Discovery of small molecule degraders for modulating cell cycle

Liguo Wang, Zhouli Yang, Guangchen Li, Yongbo Liu, Chao Ai, Yu Rao

PDF(8154 KB)
PDF(8154 KB)
Front. Med. ›› 2023, Vol. 17 ›› Issue (5) : 823-854. DOI: 10.1007/s11684-023-1027-5
REVIEW

Discovery of small molecule degraders for modulating cell cycle

Author information +
History +

Abstract

The cell cycle is a complex process that involves DNA replication, protein expression, and cell division. Dysregulation of the cell cycle is associated with various diseases. Cyclin-dependent kinases (CDKs) and their corresponding cyclins are major proteins that regulate the cell cycle. In contrast to inhibition, a new approach called proteolysis-targeting chimeras (PROTACs) and molecular glues can eliminate both enzymatic and scaffold functions of CDKs and cyclins, achieving targeted degradation. The field of PROTACs and molecular glues has developed rapidly in recent years. In this article, we aim to summarize the latest developments of CDKs and cyclin protein degraders. The selectivity, application, validation and the current state of each CDK degrader will be overviewed. Additionally, possible methods are discussed for the development of degraders for CDK members that still lack them. Overall, this article provides a comprehensive summary of the latest advancements in CDK and cyclin protein degraders, which will be helpful for researchers working on this topic.

Keywords

PROTAC / molecular glue / degrader / cell cycle / CDK / cyclin

Cite this article

Download citation ▾
Liguo Wang, Zhouli Yang, Guangchen Li, Yongbo Liu, Chao Ai, Yu Rao. Discovery of small molecule degraders for modulating cell cycle. Front. Med., 2023, 17(5): 823‒854 https://doi.org/10.1007/s11684-023-1027-5

References

[1]
Malumbres M. Cyclin-dependent kinases. Genome Biol 2014; 15(6): 122
CrossRef Google scholar
[2]
Malumbres M, Barbacid M. Mammalian cyclin-dependent kinases. Trends Biochem Sci 2005; 30(11): 630–641
CrossRef Google scholar
[3]
Matthews HK, Bertoli C, de Bruin RAM. Cell cycle control in cancer. Nat Rev Mol Cell Biol 2022; 23(1): 74–88
CrossRef Google scholar
[4]
Lee MG, Nurse P. Cell cycle genes of the fission yeast. Sci Prog 1987; 71: 1–14
[5]
Russell P, Nurse P. Schizosaccharomyces pombe and Saccharomyces cerevisiae: a look at yeasts divided. Cell 1986; 45(6): 781–782
CrossRef Google scholar
[6]
Elledge SJ, Spottswood MR. A new human p34 protein kinase, CDK2, identified by complementation of a cdc28 mutation in Saccharomyces cerevisiae, is a homolog of Xenopus Eg1. EMBO J 1991; 10(9): 2653–2659
CrossRef Google scholar
[7]
Matsushime H, Ewen ME, Strom DK, Kato JY, Hanks SK, Roussel MF, Sherr CJ. Identification and properties of an atypical catalytic subunit (p34PSK-J3/cdk4) for mammalian D type G1 cyclins. Cell 1992; 71(2): 323–334
CrossRef Google scholar
[8]
Xiong Y, Zhang H, Beach D. D type cyclins associate with multiple protein kinases and the DNA replication and repair factor PCNA. Cell 1992; 71(3): 505–514
CrossRef Google scholar
[9]
Tarricone C, Dhavan R, Peng J, Areces LB, Tsai LH, Musacchio A. Structure and regulation of the CDK5-p25(nck5a) complex. Mol Cell 2001; 8(3): 657–669
CrossRef Google scholar
[10]
Łukasik P, Zaluski M, Gutowska I. Cyclin-dependent kinases (CDK) and their role in diseases development–review. Int J Mol Sci 2021; 22(6): 2935
CrossRef Google scholar
[11]
Whittaker SR, Mallinger A, Workman P, Clarke PA. Inhibitors of cyclin-dependent kinases as cancer therapeutics. Pharmacol Ther 2017; 173: 83–105
CrossRef Google scholar
[12]
Lim S, Kaldis P. Cdks, cyclins and CKIs: roles beyond cell cycle regulation. Development 2013; 140(15): 3079–3093
CrossRef Google scholar
[13]
Filippone MG, Gaglio D, Bonfanti R, Tucci FA, Ceccacci E, Pennisi R, Bonanomi M, Jodice G, Tillhon M, Montani F, Bertalot G, Freddi S, Vecchi M, Taglialatela A, Romanenghi M, Romeo F, Bianco N, Munzone E, Sanguedolce F, Vago G, Viale G, Di Fiore PP, Minucci S, Alberghina L, Colleoni M, Veronesi P, Tosoni D, Pece S. CDK12 promotes tumorigenesis but induces vulnerability to therapies inhibiting folate one-carbon metabolism in breast cancer. Nat Commun 2022; 13(1): 2642
CrossRef Google scholar
[14]
Hamilton MJ, Suri M. CDK13-related disorder. Adv Genet 2019; 103: 163–182
CrossRef Google scholar
[15]
Liu W, Zhou Y, Liang R, Zhang Y. Inhibition of cyclin-dependent kinase 5 activity alleviates diabetes-related cognitive deficits. FASEB J 2019; 33(12): 14506–14515
CrossRef Google scholar
[16]
Shelton SB, Johnson GV. Cyclin-dependent kinase-5 in neurodegeneration. J Neurochem 2004; 88(6): 1313–1326
CrossRef Google scholar
[17]
Xie Z, Hou S, Yang X, Duan Y, Han J, Wang Q, Liao C. Lessons learned from past cyclin-dependent kinase drug discovery efforts. J Med Chem 2022; 65(9): 6356–6389
CrossRef Google scholar
[18]
Finn RS, Crown JP, Lang I, Boer K, Bondarenko IM, Kulyk SO, Ettl J, Patel R, Pinter T, Schmidt M, Shparyk Y, Thummala AR, Voytko NL, Fowst C, Huang X, Kim ST, Randolph S, Slamon DJ. The cyclin-dependent kinase 4/6 inhibitor palbociclib in combination with letrozole versus letrozole alone as first-line treatment of oestrogen receptor-positive, HER2-negative, advanced breast cancer (PALOMA-1/TRIO-18): a randomised phase 2 study. Lancet Oncol 2015; 16(1): 25–35
CrossRef Google scholar
[19]
Hortobagyi GN, Stemmer SM, Burris HA, Yap YS, Sonke GS, Paluch-Shimon S, Campone M, Blackwell KL, Andre F, Winer EP, Janni W, Verma S, Conte P, Arteaga CL, Cameron DA, Petrakova K, Hart LL, Villanueva C, Chan A, Jakobsen E, Nusch A, Burdaeva O, Grischke EM, Alba E, Wist E, Marschner N, Favret AM, Yardley D, Bachelot T, Tseng LM, Blau S, Xuan F, Souami F, Miller M, Germa C, Hirawat S, O’Shaughnessy J. Ribociclib as first-line therapy for HR-positive, advanced breast cancer. N Engl J Med 2016; 375(18): 1738–1748
CrossRef Google scholar
[20]
Asghar U, Witkiewicz AK, Turner NC, Knudsen ES. The history and future of targeting cyclin-dependent kinases in cancer therapy. Nat Rev Drug Discov 2015; 14(2): 130–146
CrossRef Google scholar
[21]
Peyressatre M, Prevel C, Pellerano M, Morris MC. Targeting cyclin-dependent kinases in human cancers: from small molecules to peptide inhibitors. Cancers (Basel) 2015; 7(1): 179–237
CrossRef Google scholar
[22]
Tadesse S, Caldon EC, Tilley W, Wang S. Cyclin-dependent kinase 2 inhibitors in cancer therapy: an update. J Med Chem 2019; 62(9): 4233–4251
CrossRef Google scholar
[23]
Cao C, He M, Wang L, He Y, Rao Y. Chemistries of bifunctional PROTAC degraders. Chem Soc Rev 2022; 51(16): 7066–7114
CrossRef Google scholar
[24]
Dong G, Ding Y, He S, Sheng C. Molecular glues for targeted protein degradation: from serendipity to rational discovery. J Med Chem 2021; 64(15): 10606–10620
CrossRef Google scholar
[25]
Békés M, Langley DR, Crews CM. PROTAC targeted protein degraders: the past is prologue. Nat Rev Drug Discov 2022; 21(3): 181–200
CrossRef Google scholar
[26]
Sun X, Gao H, Yang Y, He M, Wu Y, Song Y, Tong Y, Rao Y. PROTACs: great opportunities for academia and industry. Signal Transduct Target Ther 2019; 4(1): 64
CrossRef Google scholar
[27]
Weng G, Cai X, Cao D, Du H, Shen C, Deng Y, He Q, Yang B, Li D, Hou T. PROTAC-DB 2.0: an updated database of PROTACs. Nucleic Acids Res 2023; 51(D1): D1367–D1372
CrossRef Google scholar
[28]
Zhou X, Dong R, Zhang JY, Zheng X, Sun LP. PROTAC: a promising technology for cancer treatment. Eur J Med Chem 2020; 203: 112539
CrossRef Google scholar
[29]
Wang Y, Jiang X, Feng F, Liu W, Sun H. Degradation of proteins by PROTACs and other strategies. Acta Pharm Sin B 2020; 10(2): 207–238
CrossRef Google scholar
[30]
Rana S, Mallareddy JR, Singh S, Boghean L, Natarajan A. Inhibitors, PROTACs and molecular glues as diverse therapeutic modalities to target cyclin-dependent kinase. Cancers (Basel) 2021; 13(21): 5506
CrossRef Google scholar
[31]
Zhou F, Chen L, Cao C, Yu J, Luo X, Zhou P, Zhao L, Du W, Cheng J, Xie Y, Chen Y. Development of selective mono or dual PROTAC degrader probe of CDK isoforms. Eur J Med Chem 2020; 187: 111952
CrossRef Google scholar
[32]
Teng M, Jiang J, He Z, Kwiatkowski NP, Donovan KA, Mills CE, Victor C, Hatcher JM, Fischer ES, Sorger PK, Zhang T, Gray NS. Development of CDK2 and CDK5 dual degrader TMX-2172. Angew Chem Int Ed 2020; 59(33): 13865–13870
CrossRef Google scholar
[33]
Wei M, Zhao R, Cao Y, Wei Y, Li M, Dong Z, Liu Y, Ruan H, Li Y, Cao S, Tang Z, Zhou Y, Song W, Wang Y, Wang J, Yang G, Yang C. First orally bioavailable prodrug of proteolysis targeting chimera (PROTAC) degrades cyclin-dependent kinases 2/4/6 in vivo. Eur J Med Chem 2021; 209: 112903
CrossRef Google scholar
[34]
Wang L, Shao X, Zhong T, Wu Y, Xu A, Sun X, Gao H, Liu Y, Lan T, Tong Y, Tao X, Du W, Wang W, Chen Y, Li T, Meng X, Deng H, Yang B, He Q, Ying M, Rao Y. Discovery of a first-in-class CDK2 selective degrader for AML differentiation therapy. Nat Chem Biol 2021; 17(5): 567–575
CrossRef Google scholar
[35]
Hati S, Zallocchi M, Hazlitt R, Li Y, Vijayakumar S, Min J, Rankovic Z, Lovas S, Zuo J. AZD5438-PROTAC: a selective CDK2 degrader that protects against cisplatin- and noise-induced hearing loss. Eur J Med Chem 2021; 226: 113849
CrossRef Google scholar
[36]
Zhao B, Burgess K. PROTACs suppression of CDK4/6, crucial kinases for cell cycle regulation in cancer. Chem Commun (Camb) 2019; 55(18): 2704–2707
CrossRef Google scholar
[37]
Jiang B, Wang ES, Donovan KA, Liang Y, Fischer ES, Zhang T, Gray NS. Development of dual and selective degraders of cyclin-dependent kinases 4 and 6. Angew Chem 2019; 131(19): 6387–6392
CrossRef Google scholar
[38]
Su S, Yang Z, Gao H, Yang H, Zhu S, An Z, Wang J, Li Q, Chandarlapaty S, Deng H, Wu W, Rao Y. Potent and preferential degradation of CDK6 via proteolysis targeting chimera degraders. J Med Chem 2019; 62(16): 7575–7582
CrossRef Google scholar
[39]
Rana S, Bendjennat M, Kour S, King HM, Kizhake S, Zahid M, Natarajan A. Selective degradation of CDK6 by a palbociclib based PROTAC. Bioorg Med Chem Lett 2019; 29(11): 1375–1379
CrossRef Google scholar
[40]
Anderson NA, Cryan J, Ahmed A, Dai H, McGonagle GA, Rozier C, Benowitz AB. Selective CDK6 degradation mediated by cereblon, VHL, and novel IAP-recruiting PROTACs. Bioorg Med Chem Lett 2020; 30(9): 127106
CrossRef Google scholar
[41]
Steinebach C, Ng YLD, Sosic I, Lee CS, Chen S, Lindner S, Vu LP, Bricelj A, Haschemi R, Monschke M, Steinwarz E, Wagner KG, Bendas G, Luo J, Gutschow M, Kronke J. Systematic exploration of different E3 ubiquitin ligases: an approach towards potent and selective CDK6 degraders. Chem Sci (Camb) 2020; 11(13): 3474–3486
CrossRef Google scholar
[42]
De Dominici M, Porazzi P, Xiao Y, Chao A, Tang HY, Kumar G, Fortina P, Spinelli O, Rambaldi A, Peterson LF, Petruk S, Barletta C, Mazo A, Cingolani G, Salvino JM, Calabretta B. Selective inhibition of Ph-positive ALL cell growth through kinase-dependent and -independent effects by CDK6-specific PROTACs. Blood 2020; 135(18): 1560–1573
CrossRef Google scholar
[43]
Pu C, Liu Y, Deng R, Xu Q, Wang S, Zhang H, Luo D, Ma X, Tong Y, Li R. Development of PROTAC degrader probe of CDK4/6 based on DCAF16. Bioorg Chem 2023; 138: 106637
CrossRef Google scholar
[44]
Xiong Y, Zhong Y, Yim H, Yang X, Park KS, Xie L, Poulikakos PI, Han X, Xiong Y, Chen X, Liu J, Jin J. Bridged proteolysis targeting chimera (PROTAC) enables degradation of undruggable targets. J Am Chem Soc 2022; 144(49): 22622–22632
CrossRef Google scholar
[45]
Verano AL, You I, Donovan KA, Mageed N, Yue H, Nowak RP, Fischer ES, Wang ES, Gray NS. Redirecting the neo-substrate specificity of cereblon-targeting PROTACs to Helios. ACS Chem Biol 2022; 17(9): 2404–2410
CrossRef Google scholar
[46]
Hatcher JM, Wang ES, Johannessen L, Kwiatkowski N, Sim T, Gray NS. Development of highly potent and selective steroidal inhibitors and degraders of CDK8. ACS Med Chem Lett 2018; 9(6): 540–545
CrossRef Google scholar
[47]
Robb CM, Contreras JI, Kour S, Taylor MA, Abid M, Sonawane YA, Zahid M, Murry DJ, Natarajan A, Rana S. Chemically induced degradation of CDK9 by a proteolysis targeting chimera (PROTAC). Chem Commun (Camb) 2017; 53(54): 7577–7580
CrossRef Google scholar
[48]
King HM, Rana S, Kubica SP, Mallareddy JR, Kizhake S, Ezell EL, Zahid M, Naldrett MJ, Alvarez S, Law HC, Woods NT, Natarajan A. Aminopyrazole based CDK9 PROTAC sensitizes pancreatic cancer cells to venetoclax. Bioorg Med Chem Lett 2021; 43: 128061
CrossRef Google scholar
[49]
Olson CM, Jiang B, Erb MA, Liang Y, Doctor ZM, Zhang Z, Zhang T, Kwiatkowski N, Boukhali M, Green JL, Haas W, Nomanbhoy T, Fischer ES, Young RA, Bradner JE, Winter GE, Gray NS. Pharmacological perturbation of CDK9 using selective CDK9 inhibition or degradation. Nat Chem Biol 2018; 14(2): 163–170
CrossRef Google scholar
[50]
Bian J, Ren J, Li Y, Wang J, Xu X, Feng Y, Tang H, Wang Y, Li Z. Discovery of wogonin-based PROTACs against CDK9 and capable of achieving antitumor activity. Bioorg Chem 2018; 81: 373–381
CrossRef Google scholar
[51]
Qiu X, Li Y, Yu B, Ren J, Huang H, Wang M, Ding H, Li Z, Wang J, Bian J. Discovery of selective CDK9 degraders with enhancing antiproliferative activity through PROTAC conversion. Eur J Med Chem 2021; 211: 113091
CrossRef Google scholar
[52]
Wei D, Wang H, Zeng Q, Wang W, Hao B, Feng X, Wang P, Song N, Kan W, Huang G, Zhou X, Tan M, Zhou Y, Huang R, Li J, Chen XH. Discovery of potent and selective CDK9 degraders for targeting transcription regulation in triple-negative breast cancer. J Med Chem 2021; 64(19): 14822–14847
CrossRef Google scholar
[53]
Ao M, Wu J, Cao Y, He Y, Zhang Y, Gao X, Xue Y, Fang M, Wu Z. The synthesis of PROTAC molecule and new target KAT6A identification of CDK9 inhibitor iCDK9. Chin Chem Lett 2023; 34(4): 107741
CrossRef Google scholar
[54]
Li J, Liu T, Song Y, Wang M, Liu L, Zhu H, Li Q, Lin J, Jiang H, Chen K, Zhao K, Wang M, Zhou H, Lin H, Luo C. Discovery of small-molecule degraders of the CDK9-cyclin T1 complex for targeting transcriptional addiction in prostate cancer. J Med Chem 2022; 65(16): 11034–11057
CrossRef Google scholar
[55]
Tokarski RJ 2nd, Sharpe CM, Huntsman AC, Mize BK, Ayinde OR, Stahl EH, Lerma JR, Reed A, Carmichael B, Muthusamy N, Byrd JC, Fuchs JR. Bifunctional degraders of cyclin dependent kinase 9 (CDK9): probing the relationship between linker length, properties, and selective protein degradation. Eur J Med Chem 2023; 254: 115342
CrossRef Google scholar
[56]
Pei J, Xiao Y, Liu X, Hu W, Sobh A, Yuan Y, Zhou S, Hua N, Mackintosh SG, Zhang X, Basso KB, Kamat M, Yang Q, Licht JD, Zheng G, Zhou D, Lv D. Piperlongumine conjugates induce targeted protein degradation. Cell Chem Biol 2023; 30(2): 203–213.e17
CrossRef Google scholar
[57]
Jiang B, Gao Y, Che J, Lu W, Kaltheuner IH, Dries R, Kalocsay M, Berberich MJ, Jiang J, You I, Kwiatkowski N, Riching KM, Daniels DL, Sorger PK, Geyer M, Zhang T, Gray NS. Discovery and resistance mechanism of a selective CDK12 degrader. Nat Chem Biol 2021; 17(6): 675–683
CrossRef Google scholar
[58]
Niu T, Li K, Jiang L, Zhou Z, Hong J, Chen X, Dong X, He Q, Cao J, Yang B, Zhu CL. Noncovalent CDK12/13 dual inhibitors-based PROTACs degrade CDK12-cyclin K complex and induce synthetic lethality with PARP inhibitor. Eur J Med Chem 2022; 228: 114012
CrossRef Google scholar
[59]
Yang J, Chang Y, Tien JC, Wang Z, Zhou Y, Zhang P, Huang W, Vo J, Apel IJ, Wang C, Zeng VZ, Cheng Y, Li S, Wang GX, Chinnaiyan AM, Ding K. Discovery of a highly potent and selective dual PROTAC degrader of CDK12 and CDK13. J Med Chem 2022; 65(16): 11066–11083
CrossRef Google scholar
[60]
Huang HT, Dobrovolsky D, Paulk J, Yang G, Weisberg EL, Doctor ZM, Buckley DL, Cho JH, Ko E, Jang J, Shi K, Choi HG, Griffin JD, Li Y, Treon SP, Fischer ES, Bradner JE, Tan L, Gray NS. A chemoproteomic approach to query the degradable kinome using a multi-kinase degrader. Cell Chem Biol 2018; 25(1): 88–99.e6
CrossRef Google scholar
[61]
Słabicki M, Kozicka Z, Petzold G, Li YD, Manojkumar M, Bunker RD, Donovan KA, Sievers QL, Koeppel J, Suchyta D, Sperling AS, Fink EC, Gasser JA, Wang LR, Corsello SM, Sellar RS, Jan M, Gillingham D, Scholl C, Frohling S, Golub TR, Fischer ES, Thoma NH, Ebert BL. The CDK inhibitor CR8 acts as a molecular glue degrader that depletes cyclin K. Nature 2020; 585(7824): 293–297
CrossRef Google scholar
[62]
Lv L, Chen P, Cao L, Li Y, Zeng Z, Cui Y, Wu Q, Li J, Wang JH, Dong MQ, Qi X, Han T. Discovery of a molecular glue promoting CDK12–DDB1 interaction to trigger cyclin K degradation. eLife 2020; 9: e59994
CrossRef Google scholar
[63]
Mayor-Ruiz C, Bauer S, Brand M, Kozicka Z, Siklos M, Imrichova H, Kaltheuner IH, Hahn E, Seiler K, Koren A, Petzold G, Fellner M, Bock C, Muller AC, Zuber J, Geyer M, Thoma NH, Kubicek S, Winter GE. Rational discovery of molecular glue degraders via scalable chemical profiling. Nat Chem Biol 2020; 16(11): 1199–1207
CrossRef Google scholar
[64]
McCurdy SR, Pacal M, Ahmad M, Bremner RA. CDK2 activity signature predicts outcome in CDK2-low cancers. Oncogene 2017; 36(18): 2491–2502
CrossRef Google scholar
[65]
Narasimha AM, Kaulich M, Shapiro GS, Choi YJ, Sicinski P, Dowdy SF. Cyclin D activates the Rb tumor suppressor by mono-phosphorylation. eLife 2014; 3: e02872
CrossRef Google scholar
[66]
Martín A, Odajima J, Hunt SL, Dubus P, Ortega S, Malumbres M, Barbacid M. Cdk2 is dispensable for cell cycle inhibition and tumor suppression mediated by p27(Kip1) and p21(Cip1). Cancer Cell 2005; 7(6): 591–598
CrossRef Google scholar
[67]
Bashir T, Pagano M. Cdk1: the dominant sibling of Cdk2. Nat Cell Biol 2005; 7(8): 779–781
CrossRef Google scholar
[68]
Berthet C, Aleem E, Coppola V, Tessarollo L, Kaldis P. Cdk2 knockout mice are viable. Curr Biol 2003; 13(20): 1775–1785
CrossRef Google scholar
[69]
Tadesse S, Anshabo AT, Portman N, Lim E, Tilley W, Caldon CE, Wang S. Targeting CDK2 in cancer: challenges and opportunities for therapy. Drug Discov Today 2020; 25(2): 406–413
CrossRef Google scholar
[70]
Ying M, Shao X, Jing H, Liu Y, Qi X, Cao J, Chen Y, Xiang S, Song H, Hu R, Wei G, Yang B, He Q. Ubiquitin-dependent degradation of CDK2 drives the therapeutic differentiation of AML by targeting PRDX2. Blood 2018; 131(24): 2698–2711
CrossRef Google scholar
[71]
Scheicher R, Hoelbl-Kovacic A, Bellutti F, Tigan AS, Prchal-Murphy M, Heller G, Schneckenleithner C, Salazar-Roa M, Zöchbauer-Müller S, Zuber J, Malumbres M, Kollmann K, Sexl V. CDK6 as a key regulator of hematopoietic and leukemic stem cell activation. Blood 2015; 125(1): 90–101
CrossRef Google scholar
[72]
Maurer B, Brandstoetter T, Kollmann S, Sexl V, Prchal-Murphy M. Inducible deletion of CDK4 and CDK6—deciphering CDK4/6 inhibitor effects in the hematopoietic system. Haematologica 2021; 106(10): 2624–2632
CrossRef Google scholar
[73]
Qie S, Diehl JA. Cyclin D1, cancer progression, and opportunities in cancer treatment. J Mol Med (Berl) 2016; 94(12): 1313–1326
CrossRef Google scholar
[74]
Bisteau X, Paternot S, Colleoni B, Ecker K, Coulonval K, De Groote P, Declercq W, Hengst L, Roger PP. CDK4 T172 phosphorylation is central in a CDK7-dependent bidirectional CDK4/CDK2 interplay mediated by p21 phosphorylation at the restriction point. PLoS Genet 2013; 9(5): e1003546
CrossRef Google scholar
[75]
Goel S, Bergholz JS, Zhao JJ. Targeting CDK4 and CDK6 in cancer. Nat Rev Cancer 2022; 22(6): 356–372
CrossRef Google scholar
[76]
Wagner V, Gil J. Senescence as a therapeutically relevant response to CDK4/6 inhibitors. Oncogene 2020; 39(29): 5165–5176
CrossRef Google scholar
[77]
O’Leary B, Finn RS, Turner NC. Treating cancer with selective CDK4/6 inhibitors. Nat Rev Clin Oncol 2016; 13(7): 417–430
CrossRef Google scholar
[78]
Bockstaele L, Bisteau X, Paternot S, Roger PP. Differential regulation of cyclin-dependent kinase 4 (CDK4) and CDK6, evidence that CDK4 might not be activated by CDK7, and design of a CDK6 activating mutation. Mol Cell Biol 2009; 29(15): 4188–4200
CrossRef Google scholar
[79]
Dai M, Boudreault J, Wang N, Poulet S, Daliah G, Yan G, Moamer A, Burgos SA, Sabri S, Ali S, Lebrun JJ. Differential regulation of cancer progression by CDK4/6 plays a central role in DNA replication and repair pathways. Cancer Res 2021; 81(5): 1332–1346
CrossRef Google scholar
[80]
Puyol M, Martín A, Dubus P, Mulero F, Pizcueta P, Khan G, Guerra C, Santamaría D, Barbacid M. A Synthetic lethal interaction between K-Ras oncogenes and Cdk4 unveils a therapeutic strategy for non-small cell lung carcinoma. Cancer Cell 2010; 18(1): 63–73
CrossRef Google scholar
[81]
Honma T, Yoshizumi T, Hashimoto N, Hayashi K, Kawanishi N, Fukasawa K, Takaki T, Ikeura C, Ikuta M, Suzuki-Takahashi I, Hayama T, Nishimura S, Morishima H. A novel approach for the development of selective Cdk4 inhibitors: library design based on locations of Cdk4 specific amino acid residues. J Med Chem 2001; 44(26): 4628–4640
CrossRef Google scholar
[82]
Ng YLD, Ramberger E, Bohl SR, Dolnik A, Steinebach C, Conrad T, Muller S, Popp O, Kull M, Haji M, Gutschow M, Dohner H, Walther W, Keller U, Bullinger L, Mertins P, Kronke J. Proteomic profiling reveals CDK6 upregulation as a targetable resistance mechanism for lenalidomide in multiple myeloma. Nat Commun 2022; 13(1): 1009
CrossRef Google scholar
[83]
Du G, Jiang J, Henning NJ, Safaee N, Koide E, Nowak RP, Donovan KA, Yoon H, You I, Yue H, Eleuteri NA, He Z, Li Z, Huang HT, Che J, Nabet B, Zhang T, Fischer ES, Gray NS. Exploring the target scope of KEAP1 E3 ligase-based PROTACs. Cell Chem Biol 2022; 29(10): 1470–1481.e31
CrossRef Google scholar
[84]
Dhavan R, Tsai LH. A decade of CDK5. Nat Rev Mol Cell Biol 2001; 2(10): 749–759
CrossRef Google scholar
[85]
Pao PC, Tsai LH. Three decades of Cdk5. J Biomed Sci 2021; 28(1): 79
CrossRef Google scholar
[86]
Zhang J, Herrup K. Cdk5 and the non-catalytic arrest of the neuronal cell cycle. Cell Cycle 2008; 7(22): 3487–3490
CrossRef Google scholar
[87]
Mangold N, Pippin J, Unnersjoe-Jess D, Koehler S, Shankland S, Brahler S, Schermer B, Benzing T, Brinkkoetter PT, Hagmann H. The atypical cyclin-dependent kinase 5 (Cdk5) guards podocytes from apoptosis in glomerular disease while being dispensable for podocyte development. Cells 2021; 10(9): 2464
CrossRef Google scholar
[88]
Ao C, Li C, Chen J, Tan J, Zeng L. The role of Cdk5 in neurological disorders. Front Cell Neurosci 2022; 16: 951202
CrossRef Google scholar
[89]
Lenjisa JL, Tadesse S, Khair NZ, Kumarasiri M, Yu M, Albrecht H, Milne R, Wang S. CDK5 in oncology: recent advances and future prospects. Future Med Chem 2017; 9(16): 1939–1962
CrossRef Google scholar
[90]
Takahashi S, Ohshima T, Hirasawa M, Pareek TK, Bugge TH, Morozov A, Fujieda K, Brady RO, Kulkarni AB. Conditional deletion of neuronal cyclin-dependent kinase 5 in developing forebrain results in microglial activation and neurodegeneration. Am J Pathol 2010; 176(1): 320–329
CrossRef Google scholar
[91]
Daniels MH, Malojcic G, Clugston SL, Williams B, Coeffet-Le Gal M, Pan-Zhou XR, Venkatachalan S, Harmange JC, Ledeboer M. Discovery and optimization of highly selective inhibitors of CDK5. J Med Chem 2022; 65(4): 3575–3596
CrossRef Google scholar
[92]
Galbraith MD, Donner AJ, Espinosa JM. CDK8: a positive regulator of transcription. Transcription 2010; 1(1): 4–12
CrossRef Google scholar
[93]
Belakavadi M, Fondell JD. Cyclin-dependent kinase 8 positively cooperates with Mediator to promote thyroid hormone receptor-dependent transcriptional activation. Mol Cell Biol 2010; 30(10): 2437–2448
CrossRef Google scholar
[94]
Donner AJ, Ebmeier CC, Taatjes DJ, Espinosa JM. CDK8 is a positive regulator of transcriptional elongation within the serum response network. Nat Struct Mol Biol 2010; 17(2): 194–201
CrossRef Google scholar
[95]
Szilagyi Z, Gustafsson CM. Emerging roles of Cdk8 in cell cycle control. Biochim Biophys Acta Gene Regul Mech 2013; 1829(9): 916–920
CrossRef Google scholar
[96]
Bancerek J, Poss ZC, Steinparzer I, Sedlyarov V, Pfaffenwimmer T, Mikulic I, Dolken L, Strobl B, Muller M, Taatjes DJ, Kovarik P. CDK8 kinase phosphorylates transcription factor STAT1 to selectively regulate the interferon response. Immunity 2013; 38(2): 250–262
CrossRef Google scholar
[97]
Serrao A, Jenkins LM, Chumanevich AA, Horst B, Liang J, Gatza ML, Lee NY, Roninson IB, Broude EV, Mythreye K. Mediator kinase CDK8/CDK19 drives YAP1-dependent BMP4-induced EMT in cancer. Oncogene 2018; 37(35): 4792–4808
CrossRef Google scholar
[98]
Fryer CJ, White JB, Jones KA. Mastermind recruits CycC:CDK8 to phosphorylate the Notch ICD and coordinate activation with turnover. Mol Cell 2004; 16(4): 509–520
CrossRef Google scholar
[99]
Firestein R, Bass AJ, Kim SY, Dunn IF, Silver SJ, Guney I, Freed E, Ligon AH, Vena N, Ogino S, Chheda MG, Tamayo P, Finn S, Shrestha Y, Boehm JS, Jain S, Bojarski E, Mermel C, Barretina J, Chan JA, Baselga J, Tabernero J, Root DE, Fuchs CS, Loda M, Shivdasani RA, Meyerson M, Hahn WC. CDK8 is a colorectal cancer oncogene that regulates beta-catenin activity. Nature 2008; 455(7212): 547–551
CrossRef Google scholar
[100]
Liang J, Chen M, Hughes D, Chumanevich AA, Altilia S, Kaza V, Lim CU, Kiaris H, Mythreye K, Pena MM, Broude EV, Roninson IB. CDK8 selectively promotes the growth of colon cancer metastases in the liver by regulating gene expression of TIMP3 and matrix metalloproteinases. Cancer Res 2018; 78(23): 6594–6606
CrossRef Google scholar
[101]
Westerling T, Kuuluvainen E, Maäkelaä TP. Cdk8 is essential for preimplantation mouse development. Mol Cell Biol 2007; 27(17): 6177–6182
CrossRef Google scholar
[102]
Chung HL, Mao X, Wang H, Park YJ, Marcogliese PC, Rosenfeld JA, Burrage LC, Liu P, Murdock DR, Yamamoto S, Wangler MF, Undiagnosed Diseases Network, Chao HT, Long H, Feng L, Bacino CA, Bellen HJ, Xiao B. De novo variants in CDK19 are associated with a syndrome involving intellectual disability and epileptic encephalopathy. Am J Hum Genet 2020; 106(5): 717–725
CrossRef Google scholar
[103]
Fisher RP. Taking aim at glycolysis with CDK8 inhibitors. Trends Endocrinol Metab 2018; 29(5): 281–282
CrossRef Google scholar
[104]
Koehler MF, Bergeron P, Blackwood EM, Bowman K, Clark KR, Firestein R, Kiefer JR, Maskos K, McCleland ML, Orren L, Salphati L, Schmidt S, Schneider EV, Wu J, Beresini MH. Development of a potent, specific CDK8 kinase inhibitor which phenocopies CDK8/19 knockout cells. ACS Med Chem Lett 2016; 7(3): 223–228
CrossRef Google scholar
[105]
Yu DS, Cortez D. A role for CDK9-cyclin K in maintaining genome integrity. Cell Cycle 2011; 10(1): 28–32
CrossRef Google scholar
[106]
De Falco G, Bellan C, D’Amuri A, Angeloni G, Leucci E, Giordano A, Leoncini L. Cdk9 regulates neural differentiation and its expression correlates with the differentiation grade of neuroblastoma and PNET tumors. Cancer Biol Ther 2005; 4(3): 277–281
CrossRef Google scholar
[107]
Egloff S. CDK9 keeps RNA polymerase II on track. Cell Mol Life Sci 2021; 78(14): 5543–5567
CrossRef Google scholar
[108]
Boffo S, Damato A, Alfano L, Giordano A. CDK9 inhibitors in acute myeloid leukemia. J Exp Clin Cancer Res 2018; 37(1): 36
CrossRef Google scholar
[109]
Lui GYL, Grandori C, Kemp CJ. CDK12: an emerging therapeutic target for cancer. J Clin Pathol 2018; 71(11): 957–962
CrossRef Google scholar
[110]
Juan HC, Lin Y, Chen HR, Fann MJ. Cdk12 is essential for embryonic development and the maintenance of genomic stability. Cell Death Differ 2016; 23(6): 1038–1048
CrossRef Google scholar
[111]
Bösken CA, Farnung L, Hintermair C, Merzel Schachter M, Vogel-Bachmayr K, Blazek D, Anand K, Fisher RP, Eick D, Geyer M. The structure and substrate specificity of human Cdk12/Cyclin K. Nat Commun 2014; 5(1): 3505
CrossRef Google scholar
[112]
PaculováH J. The emerging roles of CDK12 in tumorigenesis. Cell Div 2017; 12(1): 7
CrossRef Google scholar
[113]
Quereda V, Bayle S, Vena F, Frydman SM, Monastyrskyi A, Roush WR, Duckett DR. Therapeutic Targeting of CDK12/CDK13 in Triple-Negative Breast Cancer. Cancer Cell 2019; 36(5): 545–558.e7
CrossRef Google scholar
[114]
Marineau JJ, Hamman KB, Hu S, Alnemy S, Mihalich J, Kabro A, Whitmore KM, Winter DK, Roy S, Ciblat S, Ke N, Savinainen A, Wilsily A, Malojcic G, Zahler R, Schmidt D, Bradley MJ, Waters NJ, Chuaqui C. Discovery of SY-5609: a selective, noncovalent inhibitor of CDK7. J Med Chem 2022; 65(2): 1458–1480
CrossRef Google scholar
[115]
Greifenberg AK, Honig D, Pilarova K, Duster R, Bartholomeeusen K, Bosken CA, Anand K, Blazek D, Geyer M. Structural and functional analysis of the Cdk13/cyclin K complex. Cell Rep 2016; 14(2): 320–331
CrossRef Google scholar
[116]
Fan Z, Devlin JR, Hogg SJ, Doyle MA, Harrison PF, Todorovski I, Cluse LA, Knight DA, Sandow JJ, Gregory G, Fox A, Beilharz TH, Kwiatkowski N, Scott NE, Vidakovic AT, Kelly GP, Svejstrup JQ, Geyer M, Gray NS, Vervoort SJ, Johnstone RW. CDK13 cooperates with CDK12 to control global RNA polymerase II processivity. Sci Adv 2020; 6(18): eaaz5041
CrossRef Google scholar
[117]
Ito M, Tanaka T, Toita A, Uchiyama N, Kokubo H, Morishita N, Klein MG, Zou H, Murakami M, Kondo M, Sameshima T, Araki S, Endo S, Kawamoto T, Morin GB, Aparicio SA, Nakanishi A, Maezaki H, Imaeda Y. Discovery of 3-benzyl-1-(trans-4-((5-cyanopyridin-2-yl)amino)cyclohexyl)-1-arylurea derivatives as novel and selective cyclin-dependent kinase 12 (CDK12) inhibitors. J Med Chem 2018; 61(17): 7710–7728
CrossRef Google scholar
[118]
Riching KM, Mahan S, Corona CR, McDougall M, Vasta JD, Robers MB, Urh M, Daniels DL. Quantitative live-cell kinetic degradation and mechanistic profiling of PROTAC mode of action. ACS Chem Biol 2018; 13(9): 2758–2770
CrossRef Google scholar
[119]
Riching KM, Schwinn MK, Vasta JD, Robers MB, Machleidt T, Urh M, Daniels DL. CDK family PROTAC profiling reveals distinct kinetic responses and cell cycle-dependent degradation of CDK2. SLAS Discov 2021; 26(4): 560–569
CrossRef Google scholar
[120]
Dar AC, Shokat KM. The evolution of protein kinase inhibitors from antagonists to agonists of cellular signaling. Annu Rev Biochem 2011; 80(1): 769–795
CrossRef Google scholar
[121]
Wu P, Nielsen TE, Clausen MH. FDA-approved small-molecule kinase inhibitors. Trends Pharmacol Sci 2015; 36(7): 422–439
CrossRef Google scholar
[122]
Wu P, Nielsen TE, Clausen MH. Small-molecule kinase inhibitors: an analysis of FDA-approved drugs. Drug Discov Today 2016; 21(1): 5–10
CrossRef Google scholar
[123]
Fang Z, Grutter C, Rauh D. Strategies for the selective regulation of kinases with allosteric modulators: exploiting exclusive structural features. ACS Chem Biol 2013; 8(1): 58–70
CrossRef Google scholar
[124]
Roskoski R Jr. Classification of small molecule protein kinase inhibitors based upon the structures of their drug-enzyme complexes. Pharmacol Res 2016; 103: 26–48
CrossRef Google scholar
[125]
Simard JR, Rauh D. FLiK: a direct-binding assay for the identification and kinetic characterization of stabilizers of inactive kinase conformations. Methods Enzymol 2014; 548: 147–171
CrossRef Google scholar
[126]
Pellerano M, Tcherniuk S, Perals C, Ngoc Van TN, Garcin E, Mahuteau-Betzer F, Teulade-Fichou MP, Morris MC. Targeting conformational activation of CDK2 kinase. Biotechnol J 2017; 12(8): 1600531
CrossRef Google scholar
[127]
Prével C, Pellerano M, Van TN, Morris MC. Fluorescent biosensors for high throughput screening of protein kinase inhibitors. Biotechnol J 2014; 9(2): 253–265
CrossRef Google scholar
[128]
Prével C, Kurzawa L, Van TN, Morris MC. Fluorescent biosensors for drug discovery new tools for old targets—screening for inhibitors of cyclin-dependent kinases. Eur J Med Chem 2014; 88: 74–88
CrossRef Google scholar
[129]
Zheng M, Liu Y, Wu C, Yang K, Wang Q, Zhou Y, Chen L, Li H. Novel PROTACs for degradation of SHP2 protein. Bioorg Chem 2021; 110: 104788
CrossRef Google scholar
[130]
Ben GeoffreyASKulkarniNMAgrawalDVetrivelRGurramK. A new in-silico approach for PROTAC design and quantitative rationalization of PROTAC mediated ternary complex formation. bioRxiv 2022: 2022.2022.2022.499663 doi:10.1101/2022.07.11.499663
[131]
Zheng S, Tan Y, Wang Z, Li C, Zhang Z, Sang X, Chen H, Yang Y. Accelerated rational PROTAC design via deep learning and molecular simulations. Nat Mach Intell 2022; 4(9): 739–748
CrossRef Google scholar
[132]
Li F, Hu Q, Zhang X, Sun R, Liu Z, Wu S, Tian S, Ma X, Dai Z, Yang X, Gao S, Bai F. DeepPROTACs is a deep learning-based targeted degradation predictor for PROTACs. Nat Commun 2022; 13(1): 7133
CrossRef Google scholar
[133]
Hsu JH, Rasmusson T, Robinson J, Pachl F, Read J, Kawatkar S, O' Donovan DH, Bagal S, Code E, Rawlins P, Argyrou A, Tomlinson R, Gao N, Zhu X, Chiarparin E, Jacques K, Shen M, Woods H, Bednarski E, Wilson DM, Drew L, Castaldi MP, Fawell S, Bloecher A. EED-targeted PROTACs degrade EED, EZH2, and SUZ12 in the PRC2 complex. Cell Chem Biol 2020; 27(1): 41–46.e17
CrossRef Google scholar
[134]
Schreiber SL. Target-oriented and diversity-oriented organic synthesis in drug discovery. Science 2000; 287(5460): 1964–1969
CrossRef Google scholar
[135]
Gerry CJ, Schreiber SL. Recent achievements and current trajectories of diversity-oriented synthesis. Curr Opin Chem Biol 2020; 56: 1–9
CrossRef Google scholar
[136]
Guney T, Wenderski TA, Boudreau MW, Tan DS. Synthesis of benzannulated medium-ring lactams via a tandem oxidative dearomatization-ring expansion reaction. Chemistry (Easton) 2018; 24(50): 13150–13157
[137]
Westphal MV, Hudson L, Mason JW, Pradeilles JA, Zecri FJ, Briner K, Schreiber SL. Water-compatible cycloadditions of oligonucleotide-conjugated strained allenes for DNA-encoded library synthesis. J Am Chem Soc 2020; 142(17): 7776–7782
CrossRef Google scholar
[138]
Cheng J, Li X. Development and application of activity-based fluorescent probes for high-throughput screening. Curr Med Chem 2022; 29(10): 1739–1756
CrossRef Google scholar
[139]
Oke A, Sahin D, Chen X, Shang Y. High throughput screening for drug discovery and virus detection. Comb Chem High Throughput Screen 2022; 25(9): 1518–1533
CrossRef Google scholar

Acknowledgements

This work was supported by National Key R&D Program of China (Nos. 2021YFA1302100, 2020YFE0202200, and 2021YFA1300200), National Natural Science Foundation of China (No. 82125034), Fellowship of China Postdoctoral Science Foundation (No. 2021M701953), and the Foundation of Shuimu Tsinghua Scholar Program (No. 2021SM110).

Compliance with ethics guidelines

Conflicts of interest Liguo Wang, Zhouli Yang, Guangchen Li, Yongbo Liu, Chao Ai, and Yu Rao declare no conflict interests.
This manuscript is a review article and does not involve a research protocol requiring approval by the relevant institutional review board or ethics committee.

RIGHTS & PERMISSIONS

2023 Higher Education Press
AI Summary AI Mindmap
PDF(8154 KB)

Accesses

Citations

Detail

Sections
Recommended

/