li HB, Tong J, Zhu S, Batista PJ, Duffy EE, Zhao J, Bailis W, Cao G, Kroehling L, Chen Y, Wang G, Broughton JP, Chen YG, Kluger Y, Simon MD, Chang HY, Yin Z, Flavell RA. m6A mRNA methylation controls T cell homeostasis by targeting the IL-7/STAT5/SOCS pathways. Nature 2017; 548(7667): 338–342
CrossRef Google scholar
[56]
Ip WKE, Hoshi N, Shouval DS, Snapper S, Medzhitov R. Anti-inflammatory effect of IL-10 mediated by metabolic reprogramming of macrophages. Science 2017; 5; 356(6337): 513–519
CrossRef Google scholar
[57]
Qin Y, Li B, Arumugam S, Lu Q, Mankash SM, Li J, Sun B, Li J, Flavell RA, Li HB, Ouyang X. m6A mRNA methylation-directed myeloid cell activation controls progression of NAFLD and obesity. Cell Rep 2021; 37(6): 109968
CrossRef Google scholar
[58]
Goodman WA, Bedoyan SM, Havran HL, Richardson B, Cameron MJ, Pizarro TT. Impaired estrogen signaling underlies regulatory T cell loss-of-function in the chronically inflamed intestine. Proc Natl Acad Sci USA 2020; 117(29): 17166–17176
CrossRef Google scholar
[59]
Smeets E, Huang S, Lee XY, Van Nieuwenhove E, Helsen C, Handle F, Moris L, El Kharraz S, Eerlings R, Devlies W, Willemsen M, Bücken L, Prezzemolo T, Humblet-Baron S, Voet A, Rochtus A, Van Schepdael A, de Zegher F, Claessens F. A disease-associated missense mutation in CYP4F3 affects the metabolism of leukotriene B4 via disruption of electron transfer. J Cachexia Sarcopenia Muscle 2022; 13(4): 2242–2253
CrossRef Google scholar
[60]
Lee HK, Chaboub LS, Zhu W, Zollinger D, Rasband MN, Fancy SP, Deneen B. Daam2-PIP5K is a regulatory pathway for Wnt signaling and therapeutic target for remyelination in the CNS. Neuron 2015; 85(6): 1227–1243
CrossRef Google scholar
[61]
Ding X, Jo J, Wang CY, Cristobal CD, Zuo Z, Ye Q, Wirianto M, Lindeke-Myers A, Choi JM, Mohila CA, Kawabe H, Jung SY, Bellen HJ, Yoo SH, Lee HK. The Daam2-VHL-Nedd4 axis governs developmental and regenerative oligodendrocyte differentiation. Genes Dev 2020; 34(17–18): 1177–1189
CrossRef Google scholar
[62]
Jo J, Woo J, Cristobal CD, Choi JM, Wang CY, Ye Q, Smith JA, Ung K, Liu G, Cortes D, Jung SY, Arenkiel BR, Lee HK. Regional heterogeneity of astrocyte morphogenesis dictated by the formin protein, Daam2, modifies circuit function. EMBO Rep 2021; 22(12): e53200
CrossRef Google scholar
[63]
Zhao D, Zhou Y, Huo Y, Meng J, Xiao X, Han L, Zhang X, Luo H, Can D, Sun H, Huang TY, Wang X, Zhang J, Liu FR, Xu H, Zhang YW. RPS23RG1 modulates tau phosphorylation and axon outgrowth through regulating p35 proteasomal degradation. Cell Death Differ 2021; 28(1): 337–348
CrossRef Google scholar
[64]
Calvo A, Moglia C, Canosa A, Cammarosano S, Ilardi A, Bertuzzo D, Traynor BJ, Brunetti M, Barberis M, Mora G, Casale F, Chiò A. Common polymorphisms of chemokine (C-X3-C motif) receptor 1 gene modify amyotrophic lateral sclerosis outcome: a population-based study. Muscle Nerve 2018; 57(2): 212–216
CrossRef Google scholar
[65]
Lopez-Lopez A, Gamez J, Syriani E, Morales M, Salvado M, Rodríguez MJ, Mahy N, Vidal-Taboada JM. CX3CR1 is a modifying gene of survival and progression in amyotrophic lateral sclerosis. PLoS One 2014; 9(5): e96528
CrossRef Google scholar
[66]
Subbarayan MS, Joly-Amado A, Bickford PC, Nash KR. CX3CL1/CX3CR1 signaling targets for the treatment of neurodegenerative diseases. Pharmacol Ther 2022; 231: 107989
CrossRef Google scholar
[67]
Hickman S, Izzy S, Sen P, Morsett L, El Khoury J. Microglia in neurodegeneration. Nat Neurosci 2018; 21(10): 1359–1369
CrossRef Google scholar
[68]
Cardona AE, Pioro EP, Sasse ME, Kostenko V, Cardona SM, Dijkstra IM, Huang D, Kidd G, Dombrowski S, Dutta R, Lee JC, Cook DN, Jung S, Lira SA, Littman DR, Ransohoff RM. Control of microglial neurotoxicity by the fractalkine receptor. Nat Neurosci 2006; 9(7): 917–924
CrossRef Google scholar
[69]
Cardona SM, Kim SV, Church KA, Torres VO, Cleary IA, Mendiola AS, Saville SP, Watowich SS, Parker-Thornburg J, Soto-Ospina A, Araque P, Ransohoff RM, Cardona AE. Role of the fractalkine receptor in CNS autoimmune inflammation: new approach utilizing a mouse model expressing the human CX3CR1I249/M280 variant. Front Cell Neurosci 2018; 12(October): 365
CrossRef Google scholar
[70]
Inoue K, Morimoto H, Ohgidani M, Ueki T. Modulation of inflammatory responses by fractalkine signaling in microglia. PLoS One 2021; 16(5): e0252118
CrossRef Google scholar
[71]
Fernández de Cossío L, Lacabanne C, Bordeleau M, Castino G, Kyriakakis P, Tremblay MÈ. Lipopolysaccharide-induced maternal immune activation modulates microglial CX3CR1 protein expression and morphological phenotype in the hippocampus and dentate gyrus, resulting in cognitive inflexibility during late adolescence. Brain Behav Immun 2021; 97(April): 440–454
CrossRef Google scholar
[72]
Wang J, Yan S, Lu H, Wang S, Xu D. METTL3 attenuates LPS-induced inflammatory response in macrophages via NF-κB signaling pathway. Mediators Inflamm 2019; 2019: 3120391
CrossRef Google scholar
[73]
Wang H, Hu X, Huang M, Liu J, Gu Y, Ma L, Zhou Q, Cao X. Mettl3-mediated mRNA m6A methylation promotes dendritic cell activation. Nat Commun 2019; 10(1): 1898
CrossRef Google scholar
[74]
Feng Z, Li Q, Meng R, Yi B, Xu Q. METTL3 regulates alternative splicing of MyD88 upon the lipopolysaccharide-induced inflammatory response in human dental pulp cells. J Cell Mol Med 2018; 22(5): 2558–2568
CrossRef Google scholar
[75]
Jara JH, Gautam M, Kocak N, Xie EF, Mao Q, Bigio EH, Özdinler PH. MCP1-CCR2 and neuroinflammation in the ALS motor cortex with TDP-43 pathology. J Neuroinflammation 2019; 16(1): 196
CrossRef Google scholar
[76]
Garofalo S, Cocozza G, Porzia A, Inghilleri M, Raspa M, Scavizzi F, Aronica E, Bernardini G, Peng L, Ransohoff RM, Santoni A, Limatola C. Natural killer cells modulate motor neuron-immune cell cross talk in models of Amyotrophic Lateral Sclerosis. Nat Commun 2020; 11(1): 1773
CrossRef Google scholar
[77]
Fourgeaud L, Través PG, Tufail Y, Leal-Bailey H, Lew ED, Burrola PG, Callaway P, Zagórska A, Rothlin CV, Nimmerjahn A, Lemke G. TAM receptors regulate multiple features of microglial physiology. Nature 2016; 532(7598): 240–244
CrossRef Google scholar
[78]
Huang Y, Happonen K, Burrola P, O’Connor C, Hah N, Huang L, Nimmerjahn A, Lemke G. Microglia use TAM receptors to detect and engulf amyloid beta plaques. Nat. Immunol 2021; 22(5): 586–594
[79]
Zhou X, Sun L, Bracko O, Choi JW, Jia Y, Nana AL, Brady OA, Hernandez JCC, Nishimura N, Seeley WW, Hu F. Impaired prosaposin lysosomal trafficking in frontotemporal lobar degeneration due to progranulin mutations. Nat Commun 2017; 8(1): 15277
CrossRef Google scholar
[80]
Zhao W, Beers DR, Bell S, Wang J, Wen S, Baloh RH, Appel SH. TDP-43 activates microglia through NF-κB and NLRP3 inflammasome. Exp Neurol 2015; 273: 24–35
CrossRef Google scholar

Acknowledgements

We acknowledge the technical support received from our collaborators. The LC-MS and PRM were performed at Beijing Bioms Technology Co. Ltd. MeRIP-seq and MeRIP-qPCR were performed at Tianhao Co. Ltd. We would like to thank all patients and their families in participating and supporting this study. We also thank Dr. Boxuan Zhao for constructive discussion. We are obliged to Pineda et al. for making their human primary motor cortex scRNA-seq data publicly available.
This work was supported by the Strategic Priority Research Program (Pilot study) “Biological basis of aging and therapeutic strategies” of the Chinese Academy of Sciences (No. XDB39040000), CAMS Innovation Fund for Medical Sciences (Nos. 2021-I2M-1-003 and 2021-I2M-1-034), National High Level Hospital Clinical Research Funding (No. 2022-PUMCH-B-017), Beijing Natural Science Foundation (No. 7202158), National Natural Science Foundation of China (No. 81971293).

Compliance with ethics guidelines

Conflicts of interest Di He, Xunzhe Yang, Liyang Liu, Dongchao Shen, Qing Liu, Mingsheng Liu, Xue Zhang, and Liying Cui declare that they have no conflict of interest to be disclosed. The funding party is not involved in any aspect pertinent to the study, and none of the authors is financially related to pharmaceutical company or other agency.
The study was approved by the PUMCH Research Ethical Boards (Ethical Approval No. JS-2624) and the study was performed in accordance with the ethical standards as laid down in the 1964 Declaration of Helsinki and its later amendments or comparable ethical standards. Informed consent was obtained from all patients for being included in the study.

Electronic Supplementary Material

Supplementary material is available in the online version of this article at https://doi.org/10.1007/s11684-023-1035-5 and is accessible for authorized users.

RIGHTS & PERMISSIONS

2023 Higher Education Press
AI Summary AI Mindmap
PDF(9316 KB)

Accesses

Citations

Detail

Sections
Recommended

/