Early-life famine exposure, adulthood obesity patterns, and risk of low-energy fracture

Hongyan Qi, Chunyan Hu, Jie Zhang, Lin Lin, Shuangyuan Wang, Hong Lin, Xiaojing Jia, Yuanyue Zhu, Yi Zhang, Xueyan Wu, Mian Li, Min Xu, Yu Xu, Tiange Wang, Zhiyun Zhao, Weiqing Wang, Yufang Bi, Meng Dai, Yuhong Chen, Jieli Lu

PDF(957 KB)
PDF(957 KB)
Front. Med. ›› 2024, Vol. 18 ›› Issue (1) : 192-203. DOI: 10.1007/s11684-023-1023-9
RESEARCH ARTICLE

Early-life famine exposure, adulthood obesity patterns, and risk of low-energy fracture

Author information +
History +

Abstract

Malnutrition in early life increases the risk of osteoporosis, but the association of early-life undernutrition combined with adulthood obesity patterns with low-energy fracture remains unknown. This study included 5323 community-dwelling subjects aged ≥40 years from China. Early-life famine exposure was identified based on the participants’ birth dates. General obesity was assessed using the body mass index (BMI), and abdominal obesity was evaluated with the waist-to-hip ratio (WHR). Low-energy fracture was defined as fracture occurring after the age of 40 typically caused by falls from standing height or lower. Compared to the nonexposed group, the group with fetal, childhood, and adolescence famine exposure was associated with an increased risk of fracture in women with odds ratios (ORs) and 95% confidence intervals (CIs) of 3.55 (1.57–8.05), 3.90 (1.57–9.71), and 3.53 (1.05–11.88), respectively, but not in men. Significant interactions were observed between fetal famine exposure and general obesity with fracture among women (P for interaction = 0.0008). Furthermore, compared with the groups with normal BMI and WHR, the group of women who underwent fetal famine exposure and had both general and abdominal obesity had the highest risk of fracture (OR, 95% CI: 3.32, 1.17–9.40). These results indicate that early-life famine exposure interacts with adulthood general obesity and significantly increases the risk of low-energy fracture later in life in women.

Keywords

famine / obesity / body mass index / waist-to-hip ratio / low-energy fracture

Cite this article

Download citation ▾
Hongyan Qi, Chunyan Hu, Jie Zhang, Lin Lin, Shuangyuan Wang, Hong Lin, Xiaojing Jia, Yuanyue Zhu, Yi Zhang, Xueyan Wu, Mian Li, Min Xu, Yu Xu, Tiange Wang, Zhiyun Zhao, Weiqing Wang, Yufang Bi, Meng Dai, Yuhong Chen, Jieli Lu. Early-life famine exposure, adulthood obesity patterns, and risk of low-energy fracture. Front. Med., 2024, 18(1): 192‒203 https://doi.org/10.1007/s11684-023-1023-9

References

[1]
Chen P, Li Z, Hu Y. Prevalence of osteoporosis in China: a meta-analysis and systematic review. BMC Public Health 2016; 16(1): 1039
CrossRef Google scholar
[2]
Li N, Cornelissen D, Silverman S, Pinto D, Si L, Kremer I, Bours S, de Bot R, Boonen A, Evers S, van den Bergh J, Reginster JY, Hiligsmann M. An updated systematic review of cost-effectiveness analyses of drugs for osteoporosis. Pharmacoeconomics 2021; 39(2): 181–209
CrossRef Google scholar
[3]
Zhang Y, Qi H, Hu C, Wang S, Zhu Y, Lin H, Lin L, Zhang J, Wang T, Zhao Z, Li M, Xu Y, Xu M, Bi Y, Wang W, Chen Y, Lu J, Ning G. Association between early life famine exposure and risk of metabolic syndrome in later life. J Diabetes 2022; 14(10): 685–694
CrossRef Google scholar
[4]
de Rooij SR, Painter RC, Holleman F, Bossuyt PM, Roseboom TJ. The metabolic syndrome in adults prenatally exposed to the Dutch famine. Am J Clin Nutr 2007; 86(4): 1219–1224
CrossRef Google scholar
[5]
Lu J, Li M, Xu Y, Bi Y, Qin Y, Li Q, Wang T, Hu R, Shi L, Su Q, Xu M, Zhao Z, Chen Y, Yu X, Yan L, Du R, Hu C, Qin G, Wan Q, Chen G, Dai M, Zhang D, Gao Z, Wang G, Shen F, Luo Z, Chen L, Huo Y, Ye Z, Tang X, Zhang Y, Liu C, Wang Y, Wu S, Yang T, Deng H, Li D, Lai S, Bloomgarden ZT, Chen L, Zhao J, Mu Y, Ning G, Wang W; 4C Study Group. Early life famine exposure, ideal cardiovascular health metrics, and risk of incident diabetes: findings from the 4C Study. Diabetes Care 2020; 43(8): 1902–1909
CrossRef Google scholar
[6]
Li Y, He Y, Qi L, Jaddoe VW, Feskens EJ, Yang X, Ma G, Hu FB. Exposure to the Chinese famine in early life and the risk of hyperglycemia and type 2 diabetes in adulthood. Diabetes 2010; 59(10): 2400–2406
CrossRef Google scholar
[7]
Hu C, Du R, Lin L, Zheng R, Qi H, Zhu Y, Wei R, Wu X, Zhang Y, Li M, Wang T, Zhao Z, Xu M, Xu Y, Bi Y, Ning G, Wang W, Chen Y, Lu J. The association between early-life famine exposure and adulthood obesity on the risk of dyslipidemia. Nutr Metab Cardiovasc Dis 2022; 32(9): 2177–2186
CrossRef Google scholar
[8]
Qi H, Hu C, Wang S, Zhang Y, Du R, Zhang J, Lin L, Wang T, Zhao Z, Li M, Xu Y, Xu M, Bi Y, Wang W, Chen Y, Lu J. Early life famine exposure, adulthood obesity patterns and the risk of nonalcoholic fatty liver disease. Liver Int 2020; 40(11): 2694–2705
CrossRef Google scholar
[9]
Hughes LA, van den Brandt PA, de Bruïne AP, Wouters KA, Hulsmans S, Spiertz A, Goldbohm RA, de Goeij AF, Herman JG, Weijenberg MP, van Engeland M. Early life exposure to famine and colorectal cancer risk: a role for epigenetic mechanisms. PLoS One 2009; 4(11): e7951
CrossRef Google scholar
[10]
Cooper C, Javaid K, Westlake S, Harvey N, Dennison E. Developmental origins of osteoporotic fracture: the role of maternal vitamin D insufficiency. J Nutr 2005; 135(11): 2728S–2734S
CrossRef Google scholar
[11]
Balasuriya CND, Evensen KAI, Mosti MP, Brubakk AM, Jacobsen GW, Indredavik MS, Schei B, Stunes AK, Syversen U. Peak bone mass and bone microarchitecture in adults born with low birth weight preterm or at term: a cohort study. J Clin Endocrinol Metab 2017; 102(7): 2491–2500
CrossRef Google scholar
[12]
Mikkola TM, von Bonsdorff MB, Osmond C, Salonen MK, Kajantie E, Eriksson JG. Association of body size at birth and childhood growth with hip fractures in older age: an exploratory follow-up of the Helsinki Birth Cohort Study. J Bone Miner Res 2017; 32(6): 1194–1200
CrossRef Google scholar
[13]
Zhao LJ, Liu YJ, Liu PY, Hamilton J, Recker RR, Deng HW. Relationship of obesity with osteoporosis. J Clin Endocrinol Metab 2007; 92(5): 1640–1646
CrossRef Google scholar
[14]
Radak TL. Caloric restriction and calcium’s effect on bone metabolism and body composition in overweight and obese premenopausal women. Nutr Rev 2004; 62(12): 468–481
CrossRef Google scholar
[15]
Zhao LJ, Jiang H, Papasian CJ, Maulik D, Drees B, Hamilton J, Deng HW. Correlation of obesity and osteoporosis: effect of fat mass on the determination of osteoporosis. J Bone Miner Res 2008; 23(1): 17–29
CrossRef Google scholar
[16]
Shi Z, Shi X, Yan AF. Exposure to Chinese famine during early life increases the risk of fracture during adulthood. Nutrients 2022; 14(5): 1060
CrossRef Google scholar
[17]
Wang B, Li M, Zhao Z, Wang S, Lu J, Chen Y, Xu M, Wang W, Ning G, Bi Y, Wang T, Xu Y. Glycemic measures and development and resolution of nonalcoholic fatty liver disease in nondiabetic individuals. J Clin Endocrinol Metab 2020; 105(5): 1416–1426
CrossRef Google scholar
[18]
Lee PH, Macfarlane DJ, Lam TH, Stewart SM. Validity of the International Physical Activity Questionnaire Short Form (IPAQ-SF): a systematic review. Int J Behav Nutr Phys Act 2011; 8: 115
CrossRef Google scholar
[19]
Du R, Zheng R, Xu Y, Zhu Y, Yu X, Li M, Tang X, Hu R, Su Q, Wang T, Zhao Z, Xu M, Chen Y, Shi L, Wan Q, Chen G, Dai M, Zhang D, Gao Z, Wang G, Shen F, Luo Z, Qin Y, Chen L, Huo Y, Li Q, Ye Z, Zhang Y, Liu C, Wang Y, Wu S, Yang T, Deng H, Chen L, Zhao J, Mu Y, Li D, Qin G, Wang W, Ning G, Yan L, Bi Y, Lu J. Early-life famine exposure and risk of cardiovascular diseases in later life: findings from the REACTION Study. J Am Heart Assoc 2020; 9(7): e014175
CrossRef Google scholar
[20]
Li C, Tobi EW, Heijmans BT, Lumey LH. The effect of the Chinese famine on type 2 diabetes mellitus epidemics. Nat Rev Endocrinol 2019; 15(6): 313–314
CrossRef Google scholar
[21]
Yang S, Nguyen ND, Center JR, Eisman JA, Nguyen TV. Association between abdominal obesity and fracture risk: a prospective study. J Clin Endocrinol Metab 2013; 98(6): 2478–2483
CrossRef Google scholar
[22]
Nielson CM, Srikanth P, Orwoll ES. Obesity and fracture in men and women: an epidemiologic perspective. J Bone Miner Res 2012; 27(1): 1–10
CrossRef Google scholar
[23]
Meng R, Lv J, Yu C, Guo Y, Bian Z, Yang L, Chen Y, Zhang H, Chen X, Chen J, Chen Z, Qi L, Li L; China Kadoorie Biobank Collaborative Group. Prenatal famine exposure, adulthood obesity patterns and risk of type 2 diabetes. Int J Epidemiol 2018; 47(2): 399–408
CrossRef Google scholar
[24]
Ito E, Sato Y, Kobayashi T, Nakamura S, Kaneko Y, Soma T, Matsumoto T, Kimura A, Miyamoto K, Matsumoto H, Matsumoto M, Nakamura M, Sato K, Miyamoto T. Food restriction reduces cortical bone mass and serum insulin-like growth factor-1 levels and promotes uterine atrophy in mice. Biochem Biophys Res Commun 2021; 534: 165–171
CrossRef Google scholar
[25]
Pando R, Masarwi M, Shtaif B, Idelevich A, Monsonego-Ornan E, Shahar R, Phillip M, Gat-Yablonski G. Bone quality is affected by food restriction and by nutrition-induced catch-up growth. J Endocrinol 2014; 223(3): 227–239
CrossRef Google scholar
[26]
Kin CF, Shan WS, Shun LJ, Chung LP, Jean W. Experience of famine and bone health in post-menopausal women. Int J Epidemiol 2007; 36(5): 1143–1150
CrossRef Google scholar
[27]
Zong L, Cai L, Liang J, Lin W, Yao J, Huang H, Tang K, Chen L, Li L, Lin L, Chen H, Li M, Lu J, Bi Y, Wang W, Wen J, Chen G. Exposure to famine in early life and the risk of osteoporosis in adulthood: a prospective study. Endocr Pract 2019; 25(4): 299–305
CrossRef Google scholar
[28]
Mehta G, Roach HI, Langley-Evans S, Taylor P, Reading I, Oreffo RO, Aihie-Sayer A, Clarke NM, Cooper C. Intrauterine exposure to a maternal low protein diet reduces adult bone mass and alters growth plate morphology in rats. Calcif Tissue Int 2002; 71(6): 493–498
CrossRef Google scholar
[29]
Winzenberg T, Jones G. Vitamin D and bone health in childhood and adolescence. Calcif Tissue Int 2013; 92(2): 140–150
CrossRef Google scholar
[30]
Ganpule A, Yajnik CS, Fall CH, Rao S, Fisher DJ, Kanade A, Cooper C, Naik S, Joshi N, Lubree H, Deshpande V, Joglekar C. Bone mass in Indian children—relationships to maternal nutritional status and diet during pregnancy: the Pune Maternal Nutrition Study. J Clin Endocrinol Metab 2006; 91(8): 2994–3001
CrossRef Google scholar
[31]
Chevalley T, Rizzoli R. Acquisition of peak bone mass. Best Pract Res Clin Endocrinol Metab 2022; 36(2): 101616
CrossRef Google scholar
[32]
Yao WY, Li L, Jiang HR, Yu YF, Xu WH. Transgenerational associations of parental famine exposure in early life with offspring risk of adult obesity in China. Obesity (Silver Spring) 2023; 31(1): 279–289
CrossRef Google scholar
[33]
Zhang Y, Ying Y, Zhou L, Fu J, Shen Y, Ke C. Exposure to Chinese famine in early life modifies the association between hyperglycaemia and cardiovascular disease. Nutr Metab Cardiovasc Dis 2019; 29(11): 1230–1236
CrossRef Google scholar
[34]
Tobi EW, Lumey LH, Talens RP, Kremer D, Putter H, Stein AD, Slagboom PE, Heijmans BT. DNA methylation differences after exposure to prenatal famine are common and timing- and sex-specific. Hum Mol Genet 2009; 18(21): 4046–4053
CrossRef Google scholar
[35]
Tanwar VS, Ghosh S, Sati S, Ghose S, Kaur L, Kumar KA, Shamsudheen KV, Patowary A, Singh M, Jyothi V, Kommineni P, Sivasubbu S, Scaria V, Raghunath M, Mishra R, Chandak GR, Sengupta S. Maternal vitamin B12 deficiency in rats alters DNA methylation in metabolically important genes in their offspring. Mol Cell Biochem 2020; 468(1–2): 83–96
CrossRef Google scholar
[36]
Neel JV. Diabetes mellitus: a “thrifty” genotype rendered detrimental by “progress”? Am J Hum Genet 1962; 14(4): 353–362
Pubmed
[37]
Bateson P, Barker D, Clutton-Brock T, Deb D, D’Udine B, Foley RA, Gluckman P, Godfrey K, Kirkwood T, Lahr MM, McNamara J, Metcalfe NB, Monaghan P, Spencer HG, Sultan SE. Developmental plasticity and human health. Nature 2004; 430(6998): 419–421
CrossRef Google scholar
[38]
Delgado-Calle J, Fernández AF, Sainz J, Zarrabeitia MT, Sañudo C, García-Renedo R, Pérez-Núñez MI, García-Ibarbia C, Fraga MF, Riancho JA. Genome-wide profiling of bone reveals differentially methylated regions in osteoporosis and osteoarthritis. Arthritis Rheum 2013; 65(1): 197–205
CrossRef Google scholar
[39]
Slopen N, Non A, Williams DR, Roberts AL, Albert MA. Childhood adversity, adult neighborhood context, and cumulative biological risk for chronic diseases in adulthood. Psychosom Med 2014; 76(7): 481–489
CrossRef Google scholar
[40]
Miller GE, Chen E, Fok AK, Walker H, Lim A, Nicholls EF, Cole S, Kobor MS. Low early-life social class leaves a biological residue manifested by decreased glucocorticoid and increased proinflammatory signaling. Proc Natl Acad Sci USA 2009; 106(34): 14716–14721
CrossRef Google scholar
[41]
Das M, Cronin O, Keohane DM, Cormac EM, Nugent H, Nugent M, Molloy C, O’Toole PW, Shanahan F, Molloy MG, Jeffery IB. Gut microbiota alterations associated with reduced bone mineral density in older adults. Rheumatology (Oxford) 2019; 58(12): 2295–2304
CrossRef Google scholar
[42]
Caffarelli C, Alessi C, Nuti R, Gonnelli S. Divergent effects of obesity on fragility fractures. Clin Interv Aging 2014; 9: 1629–1636
[43]
De Laet C, Kanis JA, Odén A, Johanson H, Johnell O, Delmas P, Eisman JA, Kroger H, Fujiwara S, Garnero P, McCloskey EV, Mellstrom D, Melton LJ 3rd, Meunier PJ, Pols HA, Reeve J, Silman A, Tenenhouse A. Body mass index as a predictor of fracture risk: a meta-analysis. Osteoporos Int 2005; 16(11): 1330–1338
CrossRef Google scholar
[44]
Meyer HE, Willett WC, Flint AJ, Feskanich D. Abdominal obesity and hip fracture: results from the Nurses’ Health Study and the Health Professionals Follow-up Study. Osteoporos Int 2016; 27(6): 2127–2136
CrossRef Google scholar
[45]
Kauppi M, Stenholm S, Impivaara O, Mäki J, Heliövaara M, Jula A. Fall-related risk factors and heel quantitative ultrasound in the assessment of hip fracture risk: a 10-year follow-up of a nationally representative adult population sample. Osteoporos Int 2014; 25(6): 1685–1695
CrossRef Google scholar
[46]
Benetou V, Orfanos P, Benetos IS, Pala V, Evangelista A, Frasca G, Giurdanella MC, Peeters PH, van der Schouw IT, Rohrmann S, Linseisen J, Boeing H, Weikert C, Pettersson U, Van Guelpen B, Bueno de Mesquita HB, Altzibar J, Boffetta P, Trichopoulou A. Anthropometry, physical activity and hip fractures in the elderly. Injury 2011; 42(2): 188–193
CrossRef Google scholar
[47]
Zarulli V, Barthold Jones JA, Oksuzyan A, Lindahl-Jacobsen R, Christensen K, Vaupel JW. Women live longer than men even during severe famines and epidemics. Proc Natl Acad Sci USA 2018; 115(4): E832–E840
CrossRef Google scholar
[48]
Mu R, Zhang X. Why does the great Chinese famine affect the male and female survivors differently? Mortality selection versus son preference. Econ Hum Biol 2011; 9(1): 92–105
CrossRef Google scholar
[49]
Wang Y, Wan H, Chen C, Chen Y, Xia F, Han B, Li Q, Wang N, Lu Y. Association between famine exposure in early life with insulin resistance and beta cell dysfunction in adulthood. Nutr Diabetes 2020; 10(1): 18
CrossRef Google scholar

Acknowledgements

This work was supported by the Ministry of Science and Technology of China (No. 2022YFC2505202), the National Natural Science Foundation of China (Nos. 81970691 and 82170819), Shanghai Outstanding Academic Leaders Plan (No. 20XD1422800), Shanghai Medical and Health Development Foundation (No. DMRFP_I_01), Clinical Research Plan of SHDC (No. SHDC2020CR3064B), Science and Technology Committee of Shanghai (No. 20Y11905100), and Key Medical Subject of Jiading District, Shanghai (No. 2020-jdyxzdzk-01).

Electronic Supplementary Material

Supplementary material is available in the online version of this article at https://doi.org/10.1007/s11684-023-1023-9 and is accessible for authorized users.

Compliance with ethics guidelines

Conflicts of interest Hongyan Qi, Chunyan Hu, Jie Zhang, Lin Lin, Shuangyuan Wang, Hong Lin, Xiaojing Jia, Yuanyue Zhu, Yi Zhang, Xueyan Wu, Mian Li, Min Xu, Yu Xu, Tiange Wang, Zhiyun Zhao, Weiqing Wang, Yufang Bi, Meng Dai, Yuhong Chen, and Jieli Lu declare no conflict of interest.
The study was approved by the Committee on Human Research at Ruijin Hospital, Shanghai Jiao Tong University School of Medicine and the study was performed in accordance with the ethical standards as laid down in the 1964 Declaration of Helsinki and its later amendments or comparable ethical standards. Informed consent was obtained from all patients for being included in the study.

RIGHTS & PERMISSIONS

2023 Higher Education Press
AI Summary AI Mindmap
PDF(957 KB)

Accesses

Citations

Detail

Sections
Recommended

/