Innovation-driven trend shaping COVID-19 vaccine development in China
Yuntao Zhang, Yuxiu Zhao, Hongyang Liang, Ying Xu, Chuge Zhou, Yuzhu Yao, Hui Wang, Xiaoming Yang
Innovation-driven trend shaping COVID-19 vaccine development in China
Confronted with the coronavirus disease 2019 (COVID-19) pandemic, China has become an asset in tackling the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) transmission and mutation, with several innovative platforms, which provides various technical means in this persisting combat. Derived from collaborated researches, vaccines based on the spike protein of SARS-CoV-2 or inactivated whole virus are a cornerstone of the public health response to COVID-19. Herein, we outline representative vaccines in multiple routes, while the merits and plights of the existing vaccine strategies are also summarized. Likewise, new technologies may provide more potent or broader immunity and will contribute to fight against hypermutated SARS-CoV-2 variants. All in all, with the ultimate aim of delivering robust and durable protection that is resilient to emerging infectious disease, alongside the traditional routes, the discovery of innovative approach to developing effective vaccines based on virus properties remains our top priority.
SARS-CoV-2 / COVID-19 vaccine / vaccine development
[1] |
Hu B, Guo H, Zhou P, Shi ZL. Characteristics of SARS-CoV-2 and COVID-19. Nat Rev Microbiol 2021; 19(3): 141–154
CrossRef
Google scholar
|
[2] |
Ritchie G, Harvey DJ, Feldmann F, Stroeher U, Feldmann H, Royle L, Dwek RA, Rudd PM. Identification of N-linked carbohydrates from severe acute respiratory syndrome (SARS) spike glycoprotein. Virology 2010; 399(2): 257–269
CrossRef
Google scholar
|
[3] |
Du L, Yang Y, Zhou Y, Lu L, Li F, Jiang S. MERS-CoV spike protein: a key target for antivirals. Expert Opin Ther Targets 2017; 21(2): 131–143
CrossRef
Google scholar
|
[4] |
Ahmed SF, Quadeer AA, McKay MR. Preliminary identification of potential vaccine targets for the COVID-19 coronavirus (SARS-CoV-2) based on SARS-CoV immunological studies. Viruses 2020; 12(3): 254
CrossRef
Google scholar
|
[5] |
Chen Y, Liu Q, Guo D. Emerging coronaviruses: genome structure, replication, and pathogenesis. J Med Virol 2020; 92(4): 418–423
CrossRef
Google scholar
|
[6] |
Lu R, Zhao X, Li J, Niu P, Yang B, Wu H, Wang W, Song H, Huang B, Zhu N, Bi Y, Ma X, Zhan F, Wang L, Hu T, Zhou H, Hu Z, Zhou W, Zhao L, Chen J, Meng Y, Wang J, Lin Y, Yuan J, Xie Z, Ma J, Liu WJ, Wang D, Xu W, Holmes EC, Gao GF, Wu G, Chen W, Shi W, Tan W. Genomic characterisation and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding. Lancet 2020; 395(10224): 565–574
CrossRef
Google scholar
|
[7] |
Shereen MA, Khan S, Kazmi A, Bashir N, Siddique R. COVID-19 infection: emergence, transmission, and characteristics of human coronaviruses. J Adv Res 2020; 24: 91–98
CrossRef
Google scholar
|
[8] |
Jackson CB, Farzan M, Chen B, Choe H. Mechanisms of SARS-CoV-2 entry into cells. Nat Rev Mol Cell Biol 2022; 23(1): 3–20
CrossRef
Google scholar
|
[9] |
Zhou P, Yang XL, Wang XG, Hu B, Zhang L, Zhang W, Si HR, Zhu Y, Li B, Huang CL, Chen HD, Chen J, Luo Y, Guo H, Jiang RD, Liu MQ, Chen Y, Shen XR, Wang X, Zheng XS, Zhao K, Chen QJ, Deng F, Liu LL, Yan B, Zhan FX, Wang YY, Xiao GF, Shi ZL. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature 2020; 579(7798): 270–273
CrossRef
Google scholar
|
[10] |
Shang J, Wan Y, Luo C, Ye G, Geng Q, Auerbach A, Li F. Cell entry mechanisms of SARS-CoV-2. Proc Natl Acad Sci USA 2020; 117(21): 11727–11734
CrossRef
Google scholar
|
[11] |
Andersen KG, Rambaut A, Lipkin WI, Holmes EC, Garry RF. The proximal origin of SARS-CoV-2. Nat Med 2020; 26(4): 450–452
CrossRef
Google scholar
|
[12] |
Wrapp D, Wang N, Corbett KS, Goldsmith JA, Hsieh CL, Abiona O, Graham BS, McLellan JS. Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation. Science 2020; 367(6483): 1260–1263
CrossRef
Google scholar
|
[13] |
Hoffmann M, Kleine-Weber H, Schroeder S, Krüger N, Herrler T, Erichsen S, Schiergens TS, Herrler G, Wu NH, Nitsche A, Müller MA, Drosten C, Pöhlmann S. SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell 2020; 181(2): 271–280.e8
CrossRef
Google scholar
|
[14] |
Sadarangani M, Marchant A, Kollmann TR. Immunological mechanisms of vaccine-induced protection against COVID-19 in humans. Nat Rev Immunol 2021; 21(8): 475–484
CrossRef
Google scholar
|
[15] |
Anka AU, Tahir MI, Abubakar SD, Alsabbagh M, Zian Z, Hamedifar H, Sabzevari A, Azizi G. Coronavirus disease 2019 (COVID-19): an overview of the immunopathology, serological diagnosis and management. Scand J Immunol 2021; 93(4): e12998
CrossRef
Google scholar
|
[16] |
Mistry P, Barmania F, Mellet J, Peta K, Strydom A, Viljoen IM, James W, Gordon S, Pepper MS. SARS-CoV-2 variants, vaccines, and host immunity. Front Immunol 2022; 12: 809244
CrossRef
Google scholar
|
[17] |
Felsenstein S, Herbert JA, McNamara PS, Hedrich CM. COVID-19: immunology and treatment options. Clin Immunol 2020; 215: 108448
CrossRef
Google scholar
|
[18] |
Tarke A, Sidney J, Kidd CK, Dan JM, Ramirez SI, Yu ED, Mateus J, da Silva Antunes R, Moore E, Rubiro P, Methot N, Phillips E, Mallal S, Frazier A, Rawlings SA, Greenbaum JA, Peters B, Smith DM, Crotty S, Weiskopf D, Grifoni A, Sette A. Comprehensive analysis of T cell immunodominance and immunoprevalence of SARS-CoV-2 epitopes in COVID-19 cases. Cell Rep Med 2021; 2(2): 100204
CrossRef
Google scholar
|
[19] |
Qi H, Liu B, Wang X, Zhang L. The humoral response and antibodies against SARS-CoV-2 infection. Nat Immunol 2022; 23(7): 1008–1020
CrossRef
Google scholar
|
[20] |
Lu L, Zhang H, Zhan M, Jiang J, Yin H, Dauphars DJ, Li SY, Li Y, He YW. YW. Antibody response and therapy in COVID-19 patients: what can be learned for vaccine development?. Sci China Life Sci 2020; 63(12): 1833–1849
CrossRef
Google scholar
|
[21] |
Suthar MS, Zimmerman MG, Kauffman RC, Mantus G, Linderman SL, Hudson WH, Vanderheiden A, Nyhoff L, Davis CW, Adekunle O, Affer M, Sherman M, Reynolds S, Verkerke HP, Alter DN, Guarner J, Bryksin J, Horwath MC, Arthur CM, Saakadze N, Smith GH, Edupuganti S, Scherer EM, Hellmeister K, Cheng A, Morales JA, Neish AS, Stowell SR, Frank F, Ortlund E, Anderson EJ, Menachery VD, Rouphael N, Mehta AK, Stephens DS, Ahmed R, Roback JD, Wrammert J. Rapid generation of neutralizing antibody responses in COVID-19 patients. Cell Rep Med 2020; 1(3): 100040
CrossRef
Google scholar
|
[22] |
Reingold A. Smallpox—the death of a disease: the inside story of eradicating a worldwide killer: By D. A. Henderson. Am J Epidemiol 2010; 171(3): 384–385
CrossRef
Google scholar
|
[23] |
Wang H, Zhang Y, Huang B, Deng W, Quan Y, Wang W, Xu W, Zhao Y, Li N, Zhang J, Liang H, Bao L, Xu Y, Ding L, Zhou W, Gao H, Liu J, Niu P, Zhao L, Zhen W, Fu H, Yu S, Zhang Z, Xu G, Li C, Lou Z, Xu M, Qin C, Wu G, Gao GF, Tan W, Yang X. Development of an inactivated vaccine candidate, BBIBP-CorV, with potent protection against SARS-CoV-2. Cell 2020; 182(3): 713–721.e9
CrossRef
Google scholar
|
[24] |
Jin L, Li Z, Zhang X, Li J, Zhu F. CoronaVac: a review of efficacy, safety, and immunogenicity of the inactivated vaccine against SARS-CoV-2. Hum Vaccin Immunother 2022; 18(6): 2096970
CrossRef
Google scholar
|
[25] |
Al Kaabi N, Zhang Y, Xia S, Yang Y, Al Qahtani MM, Abdulrazzaq N, Al Nusair M, Hassany M, Jawad JS, Abdalla J, Hussein SE, Al Mazrouei SK, Al Karam M, Li X, Yang X, Wang W, Lai B, Chen W, Huang S, Wang Q, Yang T, Liu Y, Ma R, Hussain ZM, Khan T, Saifuddin Fasihuddin M, You W, Xie Z, Zhao Y, Jiang Z, Zhao G, Zhang Y, Mahmoud S, ElTantawy I, Xiao P, Koshy A, Zaher WA, Wang H, Duan K, Pan A, Yang X. Effect of 2 inactivated SARS-CoV-2 vaccines on symptomatic COVID-19 infection in adults: a randomized clinical trial. JAMA 2021; 326(1): 35–45
CrossRef
Google scholar
|
[26] |
Xia S, Duan K, Zhang Y, Zhao D, Zhang H, Xie Z, Li X, Peng C, Zhang Y, Zhang W, Yang Y, Chen W, Gao X, You W, Wang X, Wang Z, Shi Z, Wang Y, Yang X, Zhang L, Huang L, Wang Q, Lu J, Yang Y, Guo J, Zhou W, Wan X, Wu C, Wang W, Huang S, Du J, Meng Z, Pan A, Yuan Z, Shen S, Guo W, Yang X. Effect of an inactivated vaccine against SARS-CoV-2 on safety and immunogenicity outcomes: interim analysis of 2 randomized clinical trials. JAMA 2020; 324(10): 951–960
CrossRef
Google scholar
|
[27] |
Xia S, Zhang Y, Wang Y, Wang H, Yang Y, Gao GF, Tan W, Wu G, Xu M, Lou Z, Huang W, Xu W, Huang B, Wang H, Wang W, Zhang W, Li N, Xie Z, Ding L, You W, Zhao Y, Yang X, Liu Y, Wang Q, Huang L, Yang Y, Xu G, Luo B, Wang W, Liu P, Guo W, Yang X. Safety and immunogenicity of an inactivated SARS-CoV-2 vaccine, BBIBP-CorV: a randomised, double-blind, placebo-controlled, phase 1/2 trial. Lancet Infect Dis 2021; 21(1): 39–51
CrossRef
Google scholar
|
[28] |
Bravo L, Smolenov I, Han HH, Li P, Hosain R, Rockhold F, Clemens SAC, Roa C Jr, Borja-Tabora C, Quinsaat A, Lopez P, López-Medina E, Brochado L, Hernández EA, Reynales H, Medina T, Velasquez H, Toloza LB, Rodriguez EJ, de Salazar DIM, Rodríguez CA, Sprinz E, Cerbino-Neto J, Luz KG, Schwarzbold AV, Paiva MS, Carlos J, Montellano MEB, de Los Reyes MRA, Yu CY, Alberto ER, Panaligan MM, Salvani-Bautista M, Buntinx E, Hites M, Martinot JB, Bhorat QE, Badat A, Baccarini C, Hu B, Jurgens J, Engelbrecht J, Ambrosino D, Richmond P, Siber G, Liang J, Clemens R. Efficacy of the adjuvanted subunit protein COVID-19 vaccine, SCB-2019: a phase 2 and 3 multicentre, double-blind, randomised, placebo-controlled trial. Lancet 2022; 399(10323): 461–472
CrossRef
Google scholar
|
[29] |
Dai L, Gao L, Tao L, Hadinegoro SR, Erkin M, Ying Z, He P, Girsang RT, Vergara H, Akram J, Satari HI, Khaliq T, Sughra U, Celi AP, Li F, Li Y, Jiang Z, Dalimova D, Tuychiev J, Turdikulova S, Ikram A, Flores Lastra N, Ding F, Suhardono M, Fadlyana E, Yan J, Hu Z, Li C, Abdurakhmonov IY, Gao GF; ZF2001 Global Trial Group. Efficacy and safety of the RBD-dimer-based Covid-19 vaccine ZF2001 in adults. N Engl J Med 2022; 386(22): 2097–2111
CrossRef
Google scholar
|
[30] |
Sun S, Cai Y, Song TZ, Pu Y, Cheng L, Xu H, Sun J, Meng C, Lin Y, Huang H, Zhao F, Zhang S, Gao Y, Han JB, Feng XL, Yu DD, Zhu Y, Gao P, Tang H, Zhao J, Zhang Z, Yang J, Hu Z, Fu YX, Zheng YT, Peng H. Interferon-armed RBD dimer enhances the immunogenicity of RBD for sterilizing immunity against SARS-CoV-2. Cell Res 2021; 31(9): 1011–1023
CrossRef
Google scholar
|
[31] |
Jiangsu Recbio Technology Co. Ltd. Recbio announces new study showing its COVID-19 vaccine induced high levels of neutralizing antibodies against SARS-CoV-2 and variants of concern. PR Newswire. 2021
|
[32] |
Halperin SA, Ye L, MacKinnon-Cameron D, Smith B, Cahn PE, Ruiz-Palacios GM, Ikram A, Lanas F, Lourdes Guerrero M, Muñoz Navarro SR, Sued O, Lioznov DA, Dzutseva V, Parveen G, Zhu F, Leppan L, Langley JM, Barreto L, Gou J, Zhu T; CanSino COVID-19 Global Efficacy Study Group. Final efficacy analysis, interim safety analysis, and immunogenicity of a single dose of recombinant novel coronavirus vaccine (adenovirus type 5 vector) in adults 18 years and older: an international, multicentre, randomised, double-blinded, placebo-controlled phase 3 trial. Lancet 2022; 399(10321): 237–248
CrossRef
Google scholar
|
[33] |
Zhu F, Zhuang C, Chu K, Zhang L, Zhao H, Huang S, Su Y, Lin H, Yang C, Jiang H, Zang X, Liu D, Pan H, Hu Y, Liu X, Chen Q, Song Q, Quan J, Huang Z, Zhong G, Chen J, Han J, Sun H, Cui L, Li J, Chen Y, Zhang T, Ye X, Li C, Wu T, Zhang J, Xia NS. Safety and immunogenicity of a live-attenuated influenza virus vector-based intranasal SARS-CoV-2 vaccine in adults: randomised, double-blind, placebo-controlled, phase 1 and 2 trials. Lancet Respir Med 2022; 10(8): 749–760
CrossRef
Google scholar
|
[34] |
Xu K, Lei W, Kang B, Yang H, Wang Y, Lu Y, Lv L, Sun Y, Zhang J, Wang X, Yang M, Dan M, Wu G. A novel mRNA vaccine, SYS6006, against SARS-CoV-2. Front Immunol 2023; 13: 1051576
CrossRef
Google scholar
|
[35] |
Liu X, Li Y, Wang Z, Cao S, Huang W, Yuan L, Huang YJ, Zheng Y, Chen J, Ying B, Xiang Z, Shi J, Zhao J, Huang Z, Qin CF. Safety and superior immunogenicity of heterologous boosting with an RBD-based SARS-CoV-2 mRNA vaccine in Chinese adults. Cell Res 2022; 32(8): 777–780
CrossRef
Google scholar
|
[36] |
Li J, Liu Q, Liu J, Fang Z, Luo L, Li S, Lei Y, Li Z, Jin J, Xie R, Peng Y. Development of bivalent mRNA vaccines against SARS-CoV-2 variants. Vaccines (Basel) 2022; 10(11): 1807
CrossRef
Google scholar
|
[37] |
Tebas P, Yang S, Boyer JD, Reuschel EL, Patel A, Christensen-Quick A, Andrade VM, Morrow MP, Kraynyak K, Agnes J, Purwar M, Sylvester A, Pawlicki J, Gillespie E, Maricic I, Zaidi FI, Kim KY, Dia Y, Frase D, Pezzoli P, Schultheis K, Smith TRF, Ramos SJ, McMullan T, Buttigieg K, Carroll MW, Ervin J, Diehl MC, Blackwood E, Mammen MP, Lee J, Dallas MJ, Brown AS, Shea JE, Kim JJ, Weiner DB, Broderick KE, Humeau LM. Safety and immunogenicity of INO-4800 DNA vaccine against SARS-CoV-2: a preliminary report of an open-label, Phase 1 clinical trial. EClinicalMedicine 2021; 31: 100689
CrossRef
Google scholar
|
[38] |
Hilleman MR, Buynak EB, Roehm RR, Tytell AA, Bertland AU, Lampson GP. Purified and inactivated human hepatitis B vaccine: progress report. Am J Med Sci 1975; 270(2): 401–404
CrossRef
Google scholar
|
[39] |
Okayasu H, Sutter RW, Jafari HS, Takane M, Aylward RB. Affordable inactivated poliovirus vaccine: strategies and progress. J Infect Dis 2014; 210(Suppl 1): S459–S464
CrossRef
Google scholar
|
[40] |
Mao QY, Wang Y, Bian L, Xu M, Liang Z. EV71 vaccine, a new tool to control outbreaks of hand, foot and mouth disease (HFMD). Expert Rev Vaccines 2016; 15(5): 599–606
CrossRef
Google scholar
|
[41] |
Stauffer F, El-Bacha T, Da Poian AT. Advances in the development of inactivated virus vaccines. Recent Patents Anti-Infect Drug Disc 2006; 1(3): 291–296
CrossRef
Google scholar
|
[42] |
Rydyznski Moderbacher C, Ramirez SI, Dan JM, Grifoni A, Hastie KM, Weiskopf D, Belanger S, Abbott RK, Kim C, Choi J, Kato Y, Crotty EG, Kim C, Rawlings SA, Mateus J, Tse LPV, Frazier A, Baric R, Peters B, Greenbaum J, Ollmann Saphire E, Smith DM, Sette A, Crotty S. Antigen-specific adaptive immunity to SARS-CoV-2 in acute COVID-19 and associations with age and disease severity. Cell 2020; 183(4): 996–1012.e19
CrossRef
Google scholar
|
[43] |
Weiskopf D, Schmitz KS, Raadsen MP, Grifoni A, Okba NMA, Endeman H, van den Akker JPC, Molenkamp R, Koopmans MPG, van Gorp ECM, Haagmans BL, de Swart RL, Sette A, de Vries RD. Phenotype and kinetics of SARS-CoV-2-specific T cells in COVID-19 patients with acute respiratory distress syndrome. Sci Immunol 2020; 5(48): eabd2071
CrossRef
Google scholar
|
[44] |
Duan K, Liu B, Li C, Zhang H, Yu T, Qu J, Zhou M, Chen L, Meng S, Hu Y, Peng C, Yuan M, Huang J, Wang Z, Yu J, Gao X, Wang D, Yu X, Li L, Zhang J, Wu X, Li B, Xu Y, Chen W, Peng Y, Hu Y, Lin L, Liu X, Huang S, Zhou Z, Zhang L, Wang Y, Zhang Z, Deng K, Xia Z, Gong Q, Zhang W, Zheng X, Liu Y, Yang H, Zhou D, Yu D, Hou J, Shi Z, Chen S, Chen Z, Zhang X, Yang X. Effectiveness of convalescent plasma therapy in severe COVID-19 patients. Proc Natl Acad Sci USA 2020; 117(17): 9490–9496
CrossRef
Google scholar
|
[45] |
Cameroni E, Bowen JE, Rosen LE, Saliba C, Zepeda SK, Culap K, Pinto D, VanBlargan LA, De Marco A, di Iulio J, Zatta F, Kaiser H, Noack J, Farhat N, Czudnochowski N, Havenar-Daughton C, Sprouse KR, Dillen JR, Powell AE, Chen A, Maher C, Yin L, Sun D, Soriaga L, Bassi J, Silacci-Fregni C, Gustafsson C, Franko NM, Logue J, Iqbal NT, Mazzitelli I, Geffner J, Grifantini R, Chu H, Gori A, Riva A, Giannini O, Ceschi A, Ferrari P, Cippà PE, Franzetti-Pellanda A, Garzoni C, Halfmann PJ, Kawaoka Y, Hebner C, Purcell LA, Piccoli L, Pizzuto MS, Walls AC, Diamond MS, Telenti A, Virgin HW, Lanzavecchia A, Snell G, Veesler D, Corti D. Broadly neutralizing antibodies overcome SARS-CoV-2 Omicron antigenic shift. Nature 2022; 602(7898): 664–670
CrossRef
Google scholar
|
[46] |
Shi S, Zhu H, Xia X, Liang Z, Ma X, Sun B. Vaccine adjuvants: understanding the structure and mechanism of adjuvanticity. Vaccine 2019; 37(24): 3167–3178
CrossRef
Google scholar
|
[47] |
Xia S, Zhang Y, Wang Y, Wang H, Yang Y, Gao GF, Tan W, Wu G, Xu M, Lou Z, Huang W, Xu W, Huang B, Wang H, Wang W, Zhang W, Li N, Xie Z, Ding L, You W, Zhao Y, Yang X, Liu Y, Wang Q, Huang L, Yang Y, Xu G, Luo B, Wang W, Liu P, Guo W, Yang X. Safety and immunogenicity of an inactivated SARS-CoV-2 vaccine, BBIBP-CorV: a randomised, double-blind, placebo-controlled, phase 1/2 trial. Lancet Infect Dis 2021; 21(1): 39–51
CrossRef
Google scholar
|
[48] |
Han B, Song Y, Li C, Yang W, Ma Q, Jiang Z, Li M, Lian X, Jiao W, Wang L, Shu Q, Wu Z, Zhao Y, Li Q, Gao Q. Safety, tolerability, and immunogenicity of an inactivated SARS-CoV-2 vaccine (CoronaVac) in healthy children and adolescents: a double-blind, randomised, controlled, phase 1/2 clinical trial. Lancet Infect Dis 2021; 21(12): 1645–1653
CrossRef
Google scholar
|
[49] |
Tanriover MD, Doğanay HL, Akova M, Güner HR, Azap A, Akhan S, Köse Ş, Erdinç FŞ, Akalın EH, TabakÖF, Pullukçu H, BatumÖ, Şimşek Yavuz S, TurhanÖ, Yıldırmak MT, Köksalİ, Taşova Y, Korten V, Yılmaz G, Çelen MK, Altın S, Çelikİ, Bayındır Y, Karaoğlanİ, Yılmaz A, Özkul A, Gür H, Unal S; CoronaVac Study Group. Efficacy and safety of an inactivated whole-virion SARS-CoV-2 vaccine (CoronaVac): interim results of a double-blind, randomised, placebo-controlled, phase 3 trial in Turkey. Lancet 2021; 398(10296): 213–222
CrossRef
Google scholar
|
[50] |
Ella R, Vadrevu KM, Jogdand H, Prasad S, Reddy S, Sarangi V, Ganneru B, Sapkal G, Yadav P, Abraham P, Panda S, Gupta N, Reddy P, Verma S, Kumar Rai S, Singh C, Redkar SV, Gillurkar CS, Kushwaha JS, Mohapatra S, Rao V, Guleria R, Ella K, Bhargava B. Safety and immunogenicity of an inactivated SARS-CoV-2 vaccine, BBV152: a double-blind, randomised, phase 1 trial. Lancet Infect Dis 2021; 21(5): 637–646
CrossRef
Google scholar
|
[51] |
Al Kaabi N, Oulhaj A, Ganesan S, Al Hosani FI, Najim O, Ibrahim H, Acuna J, Alsuwaidi AR, Kamour AM, Alzaabi A, Al Shehhi BA, Al Safar H, Hussein SE, Abdalla JS, Al Mansoori DSN, Al Hammadi AAK, Amari MA, Al Romaithi AK, Weber S, Elavalli S, Eltantawy I, Alghaithi NK, Al Azazi JN, Holt SG, Mostafa M, Halwani R, Khalak H, Elamin W, Beiram R, Zaher W. Effectiveness of BBIBP-CorV vaccine against severe outcomes of COVID-19 in Abu Dhabi, United Arab Emirates. Nat Commun 2022; 13(1): 3215
CrossRef
Google scholar
|
[52] |
Bueno SM, Abarca K, González PA, Gálvez NMS, Soto JA, Duarte LF, Schultz BM, Pacheco GA, González LA, Vázquez Y, Ríos M, Melo-González F, Rivera-Pérez D, Iturriaga C, Urzúa M, Domínguez A, Andrade CA, Berríos-Rojas RV, Canedo-Marroquín G, Covián C, Moreno-Tapia D, Saavedra F, Vallejos OP, Donato P, Espinoza P, Fuentes D, González M, Guzmán P, Muñoz Venturelli P, Pérez CM, Potin M, Rojas Á, Fasce RA, Fernández J, Mora J, Ramírez E, Gaete-Argel A, Oyarzún-Arrau A, Valiente-Echeverría F, Soto-Rifo R, Weiskopf D, Sette A, Zeng G, Meng W, González-Aramundiz JV, Kalergis AM. Safety and immunogenicity of an inactivated severe acute respiratory syndrome coronavirus 2 vaccine in a subgroup of healthy adults in Chile. Clin Infect Dis 2022; 75(1): e792–e804
CrossRef
Google scholar
|
[53] |
Zhu D, Hu Y, Jiang Z, Yang T, Chu K, Zhang H, Hu J, Meng X, Tan Z, Wu J, Lian X, Li C, Pan H. Lot-to-lot consistency, immunogenicity, and safety of an inactivated SARS-CoV-2 vaccine (CoronaVac) in healthy adults: a randomized, double-blind, phase IV trial. Hum Vaccin Immunother 2022; 18(6): 2135929
CrossRef
Google scholar
|
[54] |
Gao Q, Bao L, Mao H, Wang L, Xu K, Yang M, Li Y, Zhu L, Wang N, Lv Z, Gao H, Ge X, Kan B, Hu Y, Liu J, Cai F, Jiang D, Yin Y, Qin C, Li J, Gong X, Lou X, Shi W, Wu D, Zhang H, Zhu L, Deng W, Li Y, Lu J, Li C, Wang X, Yin W, Zhang Y, Qin C. Development of an inactivated vaccine candidate for SARS-CoV-2. Science 2020; 369(6499): 77–81
CrossRef
Google scholar
|
[55] |
Delrue I, Verzele D, Madder A, Nauwynck HJ. Inactivated virus vaccines from chemistry to prophylaxis: merits, risks and challenges. Expert Rev Vaccines 2012; 11(6): 695–719
CrossRef
Google scholar
|
[56] |
Lan J, Ge J, Yu J, Shan S, Zhou H, Fan S, Zhang Q, Shi X, Wang Q, Zhang L, Wang X. Structure of the SARS-CoV-2 spike receptor-binding domain bound to the ACE2 receptor. Nature 2020; 581(7807): 215–220
CrossRef
Google scholar
|
[57] |
Heath PT, Galiza EP, Baxter DN, Boffito M, Browne D, Burns F, Chadwick DR, Clark R, Cosgrove C, Galloway J, Goodman AL, Heer A, Higham A, Iyengar S, Jamal A, Jeanes C, Kalra PA, Kyriakidou C, McAuley DF, Meyrick A, Minassian AM, Minton J, Moore P, Munsoor I, Nicholls H, Osanlou O, Packham J, Pretswell CH, San Francisco Ramos A, Saralaya D, Sheridan RP, Smith R, Soiza RL, Swift PA, Thomson EC, Turner J, Viljoen ME, Albert G, Cho I, Dubovsky F, Glenn G, Rivers J, Robertson A, Smith K, Toback S; 2019nCoV-302 Study Group. Safety and efficacy of NVX-CoV2373 Covid-19 vaccine. N Engl J Med 2021; 385(13): 1172–1183
CrossRef
Google scholar
|
[58] |
Dai L, Zheng T, Xu K, Han Y, Xu L, Huang E, An Y, Cheng Y, Li S, Liu M, Yang M, Li Y, Cheng H, Yuan Y, Zhang W, Ke C, Wong G, Qi J, Qin C, Yan J, Gao GF. A universal design of betacoronavirus vaccines against COVID-19, MERS, and SARS. Cell 2020; 182(3): 722–733.e11
CrossRef
Google scholar
|
[59] |
Jafari A, Danesh Pouya F, Niknam Z, Abdollahpour-Alitappeh M, Rezaei-Tavirani M, Rasmi Y. Current advances and challenges in COVID-19 vaccine development: from conventional vaccines to next-generation vaccine platforms. Mol Biol Rep 2022; 49(6): 4943–4957
CrossRef
Google scholar
|
[60] |
Dai L, Gao GF. Viral targets for vaccines against COVID-19. Nat Rev Immunol 2021; 21(2): 73–82
CrossRef
Google scholar
|
[61] |
Soleimanpour S, Yaghoubi A. COVID-19 vaccine: where are we now and where should we go?. Expert Rev Vaccines 2021; 20(1): 23–44
CrossRef
Google scholar
|
[62] |
Lundstrom K. Viral vectors for COVID-19 vaccine development. Viruses 2021; 13(2): 317
CrossRef
Google scholar
|
[63] |
Schiedner G, Morral N, Parks RJ, Wu Y, Koopmans SC, Langston C, Graham FL, Beaudet AL, Kochanek S. Genomic DNA transfer with a high-capacity adenovirus vector results in improved in vivo gene expression and decreased toxicity. Nat Genet 1998; 18(2): 180–183
CrossRef
Google scholar
|
[64] |
Ramasamy MN, Minassian AM, Ewer KJ, Flaxman AL, Folegatti PM, Owens DR, Voysey M, Aley PK, Angus B, Babbage G, Belij-Rammerstorfer S, Berry L, Bibi S, Bittaye M, Cathie K, Chappell H, Charlton S, Cicconi P, Clutterbuck EA, Colin-Jones R, Dold C, Emary KRW, Fedosyuk S, Fuskova M, Gbesemete D, Green C, Hallis B, Hou MM, Jenkin D, Joe CCD, Kelly EJ, Kerridge S, Lawrie AM, Lelliott A, Lwin MN, Makinson R, Marchevsky NG, Mujadidi Y, Munro APS, Pacurar M, Plested E, Rand J, Rawlinson T, Rhead S, Robinson H, Ritchie AJ, Ross-Russell AL, Saich S, Singh N, Smith CC, Snape MD, Song R, Tarrant R, Themistocleous Y, Thomas KM, Villafana TL, Warren SC, Watson MEE, Douglas AD, Hill AVS, Lambe T, Gilbert SC, Faust SN, Pollard AJ; Oxford COVID Vaccine Trial Group. Safety and immunogenicity of ChAdOx1 nCoV-19 vaccine administered in a prime-boost regimen in young and old adults (COV002): a single-blind, randomised, controlled, phase 2/3 trial. Lancet 2021; 396(10267): 1979–1993
CrossRef
Google scholar
|
[65] |
Sadoff J, Gray G, Vandebosch A, Cárdenas V, Shukarev G, Grinsztejn B, Goepfert PA, Truyers C, Fennema H, Spiessens B, Offergeld K, Scheper G, Taylor KL, Robb ML, Treanor J, Barouch DH, Stoddard J, Ryser MF, Marovich MA, Neuzil KM, Corey L, Cauwenberghs N, Tanner T, Hardt K, Ruiz-Guiñazú J, Le Gars M, Schuitemaker H, Van Hoof J, Struyf F, Douoguih M; ENSEMBLE Study Group. Safety and efficacy of single-dose Ad26.COV2.S vaccine against Covid-19. N Engl J Med 2021; 384(23): 2187–2201
CrossRef
Google scholar
|
[66] |
Jacob-Dolan C, Barouch DH. COVID-19 vaccines: adenoviral vectors. Annu Rev Med 2022; 73(1): 41–54
CrossRef
Google scholar
|
[67] |
Chiuppesi F, Zaia JA, Frankel PH, Stan R, Drake J, Williams B, Acosta AM, Francis K, Taplitz RA, Dickter JK, Dadwal S, Puing AG, Nanayakkara DD, Ash P, Cui Y, Contreras H, La Rosa C, Tiemann K, Park Y, Medina J, Iniguez A, Zhou Q, Karpinski V, Johnson D, Faircloth K, Kaltcheva T, Nguyen J, Kha M, Nguyen VH, Francisco SO, Grifoni A, Wong A, Sette A, Wussow F, Diamond DJ. Safety and immunogenicity of a synthetic multiantigen modified vaccinia virus Ankara-based COVID-19 vaccine (COH04S1): an open-label and randomised, phase 1 trial. Lancet Microbe 2022; 3(4): e252–e264
CrossRef
Google scholar
|
[68] |
Zhang R, Chan KH, Wang P, Zhou R, Yau HKC, Wong CKW, Au MW, Tam AR, Ng CT, Lou MK, Liu N, Huang H, Deng S, Tam RC, Liu Y, Long T, Tsoi HW, Ng MKW, Cai JP, To KK, Yuen MF, Chen Z, Chen H, Yuen KY, Hung IF. A phase 1, randomized, double-blinded, placebo-controlled and dose-escalation study to evaluate the safety and immunogenicity of the intranasal DelNS1-nCoV-RBD LAIV for COVID-19 in healthy adults. Vaccines (Basel) 2023; 11(4): 723
CrossRef
Google scholar
|
[69] |
Schlake T, Thess A, Fotin-Mleczek M, Kallen KJ. Developing mRNA-vaccine technologies. RNA Biol 2012; 9(11): 1319–1330
CrossRef
Google scholar
|
[70] |
Lee LYY, Izzard L, Hurt AC. A review of DNA vaccines against influenza. Front Immunol 2018; 9: 1568
CrossRef
Google scholar
|
[71] |
Smith TRF, Patel A, Ramos S, Elwood D, Zhu X, Yan J, Gary EN, Walker SN, Schultheis K, Purwar M, Xu Z, Walters J, Bhojnagarwala P, Yang M, Chokkalingam N, Pezzoli P, Parzych E, Reuschel EL, Doan A, Tursi N, Vasquez M, Choi J, Tello-Ruiz E, Maricic I, Bah MA, Wu Y, Amante D, Park DH, Dia Y, Ali AR, Zaidi FI, Generotti A, Kim KY, Herring TA, Reeder S, Andrade VM, Buttigieg K, Zhao G, Wu JM, Li D, Bao L, Liu J, Deng W, Qin C, Brown AS, Khoshnejad M, Wang N, Chu J, Wrapp D, McLellan JS, Muthumani K, Wang B, Carroll MW, Kim JJ, Boyer J, Kulp DW, Humeau LMPF, Weiner DB, Broderick KE. Immunogenicity of a DNA vaccine candidate for COVID-19. Nat Commun 2020; 11(1): 2601
CrossRef
Google scholar
|
[72] |
Chavda VP, Pandya R, Apostolopoulos V. DNA vaccines for SARS-CoV-2: toward third-generation vaccination era. Expert Rev Vaccines 2021; 20(12): 1549–1560
CrossRef
Google scholar
|
[73] |
Polack FP, Thomas SJ, Kitchin N, Absalon J, Gurtman A, Lockhart S, Perez JL, Pérez Marc G, Moreira ED, Zerbini C, Bailey R, Swanson KA, Roychoudhury S, Koury K, Li P, Kalina WV, Cooper D, Frenck RW Jr, Hammitt LL, Türeci Ö, Nell H, Schaefer A, Ünal S, Tresnan DB, Mather S, Dormitzer PR, Şahin U, Jansen KU, Gruber WC; C4591001 Clinical Trial Group. Safety and efficacy of the BNT162b2 mRNA Covid-19 vaccine. N Engl J Med 2020; 383(27): 2603–2615
CrossRef
Google scholar
|
[74] |
An D, Frassetto A, Jacquinet E, Eybye M, Milano J, DeAntonis C, Nguyen V, Laureano R, Milton J, Sabnis S, Lukacs CM, Guey LT. Long-term efficacy and safety of mRNA therapy in two murine models of methylmalonic acidemia. EBioMedicine 2019; 45: 519–528
CrossRef
Google scholar
|
[75] |
Silveira MM, Moreira GMSG, Mendonça M. DNA vaccines against COVID-19: perspectives and challenges. Life Sci 2021; 267: 118919
CrossRef
Google scholar
|
[76] |
Hanke T. New vector and vaccine platforms: mRNA, DNA, viral vectors. Curr Opin HIV AIDS 2022; 17(6): 338–344
CrossRef
Google scholar
|
[77] |
Rojas-Pérez-Ezquerra P, Crespo Quirós J, Tornero Molina P, Baeza Ochoa de Ocáriz ML, Zubeldia Ortuño JM. Safety of new mRNA vaccines against COVID-19 in severely allergic patients. J Investig Allergol Clin Immunol 2021; 31(2): 180–181
CrossRef
Google scholar
|
[78] |
Fathizadeh H, Afshar S, Masoudi MR, Gholizadeh P, Asgharzadeh M, Ganbarov K, Köse Ş, Yousefi M, Kafil HS. SARS-CoV-2 (Covid-19) vaccines structure, mechanisms and effectiveness: a review. Int J Biol Macromol 2021; 188: 740–750
CrossRef
Google scholar
|
[79] |
Tebas P, Yang S, Boyer JD, Reuschel EL, Patel A, Christensen-Quick A, Andrade VM, Morrow MP, Kraynyak K, Agnes J, Purwar M, Sylvester A, Pawlicki J, Gillespie E, Maricic I, Zaidi FI, Kim KY, Dia Y, Frase D, Pezzoli P, Schultheis K, Smith TRF, Ramos SJ, McMullan T, Buttigieg K, Carroll MW, Ervin J, Diehl MC, Blackwood E, Mammen MP, Lee J, Dallas MJ, Brown AS, Shea JE, Kim JJ, Weiner DB, Broderick KE, Humeau LM. Safety and immunogenicity of INO-4800 DNA vaccine against SARS-CoV-2: a preliminary report of an open-label, phase 1 clinical trial. EClinicalMedicine 2021; 31: 100689
CrossRef
Google scholar
|
[80] |
Khobragade A, Bhate S, Ramaiah V, Deshpande S, Giri K, Phophle H, Supe P, Godara I, Revanna R, Nagarkar R, Sanmukhani J, Dey A, Rajanathan TMC, Kansagra K, Koradia P; ZyCoV-D phase 3 Study Investigator Group. Efficacy, safety, and immunogenicity of the DNA SARS-CoV-2 vaccine (ZyCoV-D): the interim efficacy results of a phase 3, randomised, double-blind, placebo-controlled study in India. Lancet 2022; 399(10332): 1313–1321
CrossRef
Google scholar
|
[81] |
Momin T, Kansagra K, Patel H, Sharma S, Sharma B, Patel J, Mittal R, Sanmukhani J, Maithal K, Dey A, Chandra H, Rajanathan CT, Pericherla HP, Kumar P, Narkhede A, Parmar D. Safety and immunogenicity of a DNA SARS-CoV-2 vaccine (ZyCoV-D): results of an open-label, non-randomized phase I part of phase I/II clinical study by intradermal route in healthy subjects in India. EClinicalMedicine 2021; 38: 101020
CrossRef
Google scholar
|
[82] |
Sheridan C. First COVID-19 DNA vaccine approved, others in hot pursuit. Nat Biotechnol 2021; 39(12): 1479–1482
CrossRef
Google scholar
|
[83] |
Li L, Petrovsky N. Molecular mechanisms for enhanced DNA vaccine immunogenicity. Expert Rev Vaccines 2016; 15(3): 313–329
CrossRef
Google scholar
|
[84] |
Shafaati M, Saidijam M, Soleimani M, Hazrati F, Mirzaei R, Amirheidari B, Tanzadehpanah H, Karampoor S, Kazemi S, Yavari B, Mahaki H, Safaei M, Rahbarizadeh F, Samadi P, Ahmadyousefi Y. A brief review on DNA vaccines in the era of COVID-19. Future Virol 2022; 17(1): 49–66
CrossRef
Google scholar
|
[85] |
Silveira MM, Oliveira TL, Schuch RA, McBride AJA, Dellagostin OA, Hartwig DD. DNA vaccines against leptospirosis: a literature review. Vaccine 2017; 35(42): 5559–5567
CrossRef
Google scholar
|
[86] |
Li M, Wang H, Tian L, Pang Z, Yang Q, Huang T, Fan J, Song L, Tong Y, Fan H. COVID-19 vaccine development: milestones, lessons and prospects. Signal Transduct Target Ther 2022; 7(1): 146
CrossRef
Google scholar
|
[87] |
Okamura S, Ebina H. Could live attenuated vaccines better control COVID-19?. Vaccine 2021; 39(39): 5719–5726
CrossRef
Google scholar
|
[88] |
Minor PD. Live attenuated vaccines: historical successes and current challenges. Virology 2015; 479-480: 379–392
CrossRef
Google scholar
|
[89] |
Wang Y, Yang C, Song Y, Coleman JR, Stawowczyk M, Tafrova J, Tasker S, Boltz D, Baker R, Garcia L, Seale O, Kushnir A, Wimmer E, Mueller S. Scalable live-attenuated SARS-CoV-2 vaccine candidate demonstrates preclinical safety and efficacy. Proc Natl Acad Sci USA 2021; 118(29): e2102775118
CrossRef
Google scholar
|
[90] |
Wang R, Zhang Q, Ge J, Ren W, Zhang R, Lan J, Ju B, Su B, Yu F, Chen P, Liao H, Feng Y, Li X, Shi X, Zhang Z, Zhang F, Ding Q, Zhang T, Wang X, Zhang L. Analysis of SARS-CoV-2 variant mutations reveals neutralization escape mechanisms and the ability to use ACE2 receptors from additional species. Immunity 2021; 54(7): 1611–1621.e5
CrossRef
Google scholar
|
[91] |
Li X, Wang W, Zhao X, Zai J, Zhao Q, Li Y, Chaillon A. Transmission dynamics and evolutionary history of 2019-nCoV. J Med Virol 2020; 92(5): 501–511
CrossRef
Google scholar
|
[92] |
Mlcochova P, Kemp SA, Dhar MS, Papa G, Meng B, Ferreira IATM, Datir R, Collier DA, Albecka A, Singh S, Pandey R, Brown J, Zhou J, Goonawardane N, Mishra S, Whittaker C, Mellan T, Marwal R, Datta M, Sengupta S, Ponnusamy K, Radhakrishnan VS, Abdullahi A, Charles O, Chattopadhyay P, Devi P, Caputo D, Peacock T, Wattal C, Goel N, Satwik A, Vaishya R, Agarwal M; Indian SARS-CoV-2 Genomics Consortium (INSACOG); Genotype to Phenotype Japan (G2P-Japan) Consortium; CITIID-NIHR BioResource COVID-19 Collaboration; Mavousian A, Lee JH, Bassi J, Silacci-Fegni C, Saliba C, Pinto D, Irie T, Yoshida I, Hamilton WL, Sato K, Bhatt S, Flaxman S, James LC, Corti D, Piccoli L, Barclay WS, Rakshit P, Agrawal A, Gupta RK. SARS-CoV-2 B.1.617.2 Delta variant replication and immune evasion. Nature 2021; 599(7883): 114–119
CrossRef
Google scholar
|
[93] |
Huai Luo C, Paul Morris C, Sachithanandham J, Amadi A, Gaston DC, Li M, Swanson NJ, Schwartz M, Klein EY, Pekosz A, Mostafa HH. Infection with the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) delta variant is associated with higher recovery of infectious virus compared to the Alpha variant in both unvaccinated and vaccinated individuals. Clin Infect Dis 2022; 75(1): e715–e725
CrossRef
Google scholar
|
[94] |
WHO. SARS-CoV-2 Variants of Concern and Variants of Interest, updated 31 May 2021. 2021. Available at the website of WHO
|
[95] |
WHO. Classification of Omicron (B.1.1.529): SARS-CoV-2 variant of concern. 2021. Available at the website of WHO
|
[96] |
Pulliam JRC, van Schalkwyk C, Govender N, von Gottberg A, Cohen C, Groome MJ, Dushoff J, Mlisana K, Moultrie H. Increased risk of SARS-CoV-2 reinfection associated with emergence of Omicron in South Africa. Science 2022; 376(6593): eabn4947
CrossRef
Google scholar
|
[97] |
Chen J, Wang R, Gilby NB, Wei GW. Omicron variant (B.1.1.529): infectivity, vaccine breakthrough, and antibody resistance. J Chem Inf Model 2022; 62(2): 412–422
CrossRef
Google scholar
|
[98] |
LyngseFPKirkeby CTDenwoodMChristiansenLEMølbak KMøllerCH. Transmission of SARS-CoV-2 Omicron VOC subvariants BA.1 and BA.2: evidence from Danish households. medRxiv 2022; 2022.01.28.22270044 doi:10.1101/2022.01.28.22270044
|
[99] |
Bowen JE, Addetia A, Dang HV, Stewart C, Brown JT, Sharkey WK, Sprouse KR, Walls AC, Mazzitelli IG, Logue JK, Franko NM, Czudnochowski N, Powell AE, Dellota E Jr, Ahmed K, Ansari AS, Cameroni E, Gori A, Bandera A, Posavad CM, Dan JM, Zhang Z, Weiskopf D, Sette A, Crotty S, Iqbal NT, Corti D, Geffner J, Snell G, Grifantini R, Chu HY, Veesler D. Omicron spike function and neutralizing activity elicited by a comprehensive panel of vaccines. Science 2022; 377(6608): 890–894
CrossRef
Google scholar
|
[100] |
Ciuffreda L, Lorenzo-Salazar JM, García-Martínez de Artola D, Gil-Campesino H, Alcoba-Florez J, Rodríguez-Pérez H, Íñigo-Campos A, Salas-Hernández J, Rodríguez-Nuñez J, Muñoz-Barrera A, Valenzuela-Fernández A, Díez-Gil O, González-Montelongo R, Flores C. Reinfection rate and disease severity of the BA.5 Omicron SARS-CoV-2 lineage compared to previously circulating variants of concern in the Canary Islands (Spain). Emerg Microbes Infect 2023; 12(1): 2202281
CrossRef
Google scholar
|
[101] |
Yue C, Song W, Wang L, Jian F, Chen X, Gao F, Shen Z, Wang Y, Wang X, Cao Y. ACE2 binding and antibody evasion in enhanced transmissibility of XBB.1.5. Lancet Infect Dis 2023; 23(3): 278–280
CrossRef
Google scholar
|
[102] |
Varghese R, Kumar D, Sharma R. Global threat from novel SARS-CoV-2 variants, BF.7, XBB.1.5, BQ.1, and BQ.1.1: variants of concern?. Hum Cell 2023; 36(3): 1218–1221
CrossRef
Google scholar
|
[103] |
Domingo E, García-Crespo C, Lobo-Vega R, Perales C. Mutation rates, mutation frequencies, and proofreading-repair activities in RNA virus genetics. Viruses 2021; 13(9): 1882
CrossRef
Google scholar
|
[104] |
Chen J, Wang R, Wang M, Wei GW. Mutations strengthened SARS-CoV-2 infectivity. J Mol Biol 2020; 432(19): 5212–5226
CrossRef
Google scholar
|
[105] |
Lucas M, Karrer U, Lucas A, Klenerman P. Viral escape mechanisms–escapology taught by viruses. Int J Exp Pathol 2001; 82(5): 269–286
CrossRef
Google scholar
|
[106] |
Muik A, Wallisch AK, Sänger B, Swanson KA, Mühl J, Chen W, Cai H, Maurus D, Sarkar R, TüreciÖ, Dormitzer PR, Şahin U. Neutralization of SARS-CoV-2 lineage B.1.1.7 pseudovirus by BNT162b2 vaccine-elicited human sera. Science 2021; 371(6534): 1152–1153
CrossRef
Google scholar
|
[107] |
Jangra S, Ye C, Rathnasinghe R, Stadlbauer D; Personalized Virology Initiative study group; Krammer F, Simon V, Martinez-Sobrido L, García-Sastre A, Schotsaert M. SARS-CoV-2 spike E484K mutation reduces antibody neutralisation. Lancet Microbe 2021; 2(7): e283–e284
CrossRef
Google scholar
|
[108] |
Wibmer CK, Ayres F, Hermanus T, Madzivhandila M, Kgagudi P, Oosthuysen B, Lambson BE, de Oliveira T, Vermeulen M, van der Berg K, Rossouw T, Boswell M, Ueckermann V, Meiring S, von Gottberg A, Cohen C, Morris L, Bhiman JN, Moore PL. SARS-CoV-2 501Y.V2 escapes neutralization by South African COVID-19 donor plasma. Nat Med 2021; 27(4): 622–625
CrossRef
Google scholar
|
[109] |
Andrews N, Stowe J, Kirsebom F, Toffa S, Rickeard T, Gallagher E, Gower C, Kall M, Groves N, O’Connell AM, Simons D, Blomquist PB, Zaidi A, Nash S, Iwani Binti Abdul Aziz N, Thelwall S, Dabrera G, Myers R, Amirthalingam G, Gharbia S, Barrett JC, Elson R, Ladhani SN, Ferguson N, Zambon M, Campbell CNJ, Brown K, Hopkins S, Chand M, Ramsay M, Lopez Bernal J. Covid-19 vaccine effectiveness against the Omicron (B.1.1.529) variant. N Engl J Med 2022; 386(16): 1532–1546
CrossRef
Google scholar
|
[110] |
Lyke KE, Atmar RL, Islas CD, Posavad CM, Szydlo D, Paul Chourdhury R, Deming ME, Eaton A, Jackson LA, Branche AR, El Sahly HM, Rostad CA, Martin JM, Johnston C, Rupp RE, Mulligan MJ, Brady RC, Frenck RW Jr, Bäcker M, Kottkamp AC, Babu TM, Rajakumar K, Edupuganti S, Dobrzynski D, Coler RN, Archer JI, Crandon S, Zemanek JA, Brown ER, Neuzil KM, Stephens DS, Post DJ, Nayak SU, Suthar MS, Roberts PC, Beigel JH, Montefiori DC; DMID 21-0012 Study Group. Rapid decline in vaccine-boosted neutralizing antibodies against SARS-CoV-2 Omicron variant. Cell Rep Med 2022; 3(7): 100679
CrossRef
Google scholar
|
[111] |
Volz E, Mishra S, Chand M, Barrett JC, Johnson R, Geidelberg L, Hinsley WR, Laydon DJ, Dabrera G, O'TooleÁ, Amato R, Ragonnet-Cronin M, Harrison I, Jackson B, Ariani CV, Boyd O, Loman NJ, McCrone JT, Gonçalves S, Jorgensen D, Myers R, Hill V, Jackson DK, Gaythorpe K, Groves N, Sillitoe J, Kwiatkowski DP; COVID-19 Genomics UK (COG-UK) consortium; Flaxman S, Ratmann O, Bhatt S, Hopkins S, Gandy A, Rambaut A, Ferguson NM. Assessing transmissibility of SARS-CoV-2 lineage B.1.1.7 in England. Nature 2021; 593(7858): 266–269
CrossRef
Google scholar
|
[112] |
Shen X, Tang H, McDanal C, Wagh K, Fischer W, Theiler J, Yoon H, Li D, Haynes BF, Sanders KO, Gnanakaran S, Hengartner N, Pajon R, Smith G, Glenn GM, Korber B, Montefiori DC. SARS-CoV-2 variant B.1.1.7 is susceptible to neutralizing antibodies elicited by ancestral spike vaccines. Cell Host Microbe 2021; 29(4): 529–539.e3
CrossRef
Google scholar
|
[113] |
Tegally H, Wilkinson E, Giovanetti M, Iranzadeh A, Fonseca V, Giandhari J, Doolabh D, Pillay S, San EJ, Msomi N, Mlisana K, von Gottberg A, Walaza S, Allam M, Ismail A, Mohale T, Glass AJ, Engelbrecht S, Van Zyl G, Preiser W, Petruccione F, Sigal A, Hardie D, Marais G, Hsiao NY, Korsman S, Davies MA, Tyers L, Mudau I, York D, Maslo C, Goedhals D, Abrahams S, Laguda-Akingba O, Alisoltani-Dehkordi A, Godzik A, Wibmer CK, Sewell BT, Lourenço J, Alcantara LCJ, Kosakovsky Pond SL, Weaver S, Martin D, Lessells RJ, Bhiman JN, Williamson C, de Oliveira T. Detection of a SARS-CoV-2 variant of concern in South Africa. Nature 2021; 592(7854): 438–443
CrossRef
Google scholar
|
[114] |
Cele S, Gazy I, Jackson L, Hwa SH, Tegally H, Lustig G, Giandhari J, Pillay S, Wilkinson E, Naidoo Y, Karim F, Ganga Y, Khan K, Bernstein M, Balazs AB, Gosnell BI, Hanekom W, Moosa MS; Network for Genomic Surveillance in South Africa; COMMIT-KZN Team; Lessells RJ, de Oliveira T, Sigal A. Escape of SARS-CoV-2 501Y.V2 from neutralization by convalescent plasma. Nature 2021; 593(7857): 142–146
CrossRef
Google scholar
|
[115] |
Faria NR, Mellan TA, Whittaker C, Claro IM, Candido DDS, Mishra S, Crispim MAE, Sales FCS, Hawryluk I, McCrone JT, Hulswit RJG, Franco LAM, Ramundo MS, de Jesus JG, Andrade PS, Coletti TM, Ferreira GM, Silva CAM, Manuli ER, Pereira RHM, Peixoto PS, Kraemer MUG, Gaburo N Jr, Camilo CDC, Hoeltgebaum H, Souza WM, Rocha EC, de Souza LM, de Pinho MC, Araujo LJT, Malta FSV, de Lima AB, Silva JDP, Zauli DAG, Ferreira ACS, Schnekenberg RP, Laydon DJ, Walker PGT, Schlüter HM, Dos Santos ALP, Vidal MS, Del Caro VS, Filho RMF, Dos Santos HM, Aguiar RS, Proença-Modena JL, Nelson B, Hay JA, Monod M, Miscouridou X, Coupland H, Sonabend R, Vollmer M, Gandy A, Prete CA Jr, Nascimento VH, Suchard MA, Bowden TA, Pond SLK, Wu CH, Ratmann O, Ferguson NM, Dye C, Loman NJ, Lemey P, Rambaut A, Fraiji NA, Carvalho MDPSS, Pybus OG, Flaxman S, Bhatt S, Sabino EC. Genomics and epidemiology of the P.1 SARS-CoV-2 lineage in Manaus, Brazil. Science 2021; 372(6544): 815–821
CrossRef
Google scholar
|
[116] |
Dejnirattisai W, Zhou D, Supasa P, Liu C, Mentzer AJ, Ginn HM, Zhao Y, Duyvesteyn HME, Tuekprakhon A, Nutalai R, Wang B, López-Camacho C, Slon-Campos J, Walter TS, Skelly D, Costa Clemens SA, Naveca FG, Nascimento V, Nascimento F, Fernandes da Costa C, Resende PC, Pauvolid-Correa A, Siqueira MM, Dold C, Levin R, Dong T, Pollard AJ, Knight JC, Crook D, Lambe T, Clutterbuck E, Bibi S, Flaxman A, Bittaye M, Belij-Rammerstorfer S, Gilbert SC, Carroll MW, Klenerman P, Barnes E, Dunachie SJ, Paterson NG, Williams MA, Hall DR, Hulswit RJG, Bowden TA, Fry EE, Mongkolsapaya J, Ren J, Stuart DI, Screaton GR. Antibody evasion by the P.1 strain of SARS-CoV-2. Cell 2021; 184(11): 2939–2954.e9
CrossRef
Google scholar
|
[117] |
Sheikh A, McMenamin J, Taylor B, Robertson C; Public Health Scotland, the EAVE II Collaborators. SARS-CoV-2 Delta VOC in Scotland: demographics, risk of hospital admission, and vaccine effectiveness. Lancet 2021; 397(10293): 2461–2462
CrossRef
Google scholar
|
[118] |
Lopez Bernal J, Andrews N, Gower C, Gallagher E, Simmons R, Thelwall S, Stowe J, Tessier E, Groves N, Dabrera G, Myers R, Campbell CNJ, Amirthalingam G, Edmunds M, Zambon M, Brown KE, Hopkins S, Chand M, Ramsay M. Effectiveness of Covid-19 vaccines against the B.1.617.2 (Delta) variant. N Engl J Med 2021; 385(7): 585–594
CrossRef
Google scholar
|
[119] |
Nguyen NN, Houhamdi L, Hoang VT, Stoupan D, Fournier PE, Raoult D, Colson P, Gautret P. High rate of reinfection with the SARS-CoV-2 Omicron variant. J Infect 2022; 85(2): 174–211
CrossRef
Google scholar
|
[120] |
Lewnard JA, Hong VX, Patel MM, Kahn R, Lipsitch M, Tartof SY. Clinical outcomes associated with SARS-CoV-2 Omicron (B.1.1.529) variant and BA.1/BA.1.1 or BA.2 subvariant infection in Southern California. Nat Med 2022; 28(9): 1933–1943
CrossRef
Google scholar
|
[121] |
Chen J, Wei GW. Omicron BA.2 (B.1.1.529.2): high potential for becoming the next dominant variant. J Phys Chem Lett 2022; 13(17): 3840–3849
CrossRef
Google scholar
|
[122] |
Zeng B, Gao L, Zhou Q, Yu K, Sun F. Effectiveness of COVID-19 vaccines against SARS-CoV-2 variants of concern: a systematic review and meta-analysis. BMC Med 2022; 20(1): 200
CrossRef
Google scholar
|
[123] |
Liu Y, Wang Z, Zhuang X, Zhang S, Chen Z, Zou Y, Sheng J, Li T, Tai W, Yu J, Wang Y, Zhang Z, Chen Y, Tong L, Yu X, Wu L, Chen D, Zhang R, Jin N, Shen W, Zhao J, Tian M, Wang X, Cheng G. Inactivated vaccine-elicited potent antibodies can broadly neutralize SARS-CoV-2 circulating variants. Nat Commun 2023; 14(1): 2179
CrossRef
Google scholar
|
[124] |
Shariare MH, Parvez MAK, Karikas GA, Kazi M. The growing complexity of COVID-19 drug and vaccine candidates: challenges and critical transitions. J Infect Public Health 2021; 14(2): 214–220
CrossRef
Google scholar
|
[125] |
Cheng SM, Mok CKP, Chan KC, Ng SS, Lam BH, Luk LL, Ko FW, Chen C, Yiu K, Li JK, Chan KK, Tsang LC, Poon LL, Hui DS, Peiris M. SARS-CoV-2 Omicron variant BA.2 neutralisation in sera of people with Comirnaty or CoronaVac vaccination, infection or breakthrough infection, Hong Kong, 2020 to 2022. Euro Surveill 2022; 27(18): 2200178
CrossRef
Google scholar
|
[126] |
McMenamin ME, Nealon J, Lin Y, Wong JY, Cheung JK, Lau EHY, Wu P, Leung GM, Cowling BJ. Vaccine effectiveness of one, two, and three doses of BNT162b2 and CoronaVac against COVID-19 in Hong Kong: a population-based observational study. Lancet Infect Dis 2022; 22(10): 1435–1443
CrossRef
Google scholar
|
[127] |
Mok CKP, Cohen CA, Cheng SMS, Chen C, Kwok KO, Yiu K, Chan TO, Bull M, Ling KC, Dai Z, Ng SS, Lui GC, Wu C, Amarasinghe GK, Leung DW, Wong SYS, Valkenburg SA, Peiris M, Hui DS. Comparison of the immunogenicity of BNT162b2 and CoronaVac COVID-19 vaccines in Hong Kong. Respirology 2022; 27(4): 301–310
CrossRef
Google scholar
|
[128] |
Lin DY, Gu Y, Xu Y, Wheeler B, Young H, Sunny SK, Moore Z, Zeng D. Association of primary and booster vaccination and prior infection with SARS-CoV-2 infection and severe COVID-19 outcomes. JAMA 2022; 328(14): 1415–1426
CrossRef
Google scholar
|
[129] |
Ng OT, Marimuthu K, Lim N, Lim ZQ, Thevasagayam NM, Koh V, Chiew CJ, Ma S, Koh M, Low PY, Tan SB, Ho J, Maurer-Stroh S, Lee VJM, Leo YS, Tan KB, Cook AR, Tan CC. Analysis of COVID-19 incidence and severity among adults vaccinated with 2-dose mRNA COVID-19 or inactivated SARS-CoV-2 vaccines with and without boosters in Singapore. JAMA Netw Open 2022; 5(8): e2228900
CrossRef
Google scholar
|
[130] |
Garcia-Beltran WF, St Denis KJ, Hoelzemer A, Lam EC, Nitido AD, Sheehan ML, Berrios C, Ofoman O, Chang CC, Hauser BM, Feldman J, Roederer AL, Gregory DJ, Poznansky MC, Schmidt AG, Iafrate AJ, Naranbhai V, Balazs AB. mRNA-based COVID-19 vaccine boosters induce neutralizing immunity against SARS-CoV-2 Omicron variant. Cell 2022; 185(3): 457–466.e4
CrossRef
Google scholar
|
[131] |
Atmar RL, Lyke KE, Deming ME, Jackson LA, Branche AR, El Sahly HM, Rostad CA, Martin JM, Johnston C, Rupp RE, Mulligan MJ, Brady RC, Frenck RW Jr, Bäcker M, Kottkamp AC, Babu TM, Rajakumar K, Edupuganti S, Dobrzynski D, Coler RN, Posavad CM, Archer JI, Crandon S, Nayak SU, Szydlo D, Zemanek JA, Dominguez Islas CP, Brown ER, Suthar MS, McElrath MJ, McDermott AB, O’Connell SE, Montefiori DC, Eaton A, Neuzil KM, Stephens DS, Roberts PC, Beigel JH; for the DMID 21-0012 Study Group. Homologous and heterologous Covid-19 booster vaccinations. N Engl J Med 2022; 386(11): 1046–1057
CrossRef
Google scholar
|
[132] |
Zhao X, Zhang R, Qiao S, Wang X, Zhang W, Ruan W, Dai L, Han P, Gao GF. Omicron SARS-CoV-2 neutralization from inactivated and ZF2001 vaccines. N Engl J Med 2022; 387(3): 277–280
CrossRef
Google scholar
|
[133] |
Crawford KHD, Dingens AS, Eguia R, Wolf CR, Wilcox N, Logue JK, Shuey K, Casto AM, Fiala B, Wrenn S, Pettie D, King NP, Greninger AL, Chu HY, Bloom JD. Dynamics of neutralizing antibody titers in the months after severe acute respiratory syndrome coronavirus 2 infection. J Infect Dis 2021; 223(2): 197–205
CrossRef
Google scholar
|
[134] |
Regev-Yochay G, Gonen T, Gilboa M, Mandelboim M, Indenbaum V, Amit S, Meltzer L, Asraf K, Cohen C, Fluss R, Biber A, Nemet I, Kliker L, Joseph G, Doolman R, Mendelson E, Freedman LS, Harats D, Kreiss Y, Lustig Y. Efficacy of a fourth dose of Covid-19 mRNA vaccine against Omicron. N Engl J Med 2022; 386(14): 1377–1380
CrossRef
Google scholar
|
[135] |
Teles M, Connolly CM, Frey S, Chiang TP, Alejo JL, Boyarsky BJ, Shah AA, Albayda J, Christopher-Stine L, Werbel WA, Segev DL, Paik JJ. Attenuated response to fourth dose SARS-CoV-2 vaccination in patients with autoimmune disease: a case series. Ann Rheum Dis 2022; 81(5): 738–740
CrossRef
Google scholar
|
[136] |
Jara A, Undurraga EA, Zubizarreta JR, González C, Pizarro A, Acevedo J, Leo K, Paredes F, Bralic T, Vergara V, Mosso M, Leon F, Parot I, Leighton P, Suárez P, Rios JC, García-Escorza H, Araos R. Effectiveness of homologous and heterologous booster doses for an inactivated SARS-CoV-2 vaccine: a large-scale prospective cohort study. Lancet Glob Health 2022; 10(6): e798–e806
CrossRef
Google scholar
|
[137] |
Zhang Y, Tan W, Lou Z, Huang B, Zhou W, Zhao Y, Zhang J, Liang H, Li N, Zhu X, Ding L, Guo Y, He Z, He Y, Wang Z, Ma B, Ma M, Zhao S, Chang Z, Zhao X, Zheng X, Wu G, Wang H, Yang X. Immunogenicity evaluating of the multivalent COVID-19 inactivated vaccine against the SARS-CoV-2 variants. Vaccines (Basel) 2022; 10(6): 956
CrossRef
Google scholar
|
[138] |
Rutten L, Lai YT, Blokland S, Truan D, Bisschop IJM, Strokappe NM, Koornneef A, van Manen D, Chuang GY, Farney SK, Schuitemaker H, Kwong PD, Langedijk JPM. A universal approach to optimize the folding and stability of prefusion-closed HIV-1 envelope trimers. Cell Rep 2018; 23(2): 584–595
CrossRef
Google scholar
|
[139] |
Qiao H, Pelletier SL, Hoffman L, Hacker J, Armstrong RT, White JM. Specific single or double proline substitutions in the “spring-loaded” coiled-coil region of the influenza hemagglutinin impair or abolish membrane fusion activity. J Cell Biol 1998; 141(6): 1335–1347
CrossRef
Google scholar
|
[140] |
Krarup A, Truan D, Furmanova-Hollenstein P, Bogaert L, Bouchier P, Bisschop IJM, Widjojoatmodjo MN, Zahn R, Schuitemaker H, McLellan JS, Langedijk JPM. A highly stable prefusion RSV F vaccine derived from structural analysis of the fusion mechanism. Nat Commun 2015; 6(1): 8143
CrossRef
Google scholar
|
[141] |
Hastie KM, Zandonatti MA, Kleinfelter LM, Heinrich ML, Rowland MM, Chandran K, Branco LM, Robinson JE, Garry RF, Saphire EO. Structural basis for antibody-mediated neutralization of Lassa virus. Science 2017; 356(6341): 923–928
CrossRef
Google scholar
|
[142] |
Pallesen J, Wang N, Corbett KS, Wrapp D, Kirchdoerfer RN, Turner HL, Cottrell CA, Becker MM, Wang L, Shi W, Kong WP, Andres EL, Kettenbach AN, Denison MR, Chappell JD, Graham BS, Ward AB, McLellan JS. Immunogenicity and structures of a rationally designed prefusion MERS-CoV spike antigen. Proc Natl Acad Sci U S A 2017; 114(35): E7348–E7357
CrossRef
Google scholar
|
[143] |
Hsieh CL, Goldsmith JA, Schaub JM, DiVenere AM, Kuo HC, Javanmardi K, Le KC, Wrapp D, Lee AG, Liu Y, Chou CW, Byrne PO, Hjorth CK, Johnson NV, Ludes-Meyers J, Nguyen AW, Park J, Wang N, Amengor D, Lavinder JJ, Ippolito GC, Maynard JA, Finkelstein IJ, McLellan JS. Structure-based design of prefusion-stabilized SARS-CoV-2 spikes. Science 2020; 369(6510): 1501–1505
CrossRef
Google scholar
|
[144] |
Cao Y, Yisimayi A, Bai Y, Huang W, Li X, Zhang Z, Yuan T, An R, Wang J, Xiao T, Du S, Ma W, Song L, Li Y, Li X, Song W, Wu J, Liu S, Li X, Zhang Y, Su B, Guo X, Wei Y, Gao C, Zhang N, Zhang Y, Dou Y, Xu X, Shi R, Lu B, Jin R, Ma Y, Qin C, Wang Y, Feng Y, Xiao J, Xie XS. Humoral immune response to circulating SARS-CoV-2 variants elicited by inactivated and RBD-subunit vaccines. Cell Res 2021; 31(7): 732–741
CrossRef
Google scholar
|
[145] |
Xu K, Gao P, Liu S, Lu S, Lei W, Zheng T, Liu X, Xie Y, Zhao Z, Guo S, Tang C, Yang Y, Yu W, Wang J, Zhou Y, Huang Q, Liu C, An Y, Zhang R, Han Y, Duan M, Wang S, Yang C, Wu C, Liu X, She G, Liu Y, Zhao X, Xu K, Qi J, Wu G, Peng X, Dai L, Wang P, Gao GF. Protective prototype-Beta and Delta-Omicron chimeric RBD-dimer vaccines against SARS-CoV-2. Cell 2022; 185(13): 2265–2278.e14
CrossRef
Google scholar
|
[146] |
Kaabi NA, Yang YK, Du LF, Xu K, Shao S, Liang Y, Kang Y, Su JG, Zhang J, Yang T, Hussein S, ElDein MS, Yang SS, Lei W, Gao XJ, Jiang Z, Cong X, Tan Y, Wang H, Li M, Mekki HM, Zaher W, Mahmoud S, Zhang X, Qu C, Liu DY, Zhang J, Yang M, Eltantawy I, Hou JW, Lei ZH, Xiao P, Wang ZN, Yin JL, Mao XY, Zhang J, Qu L, Zhang YT, Yang XM, Wu G, Li QM. Safety and immunogenicity of a hybrid-type vaccine booster in BBIBP-CorV recipients in a randomized phase 2 trial. Nat Commun 2022; 13(1): 3654
CrossRef
Google scholar
|
[147] |
Liang JG, Su D, Song TZ, Zeng Y, Huang W, Wu J, Xu R, Luo P, Yang X, Zhang X, Luo S, Liang Y, Li X, Huang J, Wang Q, Huang X, Xu Q, Luo M, Huang A, Luo D, Zhao C, Yang F, Han JB, Zheng YT, Liang P. S-Trimer, a COVID-19 subunit vaccine candidate, induces protective immunity in nonhuman primates. Nat Commun 2021; 12(1): 1346
CrossRef
Google scholar
|
[148] |
Zhao Y, Ni W, Liang S, Dong L, Xiang M, Cai Z, Niu D, Zhang Q, Wang D, Zheng Y, Zhang Z, Zhou D, Guo W, Pan Y, Wu X, Yang Y, Jing Z, Jiang Y, Chen Y, Yan H, Zhou Y, Xu K, Lan K. Vaccination with Span, an antigen guided by SARS-CoV-2 S protein evolution, protects against challenge with viral variants in mice. Sci Transl Med 2023; 15(677): eabo3332
CrossRef
Google scholar
|
[149] |
He C, Yang J, Hong W, Chen Z, Peng D, Lei H, Alu A, He X, Bi Z, Jiang X, Jia G, Yang Y, Zhou Y, Yu W, Tang C, Huang Q, Yang M, Li B, Li J, Wang J, Que H, Chen L, Ren W, Wan D, Li J, Wang W, Shen G, Zhao Z, Yang L, Yang J, Wang Z, Su Z, Wei Y, Cen X, Tanaka Y, Song X, Lu S, Peng X, Lu G, Wei X. A self-assembled trimeric protein vaccine induces protective immunity against Omicron variant. Nat Commun 2022; 13(1): 5459
CrossRef
Google scholar
|
[150] |
Kanekiyo M, Wei CJ, Yassine HM, McTamney PM, Boyington JC, Whittle JRR, Rao SS, Kong WP, Wang L, Nabel GJ. Self-assembling influenza nanoparticle vaccines elicit broadly neutralizing H1N1 antibodies. Nature 2013; 499(7456): 102–106
CrossRef
Google scholar
|
[151] |
Jardine J, Julien JP, Menis S, Ota T, Kalyuzhniy O, McGuire A, Sok D, Huang PS, MacPherson S, Jones M, Nieusma T, Mathison J, Baker D, Ward AB, Burton DR, Stamatatos L, Nemazee D, Wilson IA, Schief WR. Rational HIV immunogen design to target specific germline B cell receptors. Science 2013; 340(6133): 711–716
CrossRef
Google scholar
|
[152] |
Yuan Y, Zhang X, Chen R, Li Y, Wu B, Li R, Zou F, Ma X, Wang X, Chen Q, Deng J, Zhang Y, Chen T, Lin Y, Yan S, Zhang X, Li C, Bu X, Peng Y, Ke C, Deng K, Pan T, He X, Zhang Y, Zhang H. A bivalent nanoparticle vaccine exhibits potent cross-protection against the variants of SARS-CoV-2. Cell Rep 2022; 38(3): 110256
CrossRef
Google scholar
|
[153] |
Ma X, Zou F, Yu F, Li R, Yuan Y, Zhang Y, Zhang X, Deng J, Chen T, Song Z, Qiao Y, Zhan Y, Liu J, Zhang J, Zhang X, Peng Z, Li Y, Lin Y, Liang L, Wang G, Chen Y, Chen Q, Pan T, He X, Zhang H. Nanoparticle vaccines based on the receptor binding domain (RBD) and heptad repeat (HR) of SARS-CoV-2 elicit robust protective immune responses. Immunity 2020; 53(6): 1315–1330.e9
CrossRef
Google scholar
|
[154] |
Sekimukai H, Iwata-Yoshikawa N, Fukushi S, Tani H, Kataoka M, Suzuki T, Hasegawa H, Niikura K, Arai K, Nagata N. Gold nanoparticle-adjuvanted S protein induces a strong antigen-specific IgG response against severe acute respiratory syndrome-related coronavirus infection, but fails to induce protective antibodies and limit eosinophilic infiltration in lungs. Microbiol Immunol 2020; 64(1): 33–51
CrossRef
Google scholar
|
[155] |
Tai W, Chai B, Feng S, Zhuang X, Ma J, Pang M, Pan L, Yang Z, Tian M, Cheng G. Development of a ferritin-based nanoparticle vaccine against the SARS-CoV-2 Omicron variant. Signal Transduct Target Ther 2022; 7(1): 173
CrossRef
Google scholar
|
[156] |
Sun W, He L, Zhang H, Tian X, Bai Z, Sun L, Yang L, Jia X, Bi Y, Luo T, Cheng G, Fan W, Liu W, Li J. The self-assembled nanoparticle-based trimeric RBD mRNA vaccine elicits robust and durable protective immunity against SARS-CoV-2 in mice. Signal Transduct Target Ther 2021; 6(1): 340
CrossRef
Google scholar
|
[157] |
Liu Z, Xu W, Xia S, Gu C, Wang X, Wang Q, Zhou J, Wu Y, Cai X, Qu D, Ying T, Xie Y, Lu L, Yuan Z, Jiang S. RBD-Fc-based COVID-19 vaccine candidate induces highly potent SARS-CoV-2 neutralizing antibody response. Signal Transduct Target Ther 2020; 5(1): 282
CrossRef
Google scholar
|
[158] |
Bale JB, Gonen S, Liu Y, Sheffler W, Ellis D, Thomas C, Cascio D, Yeates TO, Gonen T, King NP, Baker D. Accurate design of megadalton-scale two-component icosahedral protein complexes. Science 2016; 353(6297): 389–394
CrossRef
Google scholar
|
[159] |
Kang YF, Sun C, Sun J, Xie C, Zhuang Z, Xu HQ, Liu Z, Liu YH, Peng S, Yuan RY, Zhao JC, Zeng MS. Quadrivalent mosaic HexaPro-bearing nanoparticle vaccine protects against infection of SARS-CoV-2 variants. Nat Commun 2022; 13(1): 2674
CrossRef
Google scholar
|
[160] |
Walls AC, Miranda MC, Schäfer A, Pham MN, Greaney A, Arunachalam PS, Navarro MJ, Tortorici MA, Rogers K, O’Connor MA, Shirreff L, Ferrell DE, Bowen J, Brunette N, Kepl E, Zepeda SK, Starr T, Hsieh CL, Fiala B, Wrenn S, Pettie D, Sydeman C, Sprouse KR, Johnson M, Blackstone A, Ravichandran R, Ogohara C, Carter L, Tilles SW, Rappuoli R, Leist SR, Martinez DR, Clark M, Tisch R, O’Hagan DT, Van Der Most R, Van Voorhis WC, Corti D, McLellan JS, Kleanthous H, Sheahan TP, Smith KD, Fuller DH, Villinger F, Bloom J, Pulendran B, Baric RS, King NP, Veesler D. Elicitation of broadly protective sarbecovirus immunity by receptor-binding domain nanoparticle vaccines. Cell 2021; 184(21): 5432–5447.e16
CrossRef
Google scholar
|
[161] |
Eguia RT, Crawford KHD, Stevens-Ayers T, Kelnhofer-Millevolte L, Greninger AL, Englund JA, Boeckh MJ, Bloom JD. A human coronavirus evolves antigenically to escape antibody immunity. PLoS Pathog 2021; 17(4): e1009453
CrossRef
Google scholar
|
[162] |
Hsieh CL, Werner AP, Leist SR, Stevens LJ, Falconer E, Goldsmith JA, Chou CW, Abiona OM, West A, Westendorf K, Muthuraman K, Fritch EJ, Dinnon KH 3rd, Schäfer A, Denison MR, Chappell JD, Baric RS, Graham BS, Corbett KS, McLellan JS. Stabilized coronavirus spike stem elicits a broadly protective antibody. Cell Rep 2021; 37(5): 109929
CrossRef
Google scholar
|
[163] |
Hurlburt NK, Homad LJ, Sinha I, Jennewein MF, MacCamy AJ, Wan YH, Boonyaratanakornkit J, Sholukh AM, Jackson AM, Zhou P, Burton DR, Andrabi R, Ozorowski G, Ward AB, Stamatatos L, Pancera M, McGuire AT. Structural definition of a pan-sarbecovirus neutralizing epitope on the spike S2 subunit. Commun Biol 2022; 5(1): 342
CrossRef
Google scholar
|
[164] |
Bloom K, van den Berg F, Arbuthnot P. Self-amplifying RNA vaccines for infectious diseases. Gene Ther 2021; 28(3–4): 117–129
CrossRef
Google scholar
|
[165] |
Lavelle EC, Ward RW. Mucosal vaccines—fortifying the frontiers. Nat Rev Immunol 2022; 22(4): 236–250
CrossRef
Google scholar
|
[166] |
Dhama K, Dhawan M, Tiwari R, Emran TB, Mitra S, Rabaan AA, Alhumaid S, Alawi ZA, Al Mutair A. COVID-19 intranasal vaccines: current progress, advantages, prospects, and challenges. Hum Vaccin Immunother 2022; 18(5): 2045853
CrossRef
Google scholar
|
[167] |
Yu M, Zhu Y, Li Y, Chen Z, Li Z, Wang J, Li Z, Zhang F, Ding J. Design of a recombinant multivalent epitope vaccine based on SARS-CoV-2 and its variants in immunoinformatics approaches. Front Immunol 2022; 13(May): 884433
CrossRef
Google scholar
|
[168] |
Vangeel L, Chiu W, De Jonghe S, Maes P, Slechten B, Raymenants J, André E, Leyssen P, Neyts J, Jochmans D. Remdesivir, Molnupiravir and Nirmatrelvir remain active against SARS-CoV-2 Omicron and other variants of concern. Antiviral Res 2022; 198: 105252
CrossRef
Google scholar
|
[169] |
Tang B, He F, Liu D, He F, Wu T, Fang M, Niu Z, Wu Z, Xu D. AI-aided design of novel targeted covalent inhibitors against SARS-CoV-2. Biomolecules 2022; 12(6): 746
CrossRef
Google scholar
|
[170] |
Jin YH, Cai L, Cheng ZS, Cheng H, Deng T, Fan YP, Fang C, Huang D, Huang LQ, Huang Q, Han Y, Hu B, Hu F, Li BH, Li YR, Liang K, Lin LK, Luo LS, Ma J, Ma LL, Peng ZY, Pan YB, Pan ZY, Ren XQ, Sun HM, Wang Y, Wang YY, Weng H, Wei CJ, Wu DF, Xia J, Xiong Y, Xu HB, Yao XM, Yuan YF, Ye TS, Zhang XC, Zhang YW, Zhang YG, Zhang HM, Zhao Y, Zhao MJ, Zi H, Zeng XT, Wang YY, Wang XH; for the Zhongnan Hospital of Wuhan University Novel Coronavirus Management, Research Team, Evidence-Based Medicine Chapter of China International Exchange, Promotive Association for Medical, Health Care (CPAM). A rapid advice guideline for the diagnosis and treatment of 2019 novel coronavirus (2019-nCoV) infected pneumonia (standard version). Mil Med Res 2020; 7(1): 4
CrossRef
Google scholar
|
/
〈 | 〉 |