Passive antibody therapy in emerging infectious diseases

Xiaoming Yang

PDF(1796 KB)
PDF(1796 KB)
Front. Med. ›› 2023, Vol. 17 ›› Issue (6) : 1117-1134. DOI: 10.1007/s11684-023-1021-y
REVIEW

Passive antibody therapy in emerging infectious diseases

Author information +
History +

Abstract

The epidemic of corona virus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 and its variants of concern (VOCs) has been ongoing for over 3 years. Antibody therapies encompassing convalescent plasma, hyperimmunoglobulin, and neutralizing monoclonal antibodies (mAbs) applied in passive immunotherapy have yielded positive outcomes and played a crucial role in the early COVID-19 treatment. In this review, the development path, action mechanism, clinical research results, challenges, and safety profile associated with the use of COVID-19 convalescent plasma, hyperimmunoglobulin, and mAbs were summarized. In addition, the prospects of applying antibody therapy against VOCs was assessed, offering insights into the coping strategies for facing new infectious disease outbreaks.

Keywords

SARS-CoV-2 / COVID-19 / convalescent plasma / hyperimmunoglobulin / neutralizing monoclonal antibodies

Cite this article

Download citation ▾
Xiaoming Yang. Passive antibody therapy in emerging infectious diseases. Front. Med., 2023, 17(6): 1117‒1134 https://doi.org/10.1007/s11684-023-1021-y

References

[1]
Singh D, Yi SV. On the origin and evolution of SARS-CoV-2. Exp Mol Med 2021; 53(4): 537–547
CrossRef Google scholar
[2]
WorldHealth Organization. WHO Coronavirus (COVID-19) Dashboard. 2023. Available at the website of WHO (accessed April 15, 2023)
[3]
Sakoulas G, Geriak M, Kullar R, Greenwood KL, Habib M, Vyas A, Ghafourian M, Dintyala VNK, Haddad F. Intravenous immunoglobulin plus methylprednisolone mitigate respiratory morbidity in coronavirus disease 2019. Crit Care Explor 2020; 2(11): e0280
CrossRef Google scholar
[4]
Scialpi M, Scialpi S, Piscioli I, Battista Scalera G, Longo F. Pulmonary thromboembolism in critical ill COVID-19 patients. Int J Infect Dis 2020; 95: 361–362
CrossRef Google scholar
[5]
Zhu N, Zhang D, Wang W, Li X, Yang B, Song J, Zhao X, Huang B, Shi W, Lu R, Niu P, Zhan F, Ma X, Wang D, Xu W, Wu G, Gao GF, Tan W; China Novel Coronavirus Investigating, Research Team. A novel coronavirus from patients with pneumonia in China, 2019. N Engl J Med 2020; 382(8): 727–733
CrossRef Google scholar
[6]
Tenforde MW, Kim SS, Lindsell CJ, Billig Rose E, Shapiro NI, Files DC, Gibbs KW, Erickson HL, Steingrub JS, Smithline HA, Gong MN, Aboodi MS, Exline MC, Henning DJ, Wilson JG, Khan A, Qadir N, Brown SM, Peltan ID, Rice TW, Hager DN, Ginde AA, Stubblefield WB, Patel MM, Self WH, Feldstein LR; IVY Network Investigators; CDC COVID-19 Response Team; IVY Network Investigators. Symptom duration and risk factors for delayed return to usual health among outpatients with COVID-19 in a multistate health care systems network—United States, March–June 2020. MMWR Morb Mortal Wkly Rep 2020; 69(30): 993–998
CrossRef Google scholar
[7]
Khan Z, Karataş Y, Rahman H. Anti COVID-19 drugs: need for more clinical evidence and global action. Adv Ther 2020; 37(6): 2575–2579
CrossRef Google scholar
[8]
Duan K, Liu B, Li C, Zhang H, Yu T, Qu J, Zhou M, Chen L, Meng S, Hu Y, Peng C, Yuan M, Huang J, Wang Z, Yu J, Gao X, Wang D, Yu X, Li L, Zhang J, Wu X, Li B, Xu Y, Chen W, Peng Y, Hu Y, Lin L, Liu X, Huang S, Zhou Z, Zhang L, Wang Y, Zhang Z, Deng K, Xia Z, Gong Q, Zhang W, Zheng X, Liu Y, Yang H, Zhou D, Yu D, Hou J, Shi Z, Chen S, Chen Z, Zhang X, Yang X. Effectiveness of convalescent plasma therapy in severe COVID-19 patients. Proc Natl Acad Sci USA 2020; 117(17): 9490–9496
CrossRef Google scholar
[9]
WorldHealth Organization. Guidelines on viral inactivation and removal procedures intended to assure the viral safety of human blood plasma products. 2004. Available at the website of WHO (accessed April 15, 2023)
[10]
Yu D, Li YF, Liang H, Wu JZ, Hu Y, Peng Y, Li TJ, Hou JF, Huang WJ, Guan LD, Han R, Xing YT, Zhang Y, Liu J, Feng L, Li CY, Liang XL, Ding YL, Zhou ZJ, Ji DM, Wang FF, Yu JH, Deng K, Xia DM, Dong DM, Hu HR, Liu YJ, Fu DX, He YL, Zhou DB, Yang HC, Jia R, Ke CW, Du T, Xie Y, Zhou R, Li CS, Wang ML, Yang XM. Potent anti-SARS-CoV-2 efficacy of COVID-19 hyperimmune globulin from vaccine-immunized plasma. Adv Sci (Weinh) 2022; 9(14): e2104333
CrossRef Google scholar
[11]
Ali S, Uddin SM, Ali A, Anjum F, Ali R, Shalim E, Khan M, Ahmed I, Muhaymin SM, Bukhari U, Luxmi S, Khan AS, Quraishy S. Production of hyperimmune anti-SARS-CoV-2 intravenous immunoglobulin from pooled COVID-19 convalescent plasma. Immunotherapy 2021; 13(5): 397–407
CrossRef Google scholar
[12]
Jones BE, Brown-Augsburger PL, Corbett KS, Westendorf K, Davies J, Cujec TP, Wiethoff CM, Blackbourne JL, Heinz BA, Foster D, Higgs RE, Balasubramaniam D, Wang L, Zhang Y, Yang ES, Bidshahri R, Kraft L, Hwang Y, Žentelis S, Jepson KR, Goya R, Smith MA, Collins DW, Hinshaw SJ, Tycho SA, Pellacani D, Xiang P, Muthuraman K, Sobhanifar S, Piper MH, Triana FJ, Hendle J, Pustilnik A, Adams AC, Berens SJ, Baric RS, Martinez DR, Cross RW, Geisbert TW, Borisevich V, Abiona O, Belli HM, de Vries M, Mohamed A, Dittmann M, Samanovic MI, Mulligan MJ, Goldsmith JA, Hsieh CL, Johnson NV, Wrapp D, McLellan JS, Barnhart BC, Graham BS, Mascola JR, Hansen CL, Falconer E. The neutralizing antibody, LY-CoV555, protects against SARS-CoV-2 infection in nonhuman primates. Sci Transl Med 2021; 13(593): eabf1906
CrossRef Google scholar
[13]
Shi R, Shan C, Duan X, Chen Z, Liu P, Song J, Song T, Bi X, Han C, Wu L, Gao G, Hu X, Zhang Y, Tong Z, Huang W, Liu WJ, Wu G, Zhang B, Wang L, Qi J, Feng H, Wang FS, Wang Q, Gao GF, Yuan Z, Yan J. A human neutralizing antibody targets the receptor-binding site of SARS-CoV-2. Nature 2020; 584(7819): 120–124
CrossRef Google scholar
[14]
Pan Y, Du J, Liu J, Wu H, Gui F, Zhang N, Deng X, Song G, Li Y, Lu J, Wu X, Zhan S, Jing Z, Wang J, Yang Y, Liu J, Chen Y, Chen Q, Zhang H, Hu H, Duan K, Wang M, Wang Q, Yang X. Screening of potent neutralizing antibodies against SARS-CoV-2 using convalescent patients-derived phage-display libraries. Cell Discov 2021; 7(1): 57
CrossRef Google scholar
[15]
Hansen J, Baum A, Pascal KE, Russo V, Giordano S, Wloga E, Fulton BO, Yan Y, Koon K, Patel K, Chung KM, Hermann A, Ullman E, Cruz J, Rafique A, Huang T, Fairhurst J, Libertiny C, Malbec M, Lee WY, Welsh R, Farr G, Pennington S, Deshpande D, Cheng J, Watty A, Bouffard P, Babb R, Levenkova N, Chen C, Zhang B, Romero Hernandez A, Saotome K, Zhou Y, Franklin M, Sivapalasingam S, Lye DC, Weston S, Logue J, Haupt R, Frieman M, Chen G, Olson W, Murphy AJ, Stahl N, Yancopoulos GD, Kyratsous CA. Studies in humanized mice and convalescent humans yield a SARS-CoV-2 antibody cocktail. Science 2020; 369(6506): 1010–1014
CrossRef Google scholar
[16]
Noy-Porat T, Mechaly A, Levy Y, Makdasi E, Alcalay R, Gur D, Aftalion M, Falach R, Leviatan Ben-Arye S, Lazar S, Zauberman A, Epstein E, Chitlaru T, Weiss S, Achdout H, Edgeworth JD, Kikkeri R, Yu H, Chen X, Yitzhaki S, Shapira SC, Padler-Karavani V, Mazor O, Rosenfeld R. Therapeutic antibodies, targeting the SARS-CoV-2 spike N-terminal domain, protect lethally infected K18-hACE2 mice. iScience 2021; 24(5): 102479
CrossRef Google scholar
[17]
Suryadevara N, Shrihari S, Gilchuk P, VanBlargan LA, Binshtein E, Zost SJ, Nargi RS, Sutton RE, Winkler ES, Chen EC, Fouch ME, Davidson E, Doranz BJ, Chen RE, Shi PY, Carnahan RH, Thackray LB, Diamond MS, Crowe JE Jr. Neutralizing and protective human monoclonal antibodies recognizing the N-terminal domain of the SARS-CoV-2 spike protein. Cell 2021; 184(9): 2316–2331.e15
CrossRef Google scholar
[18]
Brandtzaeg P. Induction of secretory immunity and memory at mucosal surfaces. Vaccine 2007; 25(30): 5467–5484
CrossRef Google scholar
[19]
Pelegrin M, Naranjo-Gomez M, Piechaczyk M. Antiviral monoclonal antibodies: can they be more than simple neutralizing agents? Trends Microbiol 2015; 23(10): 653–665 doi:10.1016/j.tim.2015.07.005
Pubmed
[20]
Cunningham AC, Goh HP, Koh D. Treatment of COVID-19: old tricks for new challenges. Crit Care 2020; 24(1): 91
CrossRef Google scholar
[21]
Tso FY, Lidenge SJ, Poppe LK, Peña PB, Privatt SR, Bennett SJ, Ngowi JR, Mwaiselage J, Belshan M, Siedlik JA, Raine MA, Ochoa JB, Garcia-Diaz J, Nossaman B, Buckner L, Roberts WM, Dean MJ, Ochoa AC, West JT, Wood C. Presence of antibody-dependent cellular cytotoxicity (ADCC) against SARS-CoV-2 in COVID-19 plasma. PLoS One 2021; 16(3): e0247640
CrossRef Google scholar
[22]
Nasser R, Pelegrin M, Plays M, Gros L, Piechaczyk M. Control of regulatory T cells is necessary for vaccine-like effects of antiviral immunotherapy by monoclonal antibodies. Blood 2013; 121(7): 1102–1111
CrossRef Google scholar
[23]
Xi Y. Convalescent plasma therapy for COVID-19: a tried-and-true old strategy? Signal Transduct Target Ther 2020; 5(1): 203 doi:10.1038/s41392-020-00310-8
Pubmed
[24]
Herman JD, Wang C, Burke JS, Zur Y, Compere H, Kang J, Macvicar R, Taylor S, Shin S, Frank I, Siegel D, Tebas P, Choi GH, Shaw PA, Yoon H, Pirofski LA, Julg BD, Bar KJ, Lauffenburger D, Alter G. Nucleocapsid-specific antibody function is associated with therapeutic benefits from COVID-19 convalescent plasma therapy. Cell Rep Med 2022; 3(11): 100811
CrossRef Google scholar
[25]
Rojas M, Rodríguez Y, Monsalve DM, Acosta-Ampudia Y, Camacho B, Gallo JE, Rojas-Villarraga A, Ramírez-Santana C, Díaz-Coronado JC, Manrique R, Mantilla RD, Shoenfeld Y, Anaya JM. Convalescent plasma in Covid-19: possible mechanisms of action. Autoimmun Rev 2020; 19(7): 102554
CrossRef Google scholar
[26]
Shen C, Wang Z, Zhao F, Yang Y, Li J, Yuan J, Wang F, Li D, Yang M, Xing L, Wei J, Xiao H, Yang Y, Qu J, Qing L, Chen L, Xu Z, Peng L, Li Y, Zheng H, Chen F, Huang K, Jiang Y, Liu D, Zhang Z, Liu Y, Liu L. Treatment of 5 critically ill patients with COVID-19 with convalescent plasma. JAMA 2020; 323(16): 1582–1589
CrossRef Google scholar
[27]
Shenoy AG, Hettinger AZ, Fernandez SJ, Blumenthal J, Baez V. Early mortality benefit with COVID-19 convalescent plasma: a matched control study. Br J Haematol 2021; 192(4): 706–713
CrossRef Google scholar
[28]
Zeng H, Wang D, Nie J, Liang H, Gu J, Zhao A, Xu L, Lang C, Cui X, Guo X, Zhou C, Li H, Guo B, Zhang J, Wang Q, Fang L, Liu W, Huang Y, Mao W, Chen Y, Zou Q. The efficacy assessment of convalescent plasma therapy for COVID-19 patients: a multi-center case series. Signal Transduct Target Ther 2020; 5(1): 219
CrossRef Google scholar
[29]
Sarkar S, Soni KD, Khanna P. Convalescent plasma is a clutch at straws in COVID-19 management! A systematic review and meta-analysis. J Med Virol 2021; 93(2): 1111–1118
CrossRef Google scholar
[30]
Simonovich VA, Burgos Pratx LD, Scibona P, Beruto MV, Vallone MG, Vázquez C, Savoy N, Giunta DH, Pérez LG, Sánchez MDL, Gamarnik AV, Ojeda DS, Santoro DM, Camino PJ, Antelo S, Rainero K, Vidiella GP, Miyazaki EA, Cornistein W, Trabadelo OA, Ross FM, Spotti M, Funtowicz G, Scordo WE, Losso MH, Ferniot I, Pardo PE, Rodriguez E, Rucci P, Pasquali J, Fuentes NA, Esperatti M, Speroni GA, Nannini EC, Matteaccio A, Michelangelo HG, Follmann D, Lane HC, Belloso WH; PlasmAr Study Group. A randomized trial of convalescent plasma in Covid-19 severe pneumonia. N Engl J Med 2021; 384(7): 619–629
CrossRef Google scholar
[31]
Joyner MJ, Carter RE, Senefeld JW, Klassen SA, Mills JR, Johnson PW, Theel ES, Wiggins CC, Bruno KA, Klompas AM, Lesser ER, Kunze KL, Sexton MA, Diaz Soto JC, Baker SE, Shepherd JRA, van Helmond N, Verdun NC, Marks P, van Buskirk CM, Winters JL, Stubbs JR, Rea RF, Hodge DO, Herasevich V, Whelan ER, Clayburn AJ, Larson KF, Ripoll JG, Andersen KJ, Buras MR, Vogt MNP, Dennis JJ, Regimbal RJ, Bauer PR, Blair JE, Paneth NS, Fairweather D, Wright RS, Casadevall A. Convalescent plasma antibody levels and the risk of death from Covid-19. N Engl J Med 2021; 384(11): 1015–1027
CrossRef Google scholar
[32]
Fish M, Rynne J, Jennings A, Lam C, Lamikanra AA, Ratcliff J, Cellone-Trevelin S, Timms E, Jiriha J, Tosi I, Pramanik R, Simmonds P, Seth S, Williams J, Gordon AC, Knight J, Smith DJ, Whalley J, Harrison D, Rowan K, Harvala H, Klenerman P, Estcourt L, Menon DK, Roberts D, Shankar-Hari M; REMAP-CAP Immunoglobulin Domain UK Investigators. Coronavirus disease 2019 subphenotypes and differential treatment response to convalescent plasma in critically ill adults: secondary analyses of a randomized clinical trial. Intensive Care Med 2022; 48(11): 1525–1538
CrossRef Google scholar
[33]
LiLZhangWHuYTongXZhengSYangJKongYRenLWeiQMeiHHuCTaoCYangRWangJYuYGuoYWuXXuZZengLXiongNChenLWangJManNLiuYXuHDengEZhangXLiCWangCSuSZhangLWangJWuYLiuZ. Effect of convalescent plasma therapy on time to clinical improvement in patients with severe and life-threatening COVID-19: a randomized clinical trial. JAMA 2020; 324(5): 460–460 Erratum in: JAMA 2020; 4; 324(5): 519 doi:10.1001/jama.2020.10044
Pubmed
[34]
RECOVERY Collaborative Group. Convalescent plasma in patients admitted to hospital with COVID-19 (RECOVERY): a randomised controlled, open-label, platform trial. Lancet 2021; 397(10289): 2049–2059
CrossRef Google scholar
[35]
Agarwal A, Mukherjee A, Kumar G, Chatterjee P, Bhatnagar T, Malhotra P; PLACID Trial Collaborators. Convalescent plasma in the management of moderate covid-19 in adults in India: open label phase II multicentre randomised controlled trial (PLACID Trial). BMJ 2020; 371: m3939
CrossRef Google scholar
[36]
Libster R, Pérez Marc G, Wappner D, Coviello S, Bianchi A, Braem V, Esteban I, Caballero MT, Wood C, Berrueta M, Rondan A, Lescano G, Cruz P, Ritou Y, Fernández Viña V, Álvarez Paggi D, Esperante S, Ferreti A, Ofman G, Ciganda Á, Rodriguez R, Lantos J, Valentini R, Itcovici N, Hintze A, Oyarvide ML, Etchegaray C, Neira A, Name I, Alfonso J, López Castelo R, Caruso G, Rapelius S, Alvez F, Etchenique F, Dimase F, Alvarez D, Aranda SS, Sánchez Yanotti C, De Luca J, Jares Baglivo S, Laudanno S, Nowogrodzki F, Larrea R, Silveyra M, Leberzstein G, Debonis A, Molinos J, González M, Perez E, Kreplak N, Pastor Argüello S, Gibbons L, Althabe F, Bergel E, Polack FP; Fundación INFANT–COVID-19 Group. Early high-titer plasma therapy to prevent severe Covid-19 in older adults. N Engl J Med 2021; 384(7): 610–618
CrossRef Google scholar
[37]
JoynerMJSenefeldJWKlassenSAMillsJRJohnsonPWTheelESWigginsCCBrunoKAKlompasAMLesserERKunzeKLSextonMADiaz SotoJCBakerSEShepherdJRAvan HelmondNvan BuskirkCMWintersJLStubbsJRReaRFHodgeDOHerasevichVWhelanERClayburnAJLarsonKFRipollJGAndersenKJBurasMRVogtMNPDennisJJRegimbalRJBauerPRBlairJEPanethNSFairweatherDWrightRSCarterRECasadevallA. Effect of convalescent plasma on mortality among hospitalized patients with COVID-19: initial three-month experience. medRxiv 2020; doi:10.1101/2020.08.12.20169359
[38]
Joyner MJ, Bruno KA, Klassen SA, Kunze KL, Johnson PW, Lesser ER, Wiggins CC, Senefeld JW, Klompas AM, Hodge DO, Shepherd JRA, Rea RF, Whelan ER, Clayburn AJ, Spiegel MR, Baker SE, Larson KF, Ripoll JG, Andersen KJ, Buras MR, Vogt MNP, Herasevich V, Dennis JJ, Regimbal RJ, Bauer PR, Blair JE, van Buskirk CM, Winters JL, Stubbs JR, van Helmond N, Butterfield BP, Sexton MA, Diaz Soto JC, Paneth NS, Verdun NC, Marks P, Casadevall A, Fairweather D, Carter RE, Wright RS. Safety update: COVID-19 convalescent plasma in 20,000 hospitalized patients. Mayo Clin Proc 2020; 95(9): 1888–1897
CrossRef Google scholar
[39]
Focosi D, Franchini M. COVID-19 convalescent plasma therapy: hit fast, hit hard!. Vox Sang 2021; 116(9): 935–942
CrossRef Google scholar
[40]
Focosi D, Franchini M, Pirofski LA, Burnouf T, Paneth N, Joyner MJ, Casadevall A. COVID-19 convalescent plasma and clinical trials: understanding conflicting outcomes. Clin Microbiol Rev 2022; 35(3): e0020021
CrossRef Google scholar
[41]
LevineACFukutaYHuamanMAOuJMeisenbergBRPatelBPaxtonJHHanleyDFRijndersBJGharbharanARokxCZwagingaJJAlemanyAMitjàOOuchiDMillat-MartinezPDurkalski-MauldinVKorleyFKDumontLJCallawayCWLibsterRMarcGPWappnerDEstebanIPolackFSullivanDJ. COVID-19 convalescent plasma outpatient therapy to prevent outpatient hospitalization: a meta-analysis of individual participant data from five randomized trials. medRxiv 2022; doi:10.1101/2022.12.16.22283585
[42]
Sullivan DJ, Gebo KA, Shoham S, Bloch EM, Lau B, Shenoy AG, Mosnaim GS, Gniadek TJ, Fukuta Y, Patel B, Heath SL, Levine AC, Meisenberg BR, Spivak ES, Anjan S, Huaman MA, Blair JE, Currier JS, Paxton JH, Gerber JM, Petrini JR, Broderick PB, Rausch W, Cordisco ME, Hammel J, Greenblatt B, Cluzet VC, Cruser D, Oei K, Abinante M, Hammitt LL, Sutcliffe CG, Forthal DN, Zand MS, Cachay ER, Raval JS, Kassaye SG, Foster EC, Roth M, Marshall CE, Yarava A, Lane K, McBee NA, Gawad AL, Karlen N, Singh A, Ford DE, Jabs DA, Appel LJ, Shade DM, Ehrhardt S, Baksh SN, Laeyendecker O, Pekosz A, Klein SL, Casadevall A, Tobian AAR, Hanley DF. Early outpatient treatment for Covid-19 with convalescent plasma. N Engl J Med 2022; 386(18): 1700–1711
CrossRef Google scholar
[43]
Bartelt LA, Markmann AJ, Nelson B, Keys J, Root H, Henderson HI, Kuruc J, Baker C, Bhowmik DR, Hou YJ, Premkumar L, Cornaby C, Schmitz JL, Weiss S, Park Y, Baric R, de Silva AM, Lachiewicz A, Napravnik S, van Duin D, Margolis DM. Outcomes of convalescent plasma with defined high versus lower neutralizing antibody titers against SARS-CoV-2 among hospitalized patients: coronavirus inactivating plasma (CoVIP) study. MBio 2022; 13(5): e0175122
CrossRef Google scholar
[44]
Denkinger CM, Janssen M, Schäkel U, Gall J, Leo A, Stelmach P, Weber SF, Krisam J, Baumann L, Stermann J, Merle U, Weigand MA, Nusshag C, Bullinger L, Schrezenmeier JF, Bornhäuser M, Alakel N, Witzke O, Wolf T, Vehreschild MJGT, Schmiedel S, Addo MM, Herth F, Kreuter M, Tepasse PR, Hertenstein B, Hänel M, Morgner A, Kiehl M, Hopfer O, Wattad MA, Schimanski CC, Celik C, Pohle T, Ruhe M, Kern WV, Schmitt A, Lorenz HM, Souto-Carneiro M, Gaeddert M, Halama N, Meuer S, Kräusslich HG, Müller B, Schnitzler P, Parthé S, Bartenschlager R, Gronkowski M, Klemmer J, Schmitt M, Dreger P, Kriegsmann K, Schlenk RF, Müller-Tidow C. Anti-SARS-CoV-2 antibody-containing plasma improves outcome in patients with hematologic or solid cancer and severe COVID-19: a randomized clinical trial. Nat Can 2023; 4(1): 96–107
CrossRef Google scholar
[45]
Hueso T, Godron AS, Lanoy E, Pacanowski J, Levi LI, Gras E, Surgers L, Guemriche A, Meynard JL, Pirenne F, Idri S, Tiberghien P, Morel P, Besson C, Duléry R, Lamure S, Hermine O, Gagneux-Brunon A, Freymond N, Grabar S, Lacombe K. Convalescent plasma improves overall survival in patients with B-cell lymphoid malignancy and COVID-19: a longitudinal cohort and propensity score analysis. Leukemia 2022; 36(4): 1025–1034
CrossRef Google scholar
[46]
Senefeld JW, Franchini M, Mengoli C, Cruciani M, Zani M, Gorman EK, Focosi D, Casadevall A, Joyner MJ. COVID-19 convalescent plasma for the treatment of immunocompromised patients: a systematic review and meta-analysis. JAMA Netw Open 2023; 6(1): e2250647
CrossRef Google scholar
[47]
Zhai P, Ding Y, Wu X, Long J, Zhong Y, Li Y. The epidemiology, diagnosis and treatment of COVID-19. Int J Antimicrob Agents 2020; 55(5): 105955
CrossRef Google scholar
[48]
Tahmasebi S, Khosh E, Esmaeilzadeh A. The outlook for diagnostic purposes of the 2019-novel coronavirus disease. J Cell Physiol 2020; 235(12): 9211–9229
CrossRef Google scholar
[49]
Keith P, Day M, Perkins L, Moyer L, Hewitt K, Wells A. A novel treatment approach to the novel coronavirus: an argument for the use of therapeutic plasma exchange for fulminant COVID-19. Crit Care 2020; 24(1): 128
CrossRef Google scholar
[50]
Qin J, Wang G, Han D. Benefits of plasma exchange on mortality in patients with COVID-19: a systematic review and meta-analysis. Int J Infect Dis 2022; 122: 332–336
CrossRef Google scholar
[51]
Joyner MJ, Paneth N, Casadevall A. Use of convalescent plasma in the treatment of COVID-19. Nat Rev Nephrol 2023; 19(4): 271–271
CrossRef Google scholar
[52]
NationalHealth Commission & National Administration of Traditional Chinese Medicine. Diagnosis and Treatment Protocol for COVID-9 (Trial Version 9). 2022. Available at the website of National Health Commission (accessed April 15, 2023)
[53]
FoodAdministrationDrug. Clinical memorandum for the emergency use authorization of COVID-19 convalescent plasma. 2020. Available at the website of FDA (accessed April 15, 2023)
[54]
WorldHealth Organization. WHO recommends against the use of convalescent plasma to treat COVID-19. 2021. Available at the website of WHO (accessed April 15, 2023)
[55]
FoodAdministrationDrug. Fact sheet for health care providers: Emergency Use Authorization (EUA) of COVID-19 convalescent plasma for treatment of coronavirus disease 2019 (COVID-19). 2021. Available at the website of FDA (accessed April 18, 2023)
[56]
Estcourt LJ, Cohn CS, Pagano MB, Iannizzi C, Kreuzberger N, Skoetz N, Allen ES, Bloch EM, Beaudoin G, Casadevall A, Devine DV, Foroutan F, Gniadek TJ, Goel R, Gorlin J, Grossman BJ, Joyner MJ, Metcalf RA, Raval JS, Rice TW, Shaz BH, Vassallo RR, Winters JL, Tobian AAR. Clinical practice guidelines from the Association for the Advancement of Blood and Biotherapies (AABB): COVID-19 convalescent plasma. Ann Intern Med 2022; 175(9): 1310–1321
CrossRef Google scholar
[57]
Levin MJ, Duchon JM, Swamy GK, Gershon AA. Varicella zoster immune globulin (VARIZIG) administration up to 10 days after varicella exposure in pregnant women, immunocompromised participants, and infants: varicella outcomes and safety results from a large, open-label, expanded-access program. PLoS One 2019; 14(7): e0217749
CrossRef Google scholar
[58]
Zubkova I, Zhao Y, Cui Q, Kachko A, Gimie Y, Chabot S, Murphy T, Schillie S, Major M. Assessing the impact of hepatitis B immune globulin (HBIG) on responses to hepatitis B vaccine during co-administration. Vaccine 2023; 41(4): 955–964
CrossRef Google scholar
[59]
FoodAdministrationDrug. Products approved for anthrax. Available at the website of FDA (accessed April 15, 2023)
[60]
Iannizzi C, Chai KL, Piechotta V, Valk SJ, Kimber C, Monsef I, Wood EM, Lamikanra AA, Roberts DJ, McQuilten Z, So-Osman C, Jindal A, Cryns N, Estcourt LJ, Kreuzberger N, Skoetz N. Convalescent plasma for people with COVID-19: a living systematic review. Cochrane Database Syst Rev 2023; 5(5): CD013600
CrossRef Google scholar
[61]
Focosi D, Tuccori M, Franchini M. The road towards polyclonal anti-SARS-CoV-2 immunoglobulins (hyperimmune serum) for passive immunization in COVID-19. Life (Basel) 2021; 11(2): 144
CrossRef Google scholar
[62]
Perotti C, Baldanti F, Bruno R, Del Fante C, Seminari E, Casari S, Percivalle E, Glingani C, Musella V, Belliato M, Garuti M, Meloni F, Frigato M, Di Sabatino A, Klersy C, De Donno G, Franchini M; Covid-Plasma Task Force. Mortality reduction in 46 severe Covid-19 patients treated with hyperimmune plasma. A proof of concept single arm multicenter trial. Haematologica 2020; 105(12): 2834–2840
CrossRef Google scholar
[63]
Ali S, Uddin SM, Shalim E, Sayeed MA, Anjum F, Saleem F, Muhaymin SM, Ali A, Ali MR, Ahmed I, Mushtaq T, Khan S, Shahab F, Luxmi S, Kumar S, Arain H, Khan M, Khan AS, Mehmood H, Rasheed A, Jahangeer A, Baig S, Quraishy S. Hyperimmune anti-COVID-19 IVIG (C-IVIG) treatment in severe and critical COVID-19 patients: a phase I/II randomized control trial. EClinicalMedicine 2021; 36: 100926
CrossRef Google scholar
[64]
ITAC (INSIGHT 013) Study Group. Hyperimmune immunoglobulin for hospitalised patients with COVID-19 (ITAC): a double-blind, placebo-controlled, phase 3, randomised trial. Lancet 2022; 399(10324): 530–540
CrossRef Google scholar
[65]
Shao Z, Feng Y, Zhong L, Xie Q, Lei M, Liu Z, Wang C, Ji J, Liu H, Gu Z, Hu Z, Su L, Wu M, Liu Z. Clinical efficacy of intravenous immunoglobulin therapy in critical ill patients with COVID-19: a multicenter retrospective cohort study. Clin Transl Immunology 2020; 9(10): e1192
CrossRef Google scholar
[66]
Bonam SR, Kaveri SV, Sakuntabhai A, Gilardin L, Bayry J. Adjunct immunotherapies for the management of severely ill COVID-19 patients. Cell Rep Med 2020; 1(2): 100016
CrossRef Google scholar
[67]
Xie Y, Cao S, Dong H, Li Q, Chen E, Zhang W, Yang L, Fu S, Wang R. Effect of regular intravenous immunoglobulin therapy on prognosis of severe pneumonia in patients with COVID-19. J Infect 2020; 81(2): 318–356
CrossRef Google scholar
[68]
SrivastavaRRamakrishnaCCantinE. Anti-inflammatory activity of intravenous immunoglobulins protects against West Nile virus encephalitis. J Gen Virol 2015; 96(Pt 6): 1347–1357 doi:10.1099/vir.0.000079
Pubmed
[69]
Chan KR, Zhang SL, Tan HC, Chan YK, Chow A, Lim AP, Vasudevan SG, Hanson BJ, Ooi EE. Ligation of Fc gamma receptor IIB inhibits antibody-dependent enhancement of dengue virus infection. Proc Natl Acad Sci USA 2011; 108(30): 12479–12484
CrossRef Google scholar
[70]
Wittenauer R, Pecenka C, Baral R. Cost of childhood RSV management and cost-effectiveness of RSV interventions: a systematic review from a low- and middle-income country perspective. BMC Med 2023; 21(1): 121
CrossRef Google scholar
[71]
Blair HA. Ibalizumab: a review in multidrug-resistant HIV-1 infection. Drugs 2020; 80(2): 189–196
CrossRef Google scholar
[72]
Chen P, Nirula A, Heller B, Gottlieb RL, Boscia J, Morris J, Huhn G, Cardona J, Mocherla B, Stosor V, Shawa I, Adams AC, Van Naarden J, Custer KL, Shen L, Durante M, Oakley G, Schade AE, Sabo J, Patel DR, Klekotka P, Skovronsky DM; BLAZE-1 Investigators. SARS-CoV-2 neutralizing antibody LY-CoV555 in outpatients with Covid-19. N Engl J Med 2021; 384(3): 229–237
CrossRef Google scholar
[73]
Weinreich DM, Sivapalasingam S, Norton T, Ali S, Gao H, Bhore R, Musser BJ, Soo Y, Rofail D, Im J, Perry C, Pan C, Hosain R, Mahmood A, Davis JD, Turner KC, Hooper AT, Hamilton JD, Baum A, Kyratsous CA, Kim Y, Cook A, Kampman W, Kohli A, Sachdeva Y, Graber X, Kowal B, DiCioccio T, Stahl N, Lipsich L, Braunstein N, Herman G, Yancopoulos GD; Trial Investigators. REGN-COV2, a neutralizing antibody cocktail, in outpatients with Covid-19. N Engl J Med 2021; 384(3): 238–251
CrossRef Google scholar
[74]
Gottlieb RL, Nirula A, Chen P, Boscia J, Heller B, Morris J, Huhn G, Cardona J, Mocherla B, Stosor V, Shawa I, Kumar P, Adams AC, Van Naarden J, Custer KL, Durante M, Oakley G, Schade AE, Holzer TR, Ebert PJ, Higgs RE, Kallewaard NL, Sabo J, Patel DR, Klekotka P, Shen L, Skovronsky DM. Effect of bamlanivimab as monotherapy or in combination with etesevimab on viral load in patients with mild to moderate COVID-19: a randomized clinical trial. JAMA 2021; 325(7): 632–644
CrossRef Google scholar
[75]
Gupta A, Gonzalez-Rojas Y, Juarez E, Crespo Casal M, Moya J, Falci DR, Sarkis E, Solis J, Zheng H, Scott N, Cathcart AL, Hebner CM, Sager J, Mogalian E, Tipple C, Peppercorn A, Alexander E, Pang PS, Free A, Brinson C, Aldinger M, Shapiro AE; COMET-ICE Investigators. Early treatment for Covid-19 with SARS-CoV-2 neutralizing antibody sotrovimab. N Engl J Med 2021; 385(21): 1941–1950
CrossRef Google scholar
[76]
Levin MJ, Ustianowski A, De Wit S, Launay O, Avila M, Templeton A, Yuan Y, Seegobin S, Ellery A, Levinson DJ, Ambery P, Arends RH, Beavon R, Dey K, Garbes P, Kelly EJ, Koh GCKW, Near KA, Padilla KW, Psachoulia K, Sharbaugh A, Streicher K, Pangalos MN, Esser MT; PROVENT Study Group. Intramuscular AZD7442 (tixagevimab-cilgavimab) for prevention of Covid-19. N Engl J Med 2022; 386(23): 2188–2200
CrossRef Google scholar
[77]
Hoy SM. Amubarvimab/romlusevimab: first approval. Drugs 2022; 82(12): 1327–1331
CrossRef Google scholar
[78]
Huang C, Wang Y, Li X, Ren L, Zhao J, Hu Y, Zhang L, Fan G, Xu J, Gu X, Cheng Z, Yu T, Xia J, Wei Y, Wu W, Xie X, Yin W, Li H, Liu M, Xiao Y, Gao H, Guo L, Xie J, Wang G, Jiang R, Gao Z, Jin Q, Wang J, Cao B. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet 2020; 395(10223): 497–506
CrossRef Google scholar
[79]
Gaylis NB, Ritter A, Kelly SA, Pourhassan NZ, Tiwary M, Sacha JB, Hansen SG, Recknor C, Yang OO. Reduced cell surface levels of C-C chemokine receptor 5 and immunosuppression in long coronavirus disease 2019 syndrome. Clin Infect Dis 2022; 75(7): 1232–1234
CrossRef Google scholar
[80]
Canziani LM, Trovati S, Brunetta E, Testa A, De Santis M, Bombardieri E, Guidelli G, Albano G, Folci M, Squadroni M, Beretta GD, Ciccarelli M, Castoldi M, Lleo A, Aghemo A, Vernile L, Malesci A, Omodei P, Angelini C, Badalamenti S, Cecconi M, Cremonesi A, Selmi C; Humanitas, Gavazzeni/Castelli COVID-19 Task Forces. Interleukin-6 receptor blocking with intravenous tocilizumab in COVID-19 severe acute respiratory distress syndrome: a retrospective case-control survival analysis of 128 patients. J Autoimmun 2020; 114: 102511
CrossRef Google scholar
[81]
Temesgen Z, Kelley CF, Cerasoli F, Kilcoyne A, Chappell D, Durrant C, Ahmed O, Chappell G, Catterson V, Polk C, Badley A, Marconi VC. C reactive protein utilisation, a biomarker for early COVID-19 treatment, improves lenzilumab efficacy: results from the randomised phase 3 ‘LIVE-AIR’ trial. Thorax 2023; 78(6): 606–616
CrossRef Google scholar
[82]
FoodAdministrationDrug. Coronavirus (COVID-19) update: FDA revokes emergency use authorization for monoclonal antibody bamlanivimab. 2020. Available at the website of FDA (accessed April 15, 2023)
[83]
Deeks ED. Casirivimab/imdevimab: first approval. Drugs 2021; 81(17): 2047–2055
CrossRef Google scholar
[84]
FoodAdministrationDrug. FDA authorizes bamlanivimab and etesevimab monoclonal antibody therapy for post-exposure prophylaxis (prevention) for COVID-19. 2021. Available at the website of FDA (accessed April 15, 2023)
[85]
Heo YA. Sotrovimab: first approval. Drugs 2022; 82(4): 477–484
CrossRef Google scholar
[86]
Keam SJ. Tixagevimab + cilgavimab: first approval. Drugs 2022; 82(9): 1001–1010
CrossRef Google scholar
[87]
FoodAdministrationDrug. FDA updates on bebtelovimab. 2023. Available at the website of FDA (accessed April 15, 2023)
[88]
Syed YY. Regdanvimab: first approval. Drugs 2021; 81(18): 2133–2137
CrossRef Google scholar
[89]
DeFrancesco L. COVID-19 antibodies on trial. Nat Biotechnol 2020; 38(11): 1242–1252
CrossRef Google scholar
[90]
Lu J, Yin Q, Pei R, Zhang Q, Qu Y, Pan Y, Sun L, Gao D, Liang C, Yang J, Wu W, Li J, Cui Z, Wang Z, Li X, Li D, Wang S, Duan K, Guan W, Liang M, Yang X. Nasal delivery of broadly neutralizing antibodies protects mice from lethal challenge with SARS-CoV-2 delta and omicron variants. Virol Sin 2022; 37(2): 238–247
CrossRef Google scholar
[91]
Ku Z, Xie X, Hinton PR, Liu X, Ye X, Muruato AE, Ng DC, Biswas S, Zou J, Liu Y, Pandya D, Menachery VD, Rahman S, Cao YA, Deng H, Xiong W, Carlin KB, Liu J, Su H, Haanes EJ, Keyt BA, Zhang N, Carroll SF, Shi PY, An Z. Nasal delivery of an IgM offers broad protection from SARS-CoV-2 variants. Nature 2021; 595(7869): 718–723
CrossRef Google scholar
[92]
Li C, Zhan W, Yang Z, Tu C, Hu G, Zhang X, Song W, Du S, Zhu Y, Huang K, Kong Y, Zhang M, Mao Q, Gu X, Zhang Y, Xie Y, Deng Q, Song Y, Chen Z, Lu L, Jiang S, Wu Y, Sun L, Ying T. Broad neutralization of SARS-CoV-2 variants by an inhalable bispecific single-domain antibody. Cell 2022; 185(8): 1389–1401.e18
CrossRef Google scholar
[93]
Sheridan C. Convalescent serum lines up as first-choice treatment for coronavirus. Nat Biotechnol 2020; 38(6): 655–658
CrossRef Google scholar
[94]
Klingler J, Weiss S, Itri V, Liu X, Oguntuyo KY, Stevens C, Ikegame S, Hung CT, Enyindah-Asonye G, Amanat F, Baine I, Arinsburg S, Bandres JC, Kojic EM, Stoever J, Jurczyszak D, Bermudez-Gonzalez M, Nádas A, Liu S, Lee B, Zolla-Pazner S, Hioe CE. Role of immunoglobulin M and A antibodies in the neutralization of severe acute respiratory syndrome coronavirus 2. J Infect Dis 2021; 223(6): 957–970
CrossRef Google scholar
[95]
Misbah SA, Chapel HM. Adverse effects of intravenous immunoglobulin. Drug Saf 1993; 9(4): 254–262
CrossRef Google scholar
[96]
Zhou D, Duyvesteyn HME, Chen CP, Huang CG, Chen TH, Shih SR, Lin YC, Cheng CY, Cheng SH, Huang YC, Lin TY, Ma C, Huo J, Carrique L, Malinauskas T, Ruza RR, Shah PNM, Tan TK, Rijal P, Donat RF, Godwin K, Buttigieg KR, Tree JA, Radecke J, Paterson NG, Supasa P, Mongkolsapaya J, Screaton GR, Carroll MW, Gilbert-Jaramillo J, Knight ML, James W, Owens RJ, Naismith JH, Townsend AR, Fry EE, Zhao Y, Ren J, Stuart DI, Huang KA. Structural basis for the neutralization of SARS-CoV-2 by an antibody from a convalescent patient. Nat Struct Mol Biol 2020; 27(10): 950–958
CrossRef Google scholar
[97]
Vandeberg P, Cruz M, Diez JM, Merritt WK, Santos B, Trukawinski S, Wellhouse A, Jose M, Willis T. Production of anti-SARS-CoV-2 hyperimmune globulin from convalescent plasma. Transfusion 2021; 61(6): 1705–1709
CrossRef Google scholar
[98]
Burnouf T, Gathof B, Bloch EM, Bazin R, de Angelis V, Patidar GK, Rastvorceva RMG, Oreh A, Goel R, Rahimi-Levene N, Hindawi S, Al-Riyami AZ, So-Osman C; ISBT COVID-19 Convalescent Plasma Working Group. Production and quality assurance of human polyclonal hyperimmune immunoglobulins against SARS-CoV-2. Transfus Med Rev 2022; 36(3): 125–132
CrossRef Google scholar
[99]
Wolberg AS, Aleman MM, Leiderman K, Machlus KR. Procoagulant activity in hemostasis and thrombosis: Virchow’s triad revisited. Anesth Analg 2012; 114(2): 275–285
CrossRef Google scholar
[100]
Hung IFN, To KKW, Lee CK, Lee KL, Yan WW, Chan K, Chan WM, Ngai CW, Law KI, Chow FL, Liu R, Lai KY, Lau CCY, Liu SH, Chan KH, Lin CK, Yuen KY. Hyperimmune IV immunoglobulin treatment: a multicenter double-blind randomized controlled trial for patients with severe 2009 influenza A(H1N1) infection. Chest 2013; 144(2): 464–473
CrossRef Google scholar
[101]
Khamsi R. Rogue antibodies could be driving severe COVID-19. Nature 2021; 590(7844): 29–31
CrossRef Google scholar
[102]
Gaudinski MR, Coates EE, Novik L, Widge A, Houser KV, Burch E, Holman LA, Gordon IJ, Chen GL, Carter C, Nason M, Sitar S, Yamshchikov G, Berkowitz N, Andrews C, Vazquez S, Laurencot C, Misasi J, Arnold F, Carlton K, Lawlor H, Gall J, Bailer RT, McDermott A, Capparelli E, Koup RA, Mascola JR, Graham BS, Sullivan NJ, Ledgerwood JE; VRC 608 Study team. Safety, tolerability, pharmacokinetics, and immunogenicity of the therapeutic monoclonal antibody mAb114 targeting Ebola virus glycoprotein (VRC 608): an open-label phase 1 study. Lancet 2019; 393(10174): 889–898
CrossRef Google scholar
[103]
Domachowske JB, Khan AA, Esser MT, Jensen K, Takas T, Villafana T, Dubovsky F, Griffin MP. Safety, tolerability and pharmacokinetics of MEDI8897, an extended half-life single-dose respiratory syncytial virus prefusion f-targeting monoclonal antibody administered as a single dose to healthy preterm infants. Pediatr Infect Dis J 2018; 37(9): 886–892
CrossRef Google scholar
[104]
Song R, Zeng G, Yu J, Meng X, Chen X, Li J, Xie X, Lian X, Zhang Z, Cao Y, Yin W, Jin R. Post-exposure prophylaxis with SA58 (anti-SARS-CoV-2 monoclonal antibody) nasal spray for the prevention of symptomatic COVID-19 in healthy adult workers: a randomized, single-blind, placebo-controlled clinical study. Emerg Microbes Infect 2023; 12(1): 2212806
CrossRef Google scholar
[105]
Focosi D, Franchini M. Passive immunotherapies for COVID-19: the subtle line between standard and hyperimmune immunoglobulins is getting invisible. Rev Med Virol 2022; 32(4): e2341
CrossRef Google scholar
[106]
Takashita E, Kinoshita N, Yamayoshi S, Sakai-Tagawa Y, Fujisaki S, Ito M, Iwatsuki-Horimoto K, Chiba S, Halfmann P, Nagai H, Saito M, Adachi E, Sullivan D, Pekosz A, Watanabe S, Maeda K, Imai M, Yotsuyanagi H, Mitsuya H, Ohmagari N, Takeda M, Hasegawa H, Kawaoka Y. Efficacy of antibodies and antiviral drugs against Covid-19 Omicron variant. N Engl J Med 2022; 386(10): 995–998
CrossRef Google scholar
[107]
Schubert M, Bertoglio F, Steinke S, Heine PA, Ynga-Durand MA, Maass H, Sammartino JC, Cassaniti I, Zuo F, Du L, Korn J, Milošević M, Wenzel EV, Krstanović F, Polten S, Pribanić-Matešić M, Brizić I, Baldanti F, Hammarström L, Dübel S, Šustić A, Marcotte H, Strengert M, Protić A, Piralla A, Pan-Hammarström Q, Čičin-Šain L, Hust M. Human serum from SARS-CoV-2-vaccinated and COVID-19 patients shows reduced binding to the RBD of SARS-CoV-2 Omicron variant. BMC Med 2022; 20(1): 102
CrossRef Google scholar
[108]
Andreano E, Piccini G, Licastro D, Casalino L, Johnson NV, Paciello I, Dal Monego S, Pantano E, Manganaro N, Manenti A, Manna R, Casa E, Hyseni I, Benincasa L, Montomoli E, Amaro RE, McLellan JS, Rappuoli R. SARS-CoV-2 escape from a highly neutralizing COVID-19 convalescent plasma. Proc Natl Acad Sci USA 2021; 118(36): e2103154118
CrossRef Google scholar
[109]
Wang Q, Iketani S, Li Z, Liu L, Guo Y, Huang Y, Bowen AD, Liu M, Wang M, Yu J, Valdez R, Lauring AS, Sheng Z, Wang HH, Gordon A, Liu L, Ho DD. Alarming antibody evasion properties of rising SARS-CoV-2 BQ and XBB subvariants. Cell 2023; 186(2): 279–286.e8
CrossRef Google scholar
[110]
Yi C, Sun X, Lin Y, Gu C, Ding L, Lu X, Yang Z, Zhang Y, Ma L, Gu W, Qu A, Zhou X, Li X, Xu J, Ling Z, Xie Y, Lu H, Sun B. Comprehensive mapping of binding hot spots of SARS-CoV-2 RBD-specific neutralizing antibodies for tracking immune escape variants. Genome Med 2021; 13(1): 164
CrossRef Google scholar
[111]
Wu L, Zhou L, Mo M, Liu T, Wu C, Gong C, Lu K, Gong L, Zhu W, Xu Z. SARS-CoV-2 Omicron RBD shows weaker binding affinity than the currently dominant Delta variant to human ACE2. Signal Transduct Target Ther 2022; 7(1): 8
CrossRef Google scholar
[112]
Guo H, Gao Y, Li T, Li T, Lu Y, Zheng L, Liu Y, Yang T, Luo F, Song S, Wang W, Yang X, Nguyen HC, Zhang H, Huang A, Jin A, Yang H, Rao Z, Ji X. Structures of Omicron spike complexes and implications for neutralizing antibody development. Cell Rep 2022; 39(5): 110770
CrossRef Google scholar
[113]
Mannar D, Saville JW, Zhu X, Srivastava SS, Berezuk AM, Tuttle KS, Marquez AC, Sekirov I, Subramaniam S. SARS-CoV-2 Omicron variant: antibody evasion and cryo-EM structure of spike protein-ACE2 complex. Science 2022; 375(6582): 760–764
CrossRef Google scholar
[114]
Yue C, Song W, Wang L, Jian F, Chen X, Gao F, Shen Z, Wang Y, Wang X, Cao Y. ACE2 binding and antibody evasion in enhanced transmissibility of XBB.1.5. Lancet Infect Dis 2023; 23(3): 278–280
CrossRef Google scholar
[115]
QianWZhitengLYichengGIanAMShoIMichaelLJianYRiccardoVAdamSLZizhangSAubreeGLihongLDavidDH. Evolving antibody evasion and receptor affinity of the Omicron BA.2.75 sublineage of SARS-CoV-2. bioRxiv 2023; doi:10.1101/2023.03.22.533805
[116]
Awasthi M, Golding H, Khurana S. Severe acute respiratory syndrome coronavirus 2 hyperimmune intravenous human immunoglobulins neutralizes Omicron subvariants BA.1, BA.2, BA.2.12.1, BA.3, and BA.4/BA.5 for treatment of coronavirus disease 2019. Clin Infect Dis 2023; 76(3): e503–e506
CrossRef Google scholar
[117]
Focosi D, Joyner MJ, Casadevall A. Recent hybrid plasma better neutralizes Omicron sublineages than old hyperimmune serum. Clin Infect Dis 2023; 76(3): 554
CrossRef Google scholar
[118]
Cao Y, Jian F, Zhang Z, Yisimayi A, Hao X, Bao L, Yuan F, Yu Y, Du S, Wang J, Xiao T, Song W, Zhang Y, Liu P, An R, Wang P, Wang Y, Yang S, Niu X, Zhang Y, Gu Q, Shao F, Hu Y, Yin W, Zheng A, Wang Y, Qin C, Jin R, Xiao J, Xie XS. Rational identification of potent and broad sarbecovirus-neutralizing antibody cocktails from SARS convalescents. Cell Rep 2022; 41(12): 111845
CrossRef Google scholar
[119]
Sun X, Yi C, Zhu Y, Ding L, Xia S, Chen X, Liu M, Gu C, Lu X, Fu Y, Chen S, Zhang T, Zhang Y, Yang Z, Ma L, Gu W, Hu G, Du S, Yan R, Fu W, Yuan S, Qiu C, Zhao C, Zhang X, He Y, Qu A, Zhou X, Li X, Wong G, Deng Q, Zhou Q, Lu H, Ling Z, Ding J, Lu L, Xu J, Xie Y, Sun B. Neutralization mechanism of a human antibody with pan-coronavirus reactivity including SARS-CoV-2. Nat Microbiol 2022; 7(7): 1063–1074
CrossRef Google scholar
[120]
Shan S, Luo S, Yang Z, Hong J, Su Y, Ding F, Fu L, Li C, Chen P, Ma J, Shi X, Zhang Q, Berger B, Zhang L, Peng J. Deep learning guided optimization of human antibody against SARS-CoV-2 variants with broad neutralization. Proc Natl Acad Sci USA 2022; 119(11): e2122954119
CrossRef Google scholar
[121]
Lou H, Zheng J, Fang XL, Liang Z, Zhang M, Chen Y, Wang C, Cao X. Deep learning-based rapid generation of broadly reactive antibodies against SARS-CoV-2 and its Omicron variant. Cell Res 2023; 33(1): 80–82
CrossRef Google scholar
[122]
Kim HW, Canchola JG, Brandt CD, Pyles G, Chanock RM, Jensen K, Parrott RH. Respiratory syncytial virus disease in infants despite prior administration of antigenic inactivated vaccine. Am J Epidemiol 1969; 89(4): 422–434
CrossRef Google scholar
[123]
Kapikian AZ, Mitchell RH, Chanock RM, Shvedoff RA, Stewart CE. An epidemiologic study of altered clinical reactivity to respiratory syncytial (RS) virus infection in children previously vaccinated with an inactivated RS virus vaccine. Am J Epidemiol 1969; 89(4): 405–421
CrossRef Google scholar
[124]
Rauh LW, Schmidt R. Measles immunization with killed virus vaccine. Serum antibody titers and experience with exposure to measles epidemic. 1965. Bull World Health Organ 2000; 78(2): 226–231
[125]
Iankov ID, Pandey M, Harvey M, Griesmann GE, Federspiel MJ, Russell SJ. Immunoglobulin antibody-mediated enhancement of measles virus infection can bypass the protective antiviral immune response. J Virol 2006; 80(17): 8530–8540
CrossRef Google scholar
[126]
Wan Y, Shang J, Sun S, Tai W, Chen J, Geng Q, He L, Chen Y, Wu J, Shi Z, Zhou Y, Du L, Li F. Molecular mechanism for antibody-dependent enhancement of coronavirus entry. J Virol 2020; 94(5): e02015–19
CrossRef Google scholar
[127]
Wang SF, Tseng SP, Yen CH, Yang JY, Tsao CH, Shen CW, Chen KH, Liu FT, Liu WT, Chen YM, Huang JC. Antibody-dependent SARS coronavirus infection is mediated by antibodies against spike proteins. Biochem Biophys Res Commun 2014; 451(2): 208–214
CrossRef Google scholar
[128]
Lee WS, Wheatley AK, Kent SJ, DeKosky BJ. Antibody-dependent enhancement and SARS-CoV-2 vaccines and therapies. Nat Microbiol 2020; 5(10): 1185–1191
CrossRef Google scholar
[129]
Arvin AM, Fink K, Schmid MA, Cathcart A, Spreafico R, Havenar-Daughton C, Lanzavecchia A, Corti D, Virgin HW. A perspective on potential antibody-dependent enhancement of SARS-CoV-2. Nature 2020; 584(7821): 353–363
CrossRef Google scholar
[130]
Bournazos S, Gupta A, Ravetch JV. The role of IgG Fc receptors in antibody-dependent enhancement. Nat Rev Immunol 2020; 20(10): 633–643
CrossRef Google scholar
[131]
de Alwis R, Chen S, Gan ES, Ooi EE. Impact of immune enhancement on Covid-19 polyclonal hyperimmune globulin therapy and vaccine development. EBioMedicine 2020; 55: 102768
CrossRef Google scholar
[132]
Okuya K, Hattori T, Saito T, Takadate Y, Sasaki M, Furuyama W, Marzi A, Ohiro Y, Konno S, Hattori T, Takada A. Multiple routes of antibody-dependent enhancement of SARS-CoV-2 infection. Microbiol Spectr 2022; 10(2): e0155321
CrossRef Google scholar
[133]
Lai GC, Chao TL, Lin SY, Kao HC, Tsai YM, Lu DC, Chiang YW, Chang SY, Chang SC. Neutralization or enhancement of SARS-CoV-2 infection by a monoclonal antibody targeting a specific epitope in the spike receptor-binding domain. Antiviral Res 2022; 200: 105290
CrossRef Google scholar
[134]
Shimizu J, Sasaki T, Koketsu R, Morita R, Yoshimura Y, Murakami A, Saito Y, Kusunoki T, Samune Y, Nakayama EE, Miyazaki K, Shioda T. Reevaluation of antibody-dependent enhancement of infection in anti-SARS-CoV-2 therapeutic antibodies and mRNA-vaccine antisera using FcR- and ACE2-positive cells. Sci Rep 2022; 12(1): 15612
CrossRef Google scholar
[135]
Maemura T, Kuroda M, Armbrust T, Yamayoshi S, Halfmann PJ, Kawaoka Y. Antibody-dependent enhancement of SARS-CoV-2 infection is mediated by the IgG receptors FcγRIIA and FcγRIIIA but does not contribute to aberrant cytokine production by macrophages. MBio 2021; 12(5): e0198721
CrossRef Google scholar
[136]
Wang YT, Allen RD 3rd, Kim K, Shafee N, Gonzalez AJ, Nguyen MN, Valentine KM, Cao X, Lu L, Pai CI, Johnson S, Kerwin L, Zhou H, Zhang Y, Shresta S. SARS-CoV-2 monoclonal antibodies with therapeutic potential: broad neutralizing activity and no evidence of antibody-dependent enhancement. Antiviral Res 2021; 195: 105185
CrossRef Google scholar
[137]
Writing Committee for the REMAP-CAP Investigators; Estcourt LJ, Turgeon AF, McQuilten ZK, McVerry BJ, Al-Beidh F, Annane D, Arabi YM, Arnold DM, Beane A, Bégin P, van Bentum-Puijk W, Berry LR, Bhimani Z, Birchall JE, Bonten MJM, Bradbury CA, Brunkhorst FM, Buxton M, Callum JL, Chassé M, Cheng AC, Cove ME, Daly J, Derde L, Detry MA, De Jong M, Evans A, Fergusson DA, Fish M, Fitzgerald M, Foley C, Goossens H, Gordon AC, Gosbell IB, Green C, Haniffa R, Harvala H, Higgins AM, Hills TE, Hoad VC, Horvat C, Huang DT, Hudson CL, Ichihara N, Laing E, Lamikanra AA, Lamontagne F, Lawler PR, Linstrum K, Litton E, Lorenzi E, MacLennan S, Marshall J, McAuley DF, McDyer JF, McGlothlin A, McGuinness S, Miflin G, Montgomery S, Mouncey PR, Murthy S, Nichol A, Parke R, Parker JC, Priddee N, Purcell DFJ, Reyes LF, Richardson P, Robitaille N, Rowan KM, Rynne J, Saito H, Santos M, Saunders CT, Serpa Neto A, Seymour CW, Silversides JA, Tinmouth AA, Triulzi DJ, Turner AM, van de Veerdonk F, Walsh TS, Wood EM, Berry S, Lewis RJ, Menon DK, McArthur C, Zarychanski R, Angus DC, Webb SA, Roberts DJ, Shankar-Hari M. Effect of convalescent plasma on organ support-free days in critically ill patients with COVID-19: a randomized clinical trial. JAMA 2021; 326(17): 1690–1702
CrossRef Google scholar
[138]
Bégin P, Callum J, Jamula E, Cook R, Heddle NM, Tinmouth A, Zeller MP, Beaudoin-Bussières G, Amorim L, Bazin R, Loftsgard KC, Carl R, Chassé M, Cushing MM, Daneman N, Devine DV, Dumaresq J, Fergusson DA, Gabe C, Glesby MJ, Li N, Liu Y, McGeer A, Robitaille N, Sachais BS, Scales DC, Schwartz L, Shehata N, Turgeon AF, Wood H, Zarychanski R, Finzi A; CONCOR-1 Study Group; Arnold DM. Convalescent plasma for hospitalized patients with COVID-19: an open-label, randomized controlled trial. Nat Med 2021; 27(11): 2012–2024
CrossRef Google scholar
[139]
Wang H, Zhang Y, Huang B, Deng W, Quan Y, Wang W, Xu W, Zhao Y, Li N, Zhang J, Liang H, Bao L, Xu Y, Ding L, Zhou W, Gao H, Liu J, Niu P, Zhao L, Zhen W, Fu H, Yu S, Zhang Z, Xu G, Li C, Lou Z, Xu M, Qin C, Wu G, Gao GF, Tan W, Yang X. Development of an inactivated vaccine candidate, BBIBP-CorV, with potent protection against SARS-CoV-2. Cell 2020; 182(3): 713–721.e9
CrossRef Google scholar
[140]
Gao Q, Bao L, Mao H, Wang L, Xu K, Yang M, Li Y, Zhu L, Wang N, Lv Z, Gao H, Ge X, Kan B, Hu Y, Liu J, Cai F, Jiang D, Yin Y, Qin C, Li J, Gong X, Lou X, Shi W, Wu D, Zhang H, Zhu L, Deng W, Li Y, Lu J, Li C, Wang X, Yin W, Zhang Y, Qin C. Development of an inactivated vaccine candidate for SARS-CoV-2. Science 2020; 369(6499): 77–81
CrossRef Google scholar
[141]
Yadav PD, Ella R, Kumar S, Patil DR, Mohandas S, Shete AM, Vadrevu KM, Bhati G, Sapkal G, Kaushal H, Patil S, Jain R, Deshpande G, Gupta N, Agarwal K, Gokhale M, Mathapati B, Metkari S, Mote C, Nyayanit D, Patil DY, Sai Prasad BS, Suryawanshi A, Kadam M, Kumar A, Daigude S, Gopale S, Majumdar T, Mali D, Sarkale P, Baradkar S, Gawande P, Joshi Y, Fulari S, Dighe H, Sharma S, Gunjikar R, Kumar A, Kalele K, Srinivas VK, Gangakhedkar RR, Ella KM, Abraham P, Panda S, Bhargava B. Immunogenicity and protective efficacy of inactivated SARS-CoV-2 vaccine candidate, BBV152 in rhesus macaques. Nat Commun 2021; 12(1): 1386
CrossRef Google scholar
[142]
Farag YMK. Limitations of safety update on convalescent plasma transfusion in COVID-19 patients. Mayo Clin Proc 2020; 95(12): 2801–2802
CrossRef Google scholar
[143]
Aggarwal NR, Beaty LE, Bennett TD, Carlson NE, Davis CB, Kwan BM, Mayer DA, Ong TC, Russell S, Steele J, Wogu AF, Wynia MK, Zane RD, Ginde AA. Real-world evidence of the neutralizing monoclonal antibody sotrovimab for preventing hospitalization and mortality in COVID-19 outpatients. J Infect Dis 2022; 226(12): 2129–2136
CrossRef Google scholar
[144]
Di Minno G, Navarro D, Perno CF, Canaro M, Gürtler L, Ironside JW, Eichler H, Tiede A. Pathogen reduction/inactivation of products for the treatment of bleeding disorders: what are the processes and what should we say to patients? Ann Hematol 2017; 96(8): 1253–1270 doi:10.1007/s00277-017-3028-4
Pubmed
[145]
Cognasse F, Hamzeh-Cognasse H, Rosa M, Corseaux D, Bonneaudeau B, Pierre C, Huet J, Arthaud CA, Eyraud MA, Prier A, Duchez AC, Ebermeyer T, Heestermans M, Audoux-Caire E, Philippot Q, Le Voyer T, Hequet O, Fillet AM, Chavarin P, Legrand D, Richard P, Pirenne F, Gallian P, Casanova JL, Susen S, Morel P, Lacombe K, Bastard P, Tiberghien P. Inflammatory markers and auto-Abs to type I IFNs in COVID-19 convalescent plasma cohort study. EBioMedicine 2023; 87: 104414
CrossRef Google scholar
[146]
Senefeld JW, Johnson PW, Kunze KL, Bloch EM, van Helmond N, Golafshar MA, Klassen SA, Klompas AM, Sexton MA, Diaz Soto JC, Grossman BJ, Tobian AAR, Goel R, Wiggins CC, Bruno KA, van Buskirk CM, Stubbs JR, Winters JL, Casadevall A, Paneth NS, Shaz BH, Petersen MM, Sachais BS, Buras MR, Wieczorek MA, Russoniello B, Dumont LJ, Baker SE, Vassallo RR, Shepherd JRA, Young PP, Verdun NC, Marks P, Haley NR, Rea RF, Katz L, Herasevich V, Waxman DA, Whelan ER, Bergman A, Clayburn AJ, Grabowski MK, Larson KF, Ripoll JG, Andersen KJ, Vogt MNP, Dennis JJ, Regimbal RJ, Bauer PR, Blair JE, Buchholtz ZA, Pletsch MC, Wright K, Greenshields JT, Joyner MJ, Wright RS, Carter RE, Fairweather D. Access to and safety of COVID-19 convalescent plasma in the United States Expanded Access Program: a national registry study. PLoS Med 2021; 18(12): e1003872
CrossRef Google scholar
[147]
Mak G, Dassner AM, Hammer BM, Hanisch BR. Safety and tolerability of monoclonal antibody therapies for treatment of COVID-19 in pediatric patients. Pediatr Infect Dis J 2021; 40(12): e507–e509
CrossRef Google scholar
[148]
Katz U, Achiron A, Sherer Y, Shoenfeld Y. Safety of intravenous immunoglobulin (IVIG) therapy. Autoimmun Rev 2007; 6(4): 257–259
CrossRef Google scholar
[149]
Orbach H, Katz U, Sherer Y, Shoenfeld Y. Intravenous immunoglobulin: adverse effects and safe administration. Clin Rev Allergy Immunol 2005; 29(3): 173–184
CrossRef Google scholar
[150]
Liu STH, Mirceta M, Lin G, Anderson DM, Broomes T, Jen A, Abid A, Reich D, Hall C, Aberg JA. Safety, tolerability, and pharmacokinetics of anti-SARS-CoV-2 immunoglobulin intravenous (human) investigational product (COVID-HIGIV) in healthy adults: a randomized, controlled, double-blinded, phase 1 study. Antimicrob Agents Chemother 2023; 67(3): e0151422
CrossRef Google scholar
[151]
Ali S, Shalim E, Farhan F, Anjum F, Ali A, Uddin SM, Shahab F, Haider M, Ahmed I, Ali MR, Khan S, Rao S, Guriro K, Elahi S, Ali M, Mushtaq T, Sayeed MA, Muhaymin SM, Luxmi S, Saifullah S. Phase II/III trial of hyperimmune anti-COVID-19 intravenous immunoglobulin (C-IVIG) therapy in severe COVID-19 patients: study protocol for a randomized controlled trial. Trials 2022; 23(1): 932
CrossRef Google scholar
[152]
Taylor PC, Adams AC, Hufford MM, de la Torre I, Winthrop K, Gottlieb RL. Neutralizing monoclonal antibodies for treatment of COVID-19. Nat Rev Immunol 2021; 21(6): 382–393
CrossRef Google scholar
[153]
NationalInstitutes of Health. COVID-19 treatment guidelines. 2023. Available at the website of National Institutes of Health (accessed April 15, 2023)
[154]
Ricke DO. Two different antibody-dependent enhancement (ADE) risks for SARS-CoV-2 antibodies. Front Immunol 2021; 12: 640093
CrossRef Google scholar

Compliance with ethics guidelines

Conflicts of interest Xiaoming Yang declares no conflicts of interest.
This manuscript is a review article and does not involve a research protocol requiring approval by the relevant institutional review board or ethics committee.

RIGHTS & PERMISSIONS

2023 Higher Education Press
AI Summary AI Mindmap
PDF(1796 KB)

Accesses

Citations

Detail

Sections
Recommended

/