Minimal residual disease in solid tumors: an overview
Yarui Ma, Jingbo Gan, Yinlei Bai, Dandan Cao, Yuchen Jiao
Minimal residual disease in solid tumors: an overview
Minimal residual disease (MRD) is termed as the small numbers of remnant tumor cells in a subset of patients with tumors. Liquid biopsy is increasingly used for the detection of MRD, illustrating the potential of MRD detection to provide more accurate management for cancer patients. As new techniques and algorithms have enhanced the performance of MRD detection, the approach is becoming more widely and routinely used to predict the prognosis and monitor the relapse of cancer patients. In fact, MRD detection has been shown to achieve better performance than imaging methods. On this basis, rigorous investigation of MRD detection as an integral method for guiding clinical treatment has made important advances. This review summarizes the development of MRD biomarkers, techniques, and strategies for the detection of cancer, and emphasizes the application of MRD detection in solid tumors, particularly for the guidance of clinical treatment.
MRD / solid tumor / CTC / ctDNA
[1] |
Estey EH. Acute myeloid leukemia: 2013 update on risk-stratification and management. Am J Hematol 2013; 88(4): 317–327
CrossRef
Google scholar
|
[2] |
Berry DA, Zhou S, Higley H, Mukundan L, Fu S, Reaman GH, Wood BL, Kelloff GJ, Jessup JM, Radich JP. Association of minimal residual disease with clinical outcome in pediatric and adult acute lymphoblastic leukemia: a meta-analysis. JAMA Oncol 2017; 3(7): e170580
CrossRef
Google scholar
|
[3] |
Pieters R, de Groot-Kruseman H, Van der Velden V, Fiocco M, van den Berg H, de Bont E, Egeler RM, Hoogerbrugge P, Kaspers G, Van der Schoot E, De Haas V, Van Dongen J. Successful therapy reduction and intensification for childhood acute lymphoblastic leukemia based on minimal residual disease monitoring: Study ALL10 From the Dutch Childhood Oncology Group. J Clin Oncol 2016; 34(22): 2591–2601
CrossRef
Google scholar
|
[4] |
Ommen HB. Monitoring minimal residual disease in acute myeloid leukaemia: a review of the current evolving strategies. Ther Adv Hematol 2016; 7(1): 3–16
CrossRef
Google scholar
|
[5] |
Hochhaus A, Baccarani M, Silver RT, Schiffer C, Apperley JF, Cervantes F, Clark RE, Cortes JE, Deininger MW, Guilhot F, Hjorth-Hansen H, Hughes TP, Janssen JJWM, Kantarjian HM, Kim DW, Larson RA, Lipton JH, Mahon FX, Mayer J, Nicolini F, Niederwieser D, Pane F, Radich JP, Rea D, Richter J, Rosti G, Rousselot P, Saglio G, Saußele S, Soverini S, Steegmann JL, Turkina A, Zaritskey A, Hehlmann R. European LeukemiaNet 2020 recommendations for treating chronic myeloid leukemia. Leukemia 2020; 34(4): 966–984
CrossRef
Google scholar
|
[6] |
Deininger MW, Shah NP, Altman JK, Berman E, Bhatia R, Bhatnagar B, DeAngelo DJ, Gotlib J, Hobbs G, Maness L, Mead M, Metheny L, Mohan S, Moore JO, Naqvi K, Oehler V, Pallera AM, Patnaik M, Pratz K, Pusic I, Rose MG, Smith BD, Snyder DS, Sweet KL, Talpaz M, Thompson J, Yang DT, Gregory KM, Sundar H. Chronic Myeloid Leukemia, Version 2.2021, NCCN Clinical Practice Guidelines in Oncology. J Natl Compr Canc Netw 2020; 18(10): 1385–1415
CrossRef
Google scholar
|
[7] |
Kumar SK, Callander NS, Alsina M, Atanackovic D, Biermann JS, Castillo J, Chandler JC, Costello C, Faiman M, Fung HC, Godby K, Hofmeister C, Holmberg L, Holstein S, Huff CA, Kang Y, Kassim A, Liedtke M, Malek E, Martin T, Neppalli VT, Omel J, Raje N, Singhal S, Somlo G, Stockerl-Goldstein K, Weber D, Yahalom J, Kumar R, Shead DA. NCCN Guidelines Insights: Multiple Myeloma, Version 3.2018. J Natl Compr Canc Netw 2018; 16(1): 11–20
CrossRef
Google scholar
|
[8] |
BainesACSarraf Yazdy MKasamonYLErshlerRJenEY KanapuruBRichardson NCLaneACariotiTTheoretMR PazdurRGormley NJ. Minimal residual disease data in hematologic malignancy drug applications and labeling: an FDA perspective. Clin Cancer Res 2023; [Epub ahead of print]
CrossRef
Pubmed
Google scholar
|
[9] |
Yang C, Xia BR, Jin WL, Lou G. Circulating tumor cells in precision oncology: clinical applications in liquid biopsy and 3D organoid model. Cancer Cell Int 2019; 19(1): 341
CrossRef
Google scholar
|
[10] |
Zhang J, Hu X, Wang J, Sahu AD, Cohen D, Song L, Ouyang Z, Fan J, Wang B, Fu J, Gu S, Sade-Feldman M, Hacohen N, Li W, Ying X, Li B, Liu XS. Immune receptor repertoires in pediatric and adult acute myeloid leukemia. Genome Med 2019; 11(1): 73
CrossRef
Google scholar
|
[11] |
Thierry AR, El Messaoudi S, Gahan PB, Anker P, Stroun M. Origins, structures, and functions of circulating DNA in oncology. Cancer Metastasis Rev 2016; 35(3): 347–376
CrossRef
Google scholar
|
[12] |
Wan JCM, Massie C, Garcia-Corbacho J, Mouliere F, Brenton JD, Caldas C, Pacey S, Baird R, Rosenfeld N. Liquid biopsies come of age: towards implementation of circulating tumour DNA. Nat Rev Cancer 2017; 17(4): 223–238
CrossRef
Google scholar
|
[13] |
Ogawa M, Yokoyama K, Imoto S, Tojo A. Role of circulating tumor DNA in hematological malignancy. Cancers (Basel) 2021; 13(9): 2078
CrossRef
Google scholar
|
[14] |
Diehl F, Li M, He Y, Kinzler KW, Vogelstein B, Dressman D. BEAMing: single-molecule PCR on microparticles in water-in-oil emulsions. Nat Methods 2006; 3(7): 551–559
CrossRef
Google scholar
|
[15] |
Kinde I, Wu J, Papadopoulos N, Kinzler KW, Vogelstein B. Detection and quantification of rare mutations with massively parallel sequencing. Proc Natl Acad Sci USA 2011; 108(23): 9530–9535
CrossRef
Google scholar
|
[16] |
Moding EJ, Nabet BY, Alizadeh AA, Diehn M. Detecting liquid remnants of solid tumors: circulating tumor DNA minimal residual disease. Cancer Discov 2021; 11(12): 2968–2986
CrossRef
Google scholar
|
[17] |
Benson AB, Venook AP, Al-Hawary MM, Arain MA, Chen YJ, Ciombor KK, Cohen S, Cooper HS, Deming D, Garrido-Laguna I, Grem JL, Gunn A, Hoffe S, Hubbard J, Hunt S, Kirilcuk N, Krishnamurthi S, Messersmith WA, Meyerhardt J, Miller ED, Mulcahy MF, Nurkin S, Overman MJ, Parikh A, Patel H, Pedersen K, Saltz L, Schneider C, Shibata D, Skibber JM, Sofocleous CT, Stoffel EM, Stotsky-Himelfarb E, Willett CG, Johnson-Chilla A, Gurski LA. NCCN Guidelines Insights: Rectal Cancer, Version 6.2020. J Natl Compr Canc Netw 2020; 18(7): 806–815
CrossRef
Google scholar
|
[18] |
Pfister DG, Spencer S, Adelstein D, Adkins D, Anzai Y, Brizel DM, Bruce JY, Busse PM, Caudell JJ, Cmelak AJ, Colevas AD, Eisele DW, Fenton M, Foote RL, Galloway T, Gillison ML, Haddad RI, Hicks WL, Hitchcock YJ, Jimeno A, Leizman D, Maghami E, Mell LK, Mittal BB, Pinto HA, Ridge JA, Rocco JW, Rodriguez CP, Shah JP, Weber RS, Weinstein G, Witek M, Worden F, Yom SS, Zhen W, Burns JL, Darlow SD. Head and Neck Cancers, Version 2.2020, NCCN Clinical Practice Guidelines in Oncology. J Natl Compr Canc Netw 2020; 18(7): 873–898
CrossRef
Google scholar
|
[19] |
Kikano EG, Tirumani SH, Suh CH, Gan JM, Bomberger TT, Bui MT, Laukamp KR, Kim KW, Dowlati A, Ramaiya NH. Trends in imaging utilization for small cell lung cancer: a decision tree analysis of the NCCN guidelines. Clin Imaging 2021; 75: 83–89
CrossRef
Google scholar
|
[20] |
Chiou VL, Burotto M. Pseudoprogression and immune-related response in solid tumors. J Clin Oncol 2015; 33(31): 3541–3543
CrossRef
Google scholar
|
[21] |
Galldiks N, Kocher M, Ceccon G, Werner JM, Brunn A, Deckert M, Pope WB, Soffietti R, Le Rhun E, Weller M, Tonn JC, Fink GR, Langen KJ. Imaging challenges of immunotherapy and targeted therapy in patients with brain metastases: response, progression, and pseudoprogression. Neuro-oncol 2020; 22(1): 17–30
CrossRef
Google scholar
|
[22] |
Ryan JE, Warrier SK, Lynch AC, Heriot AG. Assessing pathological complete response to neoadjuvant chemoradiotherapy in locally advanced rectal cancer: a systematic review. Colorectal Dis 2015; 17(10): 849–861
CrossRef
Google scholar
|
[23] |
Pantel K, Alix-Panabières C. Liquid biopsy and minimal residual disease—latest advances and implications for cure. Nat Rev Clin Oncol 2019; 16(7): 409–424
CrossRef
Google scholar
|
[24] |
Dasari A, Morris VK, Allegra CJ, Atreya C, Benson AB 3rd, Boland P, Chung K, Copur MS, Corcoran RB, Deming DA, Dwyer A, Diehn M, Eng C, George TJ, Gollub MJ, Goodwin RA, Hamilton SR, Hechtman JF, Hochster H, Hong TS, Innocenti F, Iqbal A, Jacobs SA, Kennecke HF, Lee JJ, Lieu CH, Lenz HJ, Lindwasser OW, Montagut C, Odisio B, Ou FS, Porter L, Raghav K, Schrag D, Scott AJ, Shi Q, Strickler JH, Venook A, Yaeger R, Yothers G, You YN, Zell JA, Kopetz S. ctDNA applications and integration in colorectal cancer: an NCI Colon and Rectal-Anal Task Forces whitepaper. Nat Rev Clin Oncol 2020; 17(12): 757–770
CrossRef
Google scholar
|
[25] |
Venook AP. Colorectal cancer surveillance with circulating tumor DNA assay. JAMA Netw Open 2022; 5(3): e221100
CrossRef
Google scholar
|
[26] |
Sargent D, Sobrero A, Grothey A, O’Connell MJ, Buyse M, Andre T, Zheng Y, Green E, Labianca R, O’Callaghan C, Seitz JF, Francini G, Haller D, Yothers G, Goldberg R, de Gramont A. Evidence for cure by adjuvant therapy in colon cancer: observations based on individual patient data from 20,898 patients on 18 randomized trials. J Clin Oncol 2009; 27(6): 872–877
CrossRef
Google scholar
|
[27] |
Early Breast Cancer Trialists' Collaborative Group (EBCTCG); Peto R, Davies C, Godwin J, Gray R, Pan HC, Clarke M, Cutter D, Darby S, McGale P, Taylor C, Wang YC, Bergh J, Di Leo A, Albain K, Swain S, Piccart M, Pritchard K. Comparisons between different polychemotherapy regimens for early breast cancer: meta-analyses of long-term outcome among 100,000 women in 123 randomised trials. Lancet 2012; 379(9814): 432–444
CrossRef
Google scholar
|
[28] |
Ignatiadis M, Sledge GW, Jeffrey SS. Liquid biopsy enters the clinic—implementation issues and future challenges. Nat Rev Clin Oncol 2021; 18(5): 297–312
CrossRef
Google scholar
|
[29] |
Pantel K, Speicher MR. The biology of circulating tumor cells. Oncogene 2016; 35(10): 1216–1224
CrossRef
Google scholar
|
[30] |
Dai J, Su Y, Zhong S, Cong L, Liu B, Yang J, Tao Y, He Z, Chen C, Jiang Y. Exosomes: key players in cancer and potential therapeutic strategy. Signal Transduct Target Ther 2020; 5(1): 145
CrossRef
Google scholar
|
[31] |
Su Y, Li Y, Guo R, Zhao J, Chi W, Lai H, Wang J, Wang Z, Li L, Sang Y, Hou J, Xue J, Shao Z, Chi Y, Huang S, Wu J. Plasma extracellular vesicle long RNA profiles in the diagnosis and prediction of treatment response for breast cancer. NPJ Breast Cancer 2021; 7(1): 154
CrossRef
Google scholar
|
[32] |
Uemura S, Ishida T, Thwin KKM, Yamamoto N, Tamura A, Kishimoto K, Hasegawa D, Kosaka Y, Nino N, Lin KS, Takafuji S, Mori T, Iijima K, Nishimura N. Dynamics of minimal residual disease in neuroblastoma patients. Front Oncol 2019; 9: 455
CrossRef
Google scholar
|
[33] |
Cai Z, Chen G, Zeng Y, Dong X, Li Z, Huang Y, Xin F, Qiu L, Xu H, Zhang W, Su X, Liu X, Liu J. Comprehensive liquid profiling of circulating tumor DNA and protein biomarkers in long-term follow-up patients with hepatocellular carcinoma. Clin Cancer Res 2019; 25(17): 5284–5294
CrossRef
Google scholar
|
[34] |
Massagué J, Obenauf AC. Metastatic colonization by circulating tumour cells. Nature 2016; 529(7586): 298–306
CrossRef
Google scholar
|
[35] |
Mohme M, Riethdorf S, Pantel K. Circulating and disseminated tumour cells—mechanisms of immune surveillance and escape. Nat Rev Clin Oncol 2017; 14(3): 155–167
CrossRef
Google scholar
|
[36] |
Ashworth TR. A case of cancer in which cells similar to those in the tumors were seen in the blood after death. Australian Med J 1869; 14: 146
|
[37] |
Seal SH. Silicone flotation: a simple quantitative method for the isolation of free-floating cancer cells from the blood. Cancer 1959; 12(3): 590–595
CrossRef
Google scholar
|
[38] |
Cristofanilli M, Budd GT, Ellis MJ, Stopeck A, Matera J, Miller MC, Reuben JM, Doyle GV, Allard WJ, Terstappen LW, Hayes DF. Circulating tumor cells, disease progression, and survival in metastatic breast cancer. N Engl J Med 2004; 351(8): 781–791
CrossRef
Google scholar
|
[39] |
Liu MC, Shields PG, Warren RD, Cohen P, Wilkinson M, Ottaviano YL, Rao SB, Eng-Wong J, Seillier-Moiseiwitsch F, Noone AM, Isaacs C. Circulating tumor cells: a useful predictor of treatment efficacy in metastatic breast cancer. J Clin Oncol 2009; 27(31): 5153–5159
CrossRef
Google scholar
|
[40] |
Markiewicz A, Topa J, Nagel A, Skokowski J, Seroczynska B, Stokowy T, Welnicka-Jaskiewicz M, Zaczek AJ. Spectrum of epithelial-mesenchymal transition phenotypes in circulating tumour cells from early breast cancer patients. Cancers (Basel) 2019; 11(1): 59
CrossRef
Google scholar
|
[41] |
Scher HI, Graf RP, Schreiber NA, Jayaram A, Winquist E, McLaughlin B, Lu D, Fleisher M, Orr S, Lowes L, Anderson A, Wang Y, Dittamore R, Allan AL, Attard G, Heller G. Assessment of the validity of nuclear-localized androgen receptor splice variant 7 in circulating tumor cells as a predictive biomarker for castration-resistant prostate cancer. JAMA Oncol 2018; 4(9): 1179–1186
CrossRef
Google scholar
|
[42] |
Khattak MA, Reid A, Freeman J, Pereira M, McEvoy A, Lo J, Frank MH, Meniawy T, Didan A, Spencer I, Amanuel B, Millward M, Ziman M, Gray E. PD-L1 expression on circulating tumor cells may be predictive of response to pembrolizumab in advanced melanoma: results from a pilot study. Oncologist 2020; 25(3): e520–e527
CrossRef
Google scholar
|
[43] |
Young R, Pailler E, Billiot F, Drusch F, Barthelemy A, Oulhen M, Besse B, Soria JC, Farace F, Vielh P. Circulating tumor cells in lung cancer. Acta Cytol 2012; 56(6): 655–660
CrossRef
Google scholar
|
[44] |
Stroun M, Lyautey J, Lederrey C, Olson-Sand A, Anker P. About the possible origin and mechanism of circulating DNA apoptosis and active DNA release. Clin Chim Acta 2001; 313(1–2): 139–142
CrossRef
Google scholar
|
[45] |
Jahr S, Hentze H, Englisch S, Hardt D, Fackelmayer FO, Hesch RD, Knippers R. DNA fragments in the blood plasma of cancer patients: quantitations and evidence for their origin from apoptotic and necrotic cells. Cancer Res 2001; 61(4): 1659–1665
|
[46] |
Diehl F, Schmidt K, Choti MA, Romans K, Goodman S, Li M, Thornton K, Agrawal N, Sokoll L, Szabo SA, Kinzler KW, Vogelstein B, Diaz LA Jr. Circulating mutant DNA to assess tumor dynamics. Nat Med 2008; 14(9): 985–990
CrossRef
Google scholar
|
[47] |
Abbosh C, Birkbak NJ, Wilson GA, Jamal-Hanjani M, Constantin T, Salari R, Le Quesne J, Moore DA, Veeriah S, Rosenthal R, Marafioti T, Kirkizlar E, Watkins TBK, McGranahan N, Ward S, Martinson L, Riley J, Fraioli F, Al Bakir M, Grönroos E, Zambrana F, Endozo R, Bi WL, Fennessy FM, Sponer N, Johnson D, Laycock J, Shafi S, Czyzewska-Khan J, Rowan A, Chambers T, Matthews N, Turajlic S, Hiley C, Lee SM, Forster MD, Ahmad T, Falzon M, Borg E, Lawrence D, Hayward M, Kolvekar S, Panagiotopoulos N, Janes SM, Thakrar R, Ahmed A, Blackhall F, Summers Y, Hafez D, Naik A, Ganguly A, Kareht S, Shah R, Joseph L, Marie Quinn A, Crosbie PA, Naidu B, Middleton G, Langman G, Trotter S, Nicolson M, Remmen H, Kerr K, Chetty M, Gomersall L, Fennell DA, Nakas A, Rathinam S, Anand G, Khan S, Russell P, Ezhil V, Ismail B, Irvin-Sellers M, Prakash V, Lester JF, Kornaszewska M, Attanoos R, Adams H, Davies H, Oukrif D, Akarca AU, Hartley JA, Lowe HL, Lock S, Iles N, Bell H, Ngai Y, Elgar G, Szallasi Z, Schwarz RF, Herrero J, Stewart A, Quezada SA, Peggs KS, Van Loo P, Dive C, Lin CJ, Rabinowitz M, Aerts HJWL, Hackshaw A, Shaw JA, Zimmermann BG; TRACERx consortium; PEACE consortium; Swanton C. Phylogenetic ctDNA analysis depicts early-stage lung cancer evolution. Nature 2017; 545(7655): 446–451
CrossRef
Google scholar
|
[48] |
Phallen J, Sausen M, Adleff V, Leal A, Hruban C, White J, Anagnostou V, Fiksel J, Cristiano S, Papp E, Speir S, Reinert T, Orntoft MW, Woodward BD, Murphy D, Parpart-Li S, Riley D, Nesselbush M, Sengamalay N, Georgiadis A, Li QK, Madsen MR, Mortensen FV, Huiskens J, Punt C, van Grieken N, Fijneman R, Meijer G, Husain H, Scharpf RB, Diaz LA Jr, Jones S, Angiuoli S, Ørntoft T, Nielsen HJ, Andersen CL, Velculescu VE. Direct detection of early-stage cancers using circulating tumor DNA. Sci Transl Med 2017; 9(403): eaan2415
CrossRef
Google scholar
|
[49] |
Forshew T, Murtaza M, Parkinson C, Gale D, Tsui DW, Kaper F, Dawson SJ, Piskorz AM, Jimenez-Linan M, Bentley D, Hadfield J, May AP, Caldas C, Brenton JD, Rosenfeld N. Noninvasive identification and monitoring of cancer mutations by targeted deep sequencing of plasma DNA. Sci Transl Med 2012; 4(136): 136ra68
CrossRef
Google scholar
|
[50] |
Sun K, Jiang P, Chan KC, Wong J, Cheng YK, Liang RH, Chan WK, Ma ES, Chan SL, Cheng SH, Chan RW, Tong YK, Ng SS, Wong RS, Hui DS, Leung TN, Leung TY, Lai PB, Chiu RW, Lo YM. Plasma DNA tissue mapping by genome-wide methylation sequencing for noninvasive prenatal, cancer, and transplantation assessments. Proc Natl Acad Sci USA 2015; 112(40): E5503–E5512
CrossRef
Google scholar
|
[51] |
Leary RJ, Sausen M, Kinde I, Papadopoulos N, Carpten JD, Craig D, O’Shaughnessy J, Kinzler KW, Parmigiani G, Vogelstein B, Diaz LA Jr, Velculescu VE. Detection of chromosomal alterations in the circulation of cancer patients with whole-genome sequencing. Sci Transl Med 2012; 4(162): 162ra154
CrossRef
Google scholar
|
[52] |
Mouliere F, Robert B, Arnau Peyrotte E, Del Rio M, Ychou M, Molina F, Gongora C, Thierry AR. High fragmentation characterizes tumour-derived circulating DNA. PLoS One 2011; 6(9): e23418
CrossRef
Google scholar
|
[53] |
Cristiano S, Leal A, Phallen J, Fiksel J, Adleff V, Bruhm DC, Jensen SØ, Medina JE, Hruban C, White JR, Palsgrove DN, Niknafs N, Anagnostou V, Forde P, Naidoo J, Marrone K, Brahmer J, Woodward BD, Husain H, van Rooijen KL, Ørntoft MW, Madsen AH, van de Velde CJH, Verheij M, Cats A, Punt CJA, Vink GR, van Grieken NCT, Koopman M, Fijneman RJA, Johansen JS, Nielsen HJ, Meijer GA, Andersen CL, Scharpf RB, Velculescu VE. Genome-wide cell-free DNA fragmentation in patients with cancer. Nature 2019; 570(7761): 385–389
CrossRef
Google scholar
|
[54] |
Berlanga P, Pierron G, Lacroix L, Chicard M, Adam de Beaumais T, Marchais A, Harttrampf AC, Iddir Y, Larive A, Soriano Fernandez A, Hezam I, Chevassus C, Bernard V, Cotteret S, Scoazec JY, Gauthier A, Abbou S, Corradini N, André N, Aerts I, Thebaud E, Casanova M, Owens C, Hladun-Alvaro R, Michiels S, Delattre O, Vassal G, Schleiermacher G, Geoerger B. The European MAPPYACTS Trial: precision medicine program in pediatric and adolescent patients with recurrent malignancies. Cancer Discov 2022; 12(5): 1266–1281
CrossRef
Google scholar
|
[55] |
Chen WW, Balaj L, Liau LM, Samuels ML, Kotsopoulos SK, Maguire CA, Loguidice L, Soto H, Garrett M, Zhu LD, Sivaraman S, Chen C, Wong ET, Carter BS, Hochberg FH, Breakefield XO, Skog J. BEAMing and droplet digital PCR analysis of mutant IDH1 mRNA in glioma patient serum and cerebrospinal fluid extracellular vesicles. Mol Ther Nucleic Acids 2013; 2(7): e109
CrossRef
Google scholar
|
[56] |
Peng Y, Mei W, Ma K, Zeng C. Circulating tumor DNA and minimal residual disease (MRD) in solid tumors: current horizons and future perspectives. Front Oncol 2021; 11: 763790
CrossRef
Google scholar
|
[57] |
Murtaza M, Dawson SJ, Tsui DW, Gale D, Forshew T, Piskorz AM, Parkinson C, Chin SF, Kingsbury Z, Wong AS, Marass F, Humphray S, Hadfield J, Bentley D, Chin TM, Brenton JD, Caldas C, Rosenfeld N. Non-invasive analysis of acquired resistance to cancer therapy by sequencing of plasma DNA. Nature 2013; 497(7447): 108–112
CrossRef
Google scholar
|
[58] |
Zviran A, Schulman RC, Shah M, Hill STK, Deochand S, Khamnei CC, Maloney D, Patel K, Liao W, Widman AJ, Wong P, Callahan MK, Ha G, Reed S, Rotem D, Frederick D, Sharova T, Miao B, Kim T, Gydush G, Rhoades J, Huang KY, Omans ND, Bolan PO, Lipsky AH, Ang C, Malbari M, Spinelli CF, Kazancioglu S, Runnels AM, Fennessey S, Stolte C, Gaiti F, Inghirami GG, Adalsteinsson V, Houck-Loomis B, Ishii J, Wolchok JD, Boland G, Robine N, Altorki NK, Landau DA. Genome-wide cell-free DNA mutational integration enables ultra-sensitive cancer monitoring. Nat Med 2020; 26(7): 1114–1124
CrossRef
Google scholar
|
[59] |
Klutstein M, Nejman D, Greenfield R, Cedar H. DNA methylation in cancer and aging. Cancer Res 2016; 76(12): 3446–3450
CrossRef
Google scholar
|
[60] |
Hoadley KA, Yau C, Hinoue T, Wolf DM, Lazar AJ, Drill E, Shen R, Taylor AM, Cherniack AD, Thorsson V, Akbani R, Bowlby R, Wong CK, Wiznerowicz M, Sanchez-Vega F, Robertson AG, Schneider BG, Lawrence MS, Noushmehr H, Malta TM; Cancer Genome Atlas Network; Stuart JM, Benz CC, Laird PW. cell-of-origin patterns dominate the molecular classification of 10,000 tumors from 33 types of cancer. Cell 2018; 173(2): 291–304.e6
CrossRef
Google scholar
|
[61] |
Lianidou E. Detection and relevance of epigenetic markers on ctDNA: recent advances and future outlook. Mol Oncol 2021; 15(6): 1683–1700
CrossRef
Google scholar
|
[62] |
Gao Q, Zeng Q, Wang Z, Li C, Xu Y, Cui P, Zhu X, Lu H, Wang G, Cai S, Wang J, Fan J. Circulating cell-free DNA for cancer early detection. Innovation (Camb) 2022; 3(4): 100259
CrossRef
Google scholar
|
[63] |
Moss J, Zick A, Grinshpun A, Carmon E, Maoz M, Ochana BL, Abraham O, Arieli O, Germansky L, Meir K, Glaser B, Shemer R, Uziely B, Dor Y. Circulating breast-derived DNA allows universal detection and monitoring of localized breast cancer. Ann Oncol 2020; 31(3): 395–403
CrossRef
Google scholar
|
[64] |
Haldrup C, Pedersen AL, Øgaard N, Strand SH, Høyer S, Borre M, Ørntoft TF, Sørensen KD. Biomarker potential of ST6GALNAC3 and ZNF660 promoter hypermethylation in prostate cancer tissue and liquid biopsies. Mol Oncol 2018; 12(4): 545–560
CrossRef
Google scholar
|
[65] |
Parikh AR, Van Seventer EE, Siravegna G, Hartwig AV, Jaimovich A, He Y, Kanter K, Fish MG, Fosbenner KD, Miao B, Phillips S, Carmichael JH, Sharma N, Jarnagin J, Baiev I, Shah YS, Fetter IJ, Shahzade HA, Allen JN, Blaszkowsky LS, Clark JW, Dubois JS, Franses JW, Giantonio BJ, Goyal L, Klempner SJ, Nipp RD, Roeland EJ, Ryan DP, Weekes CD, Wo JY, Hong TS, Bordeianou L, Ferrone CR, Qadan M, Kunitake H, Berger D, Ricciardi R, Cusack JC, Raymond VM, Talasaz A, Boland GM, Corcoran RB. Minimal residual disease detection using a plasma-only circulating tumor DNA assay in patients with colorectal cancer. Clin Cancer Res 2021; 27(20): 5586–5594
CrossRef
Google scholar
|
[66] |
Vidal J, Casadevall D, Bellosillo B, Pericay C, Garcia-Carbonero R, Losa F, Layos L, Alonso V, Capdevila J, Gallego J, Vera R, Salud A, Martin-Richard M, Nogué M, Cillán E, Maurel J, Faull I, Raymond V, Fernández-Martos C, Montagut C. Clinical impact of presurgery circulating tumor DNA after total neoadjuvant treatment in locally advanced rectal cancer: a biomarker study from the GEMCAD 1402 Trial. Clin Cancer Res 2021; 27(10): 2890–2898
CrossRef
Google scholar
|
[67] |
Lin WH, Xiao J, Ye ZY, Wei DL, Zhai XH, Xu RH, Zeng ZL, Luo HY. Circulating tumor DNA methylation marker MYO1-G for diagnosis and monitoring of colorectal cancer. Clin Epigenetics 2021; 13(1): 232
CrossRef
Google scholar
|
[68] |
Ko K, Kananazawa Y, Yamada T, Kakinuma D, Matsuno K, Ando F, Kuriyama S, Matsuda A, Yoshida H. Methylation status and long-fragment cell-free DNA are prognostic biomarkers for gastric cancer. Cancer Med 2021; 10(6): 2003–2012
CrossRef
Google scholar
|
[69] |
Husain N, Husain A, Mishra S, Srivastava P. Liquid biopsy in CNS tumors: current status & future perspectives. Indian J Pathol Microbiol 2022; 65(Supplement): S111–S121
|
[70] |
Luo H, Wei W, Ye Z, Zheng J, Xu RH. Liquid biopsy of methylation biomarkers in cell-free DNA. Trends Mol Med 2021; 27(5): 482–500
CrossRef
Google scholar
|
[71] |
Liu W, Li Y, Tang Y, Song Q, Wang J, Li N, Chen S, Shi J, Wang S, Li Y, Jiao Y, Zeng Y, Jin J. Response prediction and risk stratification of patients with rectal cancer after neoadjuvant therapy through an analysis of circulating tumour DNA. EBioMedicine 2022; 78: 103945
CrossRef
Google scholar
|
[72] |
Liu APY, Smith KS, Kumar R, Paul L, Bihannic L, Lin T, Maass KK, Pajtler KW, Chintagumpala M, Su JM, Bouffet E, Fisher MJ, Gururangan S, Cohn R, Hassall T, Hansford JR, Klimo P Jr, Boop FA, Stewart CF, Harreld JH, Merchant TE, Tatevossian RG, Neale G, Lear M, Klco JM, Orr BA, Ellison DW, Gilbertson RJ, Onar-Thomas A, Gajjar A, Robinson GW, Northcott PA. Serial assessment of measurable residual disease in medulloblastoma liquid biopsies. Cancer Cell 2021; 39(11): 1519–1530.e4
CrossRef
Google scholar
|
[73] |
Heitzer E, Auer M, Hoffmann EM, Pichler M, Gasch C, Ulz P, Lax S, Waldispuehl-Geigl J, Mauermann O, Mohan S, Pristauz G, Lackner C, Höfler G, Eisner F, Petru E, Sill H, Samonigg H, Pantel K, Riethdorf S, Bauernhofer T, Geigl JB, Speicher MR. Establishment of tumor-specific copy number alterations from plasma DNA of patients with cancer. Int J Cancer 2013; 133(2): 346–356
CrossRef
Google scholar
|
[74] |
Wang Y, Fan X, Bao H, Xia F, Wan J, Shen L, Wang Y, Zhang H, Wei Y, Wu X, Shao Y, Li X, Xu Y, Cai S, Zhang Z. Utility of circulating free DNA fragmentomics in the prediction of pathological response after neoadjuvant chemoradiotherapy in locally advanced rectal cancer. Clin Chem 2023; 69(1): 88–99
CrossRef
Google scholar
|
[75] |
Radovich M, Jiang G, Hancock BA, Chitambar C, Nanda R, Falkson C, Lynce FC, Gallagher C, Isaacs C, Blaya M, Paplomata E, Walling R, Daily K, Mahtani R, Thompson MA, Graham R, Cooper ME, Pavlick DC, Albacker LA, Gregg J, Solzak JP, Chen YH, Bales CL, Cantor E, Shen F, Storniolo AMV, Badve S, Ballinger TJ, Chang CL, Zhong Y, Savran C, Miller KD, Schneider BP. Association of circulating tumor DNA and circulating tumor cells after neoadjuvant chemotherapy with disease recurrence in patients with triple-negative breast cancer: preplanned secondary analysis of the BRE12-158 randomized clinical trial. JAMA Oncol 2020; 6(9): 1410–1415
CrossRef
Google scholar
|
[76] |
Zhao L, Jiang L, Liu Y, Wang X, Song J, Sun Y, Bai Y, Dong X, Sun L, Wu J, Jiao Y, Zhao X. Integrated analysis of circulating tumour cells and circulating tumour DNA to detect minimal residual disease in hepatocellular carcinoma. Clin Transl Med 2022; 12(4): e793
CrossRef
Google scholar
|
[77] |
Bankó P, Lee SY, Nagygyörgy V, Zrínyi M, Chae CH, Cho DH, Telekes A. Technologies for circulating tumor cell separation from whole blood. J Hematol Oncol 2019; 12(1): 48
CrossRef
Google scholar
|
[78] |
Cohen SJ, Punt CJ, Iannotti N, Saidman BH, Sabbath KD, Gabrail NY, Picus J, Morse M, Mitchell E, Miller MC, Doyle GV, Tissing H, Terstappen LW, Meropol NJ. Relationship of circulating tumor cells to tumor response, progression-free survival, and overall survival in patients with metastatic colorectal cancer. J Clin Oncol 2008; 26(19): 3213–3221
CrossRef
Google scholar
|
[79] |
Nikanjam M, Kato S, Kurzrock R. Liquid biopsy: current technology and clinical applications. J Hematol Oncol 2022; 15(1): 131
CrossRef
Google scholar
|
[80] |
Wu Y, Park KJ, Deighan C, Amaya P, Miller B, Pan Q, Zborowski M, Lustberg M, Chalmers J. Multiparameter evaluation of the heterogeneity of circulating tumor cells using integrated RNA in situ hybridization and immunocytochemical analysis. Front Oncol 2016; 6: 234
CrossRef
Google scholar
|
[81] |
Alix-Panabières C, Pantel K. Clinical applications of circulating tumor cells and circulating tumor DNA as liquid biopsy. Cancer Discov 2016; 6(5): 479–491
CrossRef
Google scholar
|
[82] |
Tong L, Ding N, Tong X, Li J, Zhang Y, Wang X, Xu X, Ye M, Li C, Wu X, Bao H, Zhang X, Hong Q, Song Y, Shao YW, Bai C, Zhou J, Hu J. Tumor-derived DNA from pleural effusion supernatant as a promising alternative to tumor tissue in genomic profiling of advanced lung cancer. Theranostics 2019; 9(19): 5532–5541
CrossRef
Google scholar
|
[83] |
Han MR, Lee SH, Park JY, Hong H, Ho JY, Hur SY, Choi YJ. Clinical implications of circulating tumor DNA from ascites and serial plasma in ovarian cancer. Cancer Res Treat 2020; 52(3): 779–788
CrossRef
Google scholar
|
[84] |
Vanova B, Kalman M, Jasek K, Kasubova I, Burjanivova T, Farkasova A, Kruzliak P, Busselberg D, Plank L, Lasabova Z. Droplet digital PCR revealed high concordance between primary tumors and lymph node metastases in multiplex screening of KRAS mutations in colorectal cancer. Clin Exp Med 2019; 19(2): 219–224
CrossRef
Google scholar
|
[85] |
Zhu Y, Lu D, Lira ME, Xu Q, Du Y, Xiong J, Mao M, Chung HC, Zheng G. Droplet digital polymerase chain reaction detection of HER2 amplification in formalin fixed paraffin embedded breast and gastric carcinoma samples. Exp Mol Pathol 2016; 100(2): 287–293
CrossRef
Google scholar
|
[86] |
Denis JA, Guillerm E, Coulet F, Larsen AK, Lacorte JM. The role of BEAMing and digital PCR for multiplexed analysis in molecular oncology in the era of next-generation sequencing. Mol Diagn Ther 2017; 21(6): 587–600
CrossRef
Google scholar
|
[87] |
Dressman D, Yan H, Traverso G, Kinzler KW, Vogelstein B. Transforming single DNA molecules into fluorescent magnetic particles for detection and enumeration of genetic variations. Proc Natl Acad Sci USA 2003; 100(15): 8817–8822
CrossRef
Google scholar
|
[88] |
García-Foncillas J, Alba E, Aranda E, Díaz-Rubio E, López-López R, Tabernero J, Vivancos A. Incorporating BEAMing technology as a liquid biopsy into clinical practice for the management of colorectal cancer patients: an expert taskforce review. Ann Oncol 2017; 28(12): 2943–2949
CrossRef
Google scholar
|
[89] |
Olmedillas-López S, Olivera-Salazar R, García-Arranz M, García-Olmo D. Current and emerging applications of droplet digital PCR in oncology: an updated review. Mol Diagn Ther 2022; 26(1): 61–87
CrossRef
Google scholar
|
[90] |
Paweletz CP, Heavey GA, Kuang Y, Durlacher E, Kheoh T, Chao RC, Spira AI, Leventakos K, Johnson ML, Ou SI, Riely GJ, Anderes K, Yang W, Christensen JG, Jänne PA. Early changes in circulating cell-free KRAS G12C predict response to Adagrasib in KRAS mutant non-small cell lung cancer patients. Clin Cancer Res 2023; 29(16): 3074–3080
CrossRef
Google scholar
|
[91] |
Garrido P, Paz-Ares L, Majem M, Morán T, Trigo JM, Bosch-Barrera J, Garcίa-Campelo R, González-Larriba JL, Sánchez-Torres JM, Isla D, Viñolas N, Camps C, Insa A, Juan Ó, Massuti B, Paredes A, Artal Á, López-Brea M, Palacios J, Felip E. LungBEAM: a prospective multicenter study to monitor stage IV NSCLC patients with EGFR mutations using BEAMing technology. Cancer Med 2021; 10(17): 5878–5888
CrossRef
Google scholar
|
[92] |
Quail MA, Kozarewa I, Smith F, Scally A, Stephens PJ, Durbin R, Swerdlow H, Turner DJ. A large genome center’s improvements to the Illumina sequencing system. Nat Methods 2008; 5(12): 1005–1010
CrossRef
Google scholar
|
[93] |
Gore A, Li Z, Fung HL, Young JE, Agarwal S, Antosiewicz-Bourget J, Canto I, Giorgetti A, Israel MA, Kiskinis E, Lee JH, Loh YH, Manos PD, Montserrat N, Panopoulos AD, Ruiz S, Wilbert ML, Yu J, Kirkness EF, Izpisua Belmonte JC, Rossi DJ, Thomson JA, Eggan K, Daley GQ, Goldstein LS, Zhang K. Somatic coding mutations in human induced pluripotent stem cells. Nature 2011; 471(7336): 63–67
CrossRef
Google scholar
|
[94] |
Tie J, Wang Y, Cohen J, Li L, Hong W, Christie M, Wong HL, Kosmider S, Wong R, Thomson B, Choi J, Fox A, Field K, Burge M, Shannon J, Kotasek D, Tebbutt NC, Karapetis C, Underhill C, Haydon A, Schaeffer J, Ptak J, Tomasetti C, Papadopoulos N, Kinzler KW, Vogelstein B, Gibbs P. Circulating tumor DNA dynamics and recurrence risk in patients undergoing curative intent resection of colorectal cancer liver metastases: a prospective cohort study. PLoS Med 2021; 18(5): e1003620
CrossRef
Google scholar
|
[95] |
Tie J, Kinde I, Wang Y, Wong HL, Roebert J, Christie M, Tacey M, Wong R, Singh M, Karapetis CS, Desai J, Tran B, Strausberg RL, Diaz LA Jr, Papadopoulos N, Kinzler KW, Vogelstein B, Gibbs P. Circulating tumor DNA as an early marker of therapeutic response in patients with metastatic colorectal cancer. Ann Oncol 2015; 26(8): 1715–1722
CrossRef
Google scholar
|
[96] |
Newman AM, Bratman SV, To J, Wynne JF, Eclov NC, Modlin LA, Liu CL, Neal JW, Wakelee HA, Merritt RE, Shrager JB, Loo BW Jr, Alizadeh AA, Diehn M. An ultrasensitive method for quantitating circulating tumor DNA with broad patient coverage. Nat Med 2014; 20(5): 548–554
CrossRef
Google scholar
|
[97] |
Azad TD, Chaudhuri AA, Fang P, Qiao Y, Esfahani MS, Chabon JJ, Hamilton EG, Yang YD, Lovejoy A, Newman AM, Kurtz DM, Jin M, Schroers-Martin J, Stehr H, Liu CL, Hui AB, Patel V, Maru D, Lin SH, Alizadeh AA, Diehn M. Circulating tumor DNA analysis for detection of minimal residual disease after chemoradiotherapy for localized esophageal cancer. Gastroenterology 2020; 158(3): 494–505.e6
CrossRef
Google scholar
|
[98] |
Phillips R, Shi WY, Deek M, Radwan N, Lim SJ, Antonarakis ES, Rowe SP, Ross AE, Gorin MA, Deville C, Greco SC, Wang H, Denmeade SR, Paller CJ, Dipasquale S, DeWeese TL, Song DY, Wang H, Carducci MA, Pienta KJ, Pomper MG, Dicker AP, Eisenberger MA, Alizadeh AA, Diehn M, Tran PT. Outcomes of observation vs stereotactic ablative radiation for oligometastatic prostate cancer: the ORIOLE phase 2 randomized clinical trial. JAMA Oncol 2020; 6(5): 650–659
CrossRef
Google scholar
|
[99] |
Kaneko A, Kanemaru H, Kajihara I, Mijiddorj T, Miyauchi H, Kuriyama H, Kimura T, Sawamura S, Makino K, Miyashita A, Aoi J, Makino T, Masuguchi S, Fukushima S, Ihn H. Liquid biopsy-based analysis by ddPCR and CAPP-Seq in melanoma patients. J Dermatol Sci 2021; 102(3): 158–166
CrossRef
Google scholar
|
[100] |
Chauhan PS, Chen K, Babbra RK, Feng W, Pejovic N, Nallicheri A, Harris PK, Dienstbach K, Atkocius A, Maguire L, Qaium F, Szymanski JJ, Baumann BC, Ding L, Cao D, Reimers MA, Kim EH, Smith ZL, Arora VK, Chaudhuri AA. Urine tumor DNA detection of minimal residual disease in muscle-invasive bladder cancer treated with curative-intent radical cystectomy: a cohort study. PLoS Med 2021; 18(8): e1003732
CrossRef
Google scholar
|
[101] |
Dudley JC, Schroers-Martin J, Lazzareschi DV, Shi WY, Chen SB, Esfahani MS, Trivedi D, Chabon JJ, Chaudhuri AA, Stehr H, Liu CL, Lim H, Costa HA, Nabet BY, Sin MLY, Liao JC, Alizadeh AA, Diehn M. Detection and surveillance of bladder cancer using urine tumor DNA. Cancer Discov 2019; 9(4): 500–509
CrossRef
Google scholar
|
[102] |
Kurtz DM, Soo J, Co Ting Keh L, Alig S, Chabon JJ, Sworder BJ, Schultz A, Jin MC, Scherer F, Garofalo A, Macaulay CW, Hamilton EG, Chen B, Olsen M, Schroers-Martin JG, Craig AFM, Moding EJ, Esfahani MS, Liu CL, Dührsen U, Hüttmann A, Casasnovas RO, Westin JR, Roschewski M, Wilson WH, Gaidano G, Rossi D, Diehn M, Alizadeh AA. Enhanced detection of minimal residual disease by targeted sequencing of phased variants in circulating tumor DNA. Nat Biotechnol 2021; 39(12): 1537–1547
CrossRef
Google scholar
|
[103] |
Gydush G, Nguyen E, Bae JH, Blewett T, Rhoades J, Reed SC, Shea D, Xiong K, Liu R, Yu F, Leong KW, Choudhury AD, Stover DG, Tolaney SM, Krop IE, Christopher Love J, Parsons HA, Mike Makrigiorgos G, Golub TR, Adalsteinsson VA. Massively parallel enrichment of low-frequency alleles enables duplex sequencing at low depth. Nat Biomed Eng 2022; 6(3): 257–266
CrossRef
Google scholar
|
[104] |
Chauhan PS, Shiang A, Alahi I, Sundby RT, Feng W, Gungoren B, Nawaf C, Chen K, Babbra RK, Harris PK, Qaium F, Hatscher C, Antiporda A, Brunt L, Mayer LR, Shern JF, Baumann BC, Kim EH, Reimers MA, Smith ZL, Chaudhuri AA. Urine cell-free DNA multi-omics to detect MRD and predict survival in bladder cancer patients. NPJ Precis Oncol 2023; 7(1): 6
CrossRef
Google scholar
|
[105] |
McGuire AL, Caulfield T, Cho MK. Research ethics and the challenge of whole-genome sequencing. Nat Rev Genet 2008; 9(2): 152–156
CrossRef
Google scholar
|
[106] |
Szymanski JJ, Sundby RT, Jones PA, Srihari D, Earland N, Harris PK, Feng W, Qaium F, Lei H, Roberts D, Landeau M, Bell J, Huang Y, Hoffman L, Spencer M, Spraker MB, Ding L, Widemann BC, Shern JF, Hirbe AC, Chaudhuri AA. Cell-free DNA ultra-low-pass whole genome sequencing to distinguish malignant peripheral nerve sheath tumor (MPNST) from its benign precursor lesion: a cross-sectional study. PLoS Med 2021; 18(8): e1003734
CrossRef
Google scholar
|
[107] |
Zeng S, Ying Y, Xing N, Wang B, Qian Z, Zhou Z, Zhang Z, Xu W, Wang H, Dai L, Gao L, Zhou T, Ji J, Xu C. Noninvasive detection of urothelial carcinoma by cost-effective low-coverage whole-genome sequencing from urine-exfoliated cell DNA. Clin Cancer Res 2020; 26(21): 5646–5654
CrossRef
Google scholar
|
[108] |
Zivanovic Bujak A, Weng CF, Silva MJ, Yeung M, Lo L, Ftouni S, Litchfield C, Ko YA, Kuykhoven K, Van Geelen C, Chandrashekar S, Dawson MA, Loi S, Wong SQ, Dawson SJ. Circulating tumour DNA in metastatic breast cancer to guide clinical trial enrolment and precision oncology: a cohort study. PLoS Med 2020; 17(10): e1003363
CrossRef
Google scholar
|
[109] |
Lissa D, Robles AI. Methylation analyses in liquid biopsy. Transl Lung Cancer Res 2016; 5(5): 492–504
CrossRef
Google scholar
|
[110] |
Legendre C, Gooden GC, Johnson K, Martinez RA, Liang WS, Salhia B. Whole-genome bisulfite sequencing of cell-free DNA identifies signature associated with metastatic breast cancer. Clin Epigenetics 2015; 7(1): 100
CrossRef
Google scholar
|
[111] |
Liu L, Toung JM, Jassowicz AF, Vijayaraghavan R, Kang H, Zhang R, Kruglyak KM, Huang HJ, Hinoue T, Shen H, Salathia NS, Hong DS, Naing A, Subbiah V, Piha-Paul SA, Bibikova M, Granger G, Barnes B, Shen R, Gutekunst K, Fu S, Tsimberidou AM, Lu C, Eng C, Moulder SL, Kopetz ES, Amaria RN, Meric-Bernstam F, Laird PW, Fan JB, Janku F. Targeted methylation sequencing of plasma cell-free DNA for cancer detection and classification. Ann Oncol 2018; 29(6): 1445–1453
CrossRef
Google scholar
|
[112] |
Shen SY, Singhania R, Fehringer G, Chakravarthy A, Roehrl MHA, Chadwick D, Zuzarte PC, Borgida A, Wang TT, Li T, Kis O, Zhao Z, Spreafico A, Medina TDS, Wang Y, Roulois D, Ettayebi I, Chen Z, Chow S, Murphy T, Arruda A, O’Kane GM, Liu J, Mansour M, McPherson JD, O’Brien C, Leighl N, Bedard PL, Fleshner N, Liu G, Minden MD, Gallinger S, Goldenberg A, Pugh TJ, Hoffman MM, Bratman SV, Hung RJ, De Carvalho DD. Sensitive tumour detection and classification using plasma cell-free DNA methylomes. Nature 2018; 563(7732): 579–583
CrossRef
Google scholar
|
[113] |
Han D, Lu X, Shih AH, Nie J, You Q, Xu MM, Melnick AM, Levine RL, He C. A highly sensitive and robust method for genome-wide 5hmC profiling of rare cell populations. Mol Cell 2016; 63(4): 711–719
CrossRef
Google scholar
|
[114] |
Janke F, Angeles AK, Riediger AL, Bauer S, Reck M, Stenzinger A, Schneider MA, Muley T, Thomas M, Christopoulos P, Sültmann H. Longitudinal monitoring of cell-free DNA methylation in ALK-positive non-small cell lung cancer patients. Clin Epigenetics 2022; 14(1): 163
CrossRef
Google scholar
|
[115] |
Bratman SV, Yang SYC, Iafolla MAJ, Liu Z, Hansen AR, Bedard PL, Lheureux S, Spreafico A, Razak AA, Shchegrova S, Louie M, Billings P, Zimmermann B, Sethi H, Aleshin A, Torti D, Marsh K, Eagles J, Cirlan I, Hanna Y, Clouthier DL, Lien SC, Ohashi PS, Xu W, Siu LL, Pugh TJ. Personalized circulating tumor DNA analysis as a predictive biomarker in solid tumor patients treated with pembrolizumab. Nat Can 2020; 1(9): 873–881
CrossRef
Google scholar
|
[116] |
Chen K, Shields MD, Chauhan PS, Ramirez RJ, Harris PK, Reimers MA, Zevallos JP, Davis AA, Pellini B, Chaudhuri AA. Commercial ctDNA assays for minimal residual disease detection of solid tumors. Mol Diagn Ther 2021; 25(6): 757–774
CrossRef
Google scholar
|
[117] |
Pellini B, Chaudhuri AA. Circulating tumor DNA minimal residual disease detection of non-small-cell lung cancer treated with curative intent. J Clin Oncol 2022; 40(6): 567–575
CrossRef
Google scholar
|
[118] |
Yaung SJ, Woestmann C, Ju C, Ma XM, Gattam S, Zhou Y, Xi L, Pal S, Balasubramanyam A, Tikoo N, Heussel CP, Thomas M, Kriegsmann M, Meister M, Schneider MA, Herth FJ, Wehnl B, Diehn M, Alizadeh AA, Palma JF, Muley T. Early assessment of chemotherapy response in advanced non-small cell lung cancer with circulating tumor DNA. Cancers (Basel) 2022; 14(10): 2479
CrossRef
Google scholar
|
[119] |
Newman AM, Lovejoy AF, Klass DM, Kurtz DM, Chabon JJ, Scherer F, Stehr H, Liu CL, Bratman SV, Say C, Zhou L, Carter JN, West RB, Sledge GW Jr, Shrager JB, Loo BW Jr, Neal JW, Wakelee HA, Diehn M, Alizadeh AA. Integrated digital error suppression for improved detection of circulating tumor DNA. Nat Biotechnol 2016; 34(5): 547–555
CrossRef
Google scholar
|
[120] |
Risques RA, Kennedy SR. Aging and the rise of somatic cancer-associated mutations in normal tissues. PLoS Genet 2018; 14(1): e1007108
CrossRef
Google scholar
|
[121] |
Burgener JM, Zou J, Zhao Z, Zheng Y, Shen SY, Huang SH, Keshavarzi S, Xu W, Liu FF, Liu G, Waldron JN, Weinreb I, Spreafico A, Siu LL, de Almeida JR, Goldstein DP, Hoffman MM, De Carvalho DD, Bratman SV. Tumor-naïve multimodal profiling of circulating tumor DNA in head and neck squamous cell carcinoma. Clin Cancer Res 2021; 27(15): 4230–4244
CrossRef
Google scholar
|
[122] |
Cohen JD, Li L, Wang Y, Thoburn C, Afsari B, Danilova L, Douville C, Javed AA, Wong F, Mattox A, Hruban RH, Wolfgang CL, Goggins MG, Dal Molin M, Wang TL, Roden R, Klein AP, Ptak J, Dobbyn L, Schaefer J, Silliman N, Popoli M, Vogelstein JT, Browne JD, Schoen RE, Brand RE, Tie J, Gibbs P, Wong HL, Mansfield AS, Jen J, Hanash SM, Falconi M, Allen PJ, Zhou S, Bettegowda C, Diaz LA Jr, Tomasetti C, Kinzler KW, Vogelstein B, Lennon AM, Papadopoulos N. Detection and localization of surgically resectable cancers with a multi-analyte blood test. Science 2018; 359(6378): 926–930
CrossRef
Google scholar
|
[123] |
SethiHSalari RNavarroSNatarajanPSrinivasan RDashnerSTinTBalcioglu MSwenertonRZimmermannB. Analytical validation of the SignateraTM RUO assay, a highly sensitive patient-specific multiplex PCR NGS-based noninvasive cancer recurrence detection and therapy monitoring assay. Cancer Res 2018; 78(13 Supplement): 4542 doi:10.1158/1538–7445.AM1538–7445
|
[124] |
Christensen E, Birkenkamp-Demtröder K, Sethi H, Shchegrova S, Salari R, Nordentoft I, Wu HT, Knudsen M, Lamy P, Lindskrog SV, Taber A, Balcioglu M, Vang S, Assaf Z, Sharma S, Tin AS, Srinivasan R, Hafez D, Reinert T, Navarro S, Olson A, Ram R, Dashner S, Rabinowitz M, Billings P, Sigurjonsson S, Andersen CL, Swenerton R, Aleshin A, Zimmermann B, Agerbæk M, Lin CJ, Jensen JB, Dyrskjøt L. Early detection of metastatic relapse and monitoring of therapeutic efficacy by ultra-deep sequencing of plasma cell-free DNA in patients with urothelial bladder carcinoma. J Clin Oncol 2019; 37(18): 1547–1557
CrossRef
Google scholar
|
[125] |
Coombes RC, Page K, Salari R, Hastings RK, Armstrong A, Ahmed S, Ali S, Cleator S, Kenny L, Stebbing J, Rutherford M, Sethi H, Boydell A, Swenerton R, Fernandez-Garcia D, Gleason KLT, Goddard K, Guttery DS, Assaf ZJ, Wu HT, Natarajan P, Moore DA, Primrose L, Dashner S, Tin AS, Balcioglu M, Srinivasan R, Shchegrova SV, Olson A, Hafez D, Billings P, Aleshin A, Rehman F, Toghill BJ, Hills A, Louie MC, Lin CJ, Zimmermann BG, Shaw JA. Personalized detection of circulating tumor DNA antedates breast cancer metastatic recurrence. Clin Cancer Res 2019; 25(14): 4255–4263
CrossRef
Google scholar
|
[126] |
Jamal-Hanjani M, Wilson GA, Horswell S, Mitter R, Sakarya O, Constantin T, Salari R, Kirkizlar E, Sigurjonsson S, Pelham R, Kareht S, Zimmermann B, Swanton C. Detection of ubiquitous and heterogeneous mutations in cell-free DNA from patients with early-stage non-small-cell lung cancer. Ann Oncol 2016; 27(5): 862–867
CrossRef
Google scholar
|
[127] |
Zhao D, Yue P, Wang T, Wang P, Song Q, Wang J, Jiao Y. Personalized analysis of minimal residual cancer cells in peritoneal lavage fluid predicts peritoneal dissemination of gastric cancer. J Hematol Oncol 2021; 14(1): 164
CrossRef
Google scholar
|
[128] |
Chaudhuri AA, Chabon JJ, Lovejoy AF, Newman AM, Stehr H, Azad TD, Khodadoust MS, Esfahani MS, Liu CL, Zhou L, Scherer F, Kurtz DM, Say C, Carter JN, Merriott DJ, Dudley JC, Binkley MS, Modlin L, Padda SK, Gensheimer MF, West RB, Shrager JB, Neal JW, Wakelee HA, Loo BW Jr, Alizadeh AA, Diehn M. Early detection of molecular residual disease in localized lung cancer by circulating tumor DNA profiling. Cancer Discov 2017; 7(12): 1394–1403
CrossRef
Google scholar
|
[129] |
Ococks E, Frankell AM, Masque Soler N, Grehan N, Northrop A, Coles H, Redmond AM, Devonshire G, Weaver JMJ, Hughes C, Lehovsky K, Blasko A, Nutzinger B; OCCAMS Consortium; Fitzgerald RC, Smyth E. Longitudinal tracking of 97 esophageal adenocarcinomas using liquid biopsy sampling. Ann Oncol 2021; 32(4): 522–532
CrossRef
Google scholar
|
[130] |
Qiu B, Guo W, Zhang F, Lv F, Ji Y, Peng Y, Chen X, Bao H, Xu Y, Shao Y, Tan F, Xue Q, Gao S, He J. Dynamic recurrence risk and adjuvant chemotherapy benefit prediction by ctDNA in resected NSCLC. Nat Commun 2021; 12(1): 6770
CrossRef
Google scholar
|
[131] |
Gale D, Heider K, Ruiz-Valdepenas A, Hackinger S, Perry M, Marsico G, Rundell V, Wulff J, Sharma G, Knock H, Castedo J, Cooper W, Zhao H, Smith CG, Garg S, Anand S, Howarth K, Gilligan D, Harden SV, Rassl DM, Rintoul RC, Rosenfeld N. Residual ctDNA after treatment predicts early relapse in patients with early-stage non-small cell lung cancer. Ann Oncol 2022; 33(5): 500–510
CrossRef
Google scholar
|
[132] |
Yue D, Liu W, Chen C, Zhang T, Ma Y, Cui L, Gu Y, Bei T, Zhao X, Zhang B, Bai Y, Romero A, Xu-Welliver M, Wang C, Zhang Z, Zhang B. Circulating tumor DNA predicts neoadjuvant immunotherapy efficacy and recurrence-free survival in surgical non-small cell lung cancer patients. Transl Lung Cancer Res 2022; 11(2): 263–276
CrossRef
Google scholar
|
[133] |
Xia L, Mei J, Kang R, Deng S, Chen Y, Yang Y, Feng G, Deng Y, Gan F, Lin Y, Pu Q, Ma L, Lin F, Yuan Y, Hu Y, Guo C, Liao H, Liu C, Zhu Y, Wang W, Liu Z, Xu Y, Li K, Li C, Li Q, He J, Chen W, Zhang X, Kou Y, Wang Y, Wu Z, Che G, Chen L, Liu L. Perioperative ctDNA-based molecular residual disease detection for non-small cell lung cancer: a prospective multicenter cohort study (LUNGCA-1). Clin Cancer Res 2022; 28(15): 3308–3317
CrossRef
Google scholar
|
[134] |
Tie J, Wang Y, Tomasetti C, Li L, Springer S, Kinde I, Silliman N, Tacey M, Wong HL, Christie M, Kosmider S, Skinner I, Wong R, Steel M, Tran B, Desai J, Jones I, Haydon A, Hayes T, Price TJ, Strausberg RL, Diaz LA Jr, Papadopoulos N, Kinzler KW, Vogelstein B, Gibbs P. Circulating tumor DNA analysis detects minimal residual disease and predicts recurrence in patients with stage II colon cancer. Sci Transl Med 2016; 8(346): 346ra92
CrossRef
Google scholar
|
[135] |
Tie J, Cohen JD, Wang Y, Christie M, Simons K, Lee M, Wong R, Kosmider S, Ananda S, McKendrick J, Lee B, Cho JH, Faragher I, Jones IT, Ptak J, Schaeffer MJ, Silliman N, Dobbyn L, Li L, Tomasetti C, Papadopoulos N, Kinzler KW, Vogelstein B, Gibbs P. Circulating tumor DNA analyses as markers of recurrence risk and benefit of adjuvant therapy for stage III colon cancer. JAMA Oncol 2019; 5(12): 1710–1717
CrossRef
Google scholar
|
[136] |
Tie J, Cohen JD, Wang Y, Li L, Christie M, Simons K, Elsaleh H, Kosmider S, Wong R, Yip D, Lee M, Tran B, Rangiah D, Burge M, Goldstein D, Singh M, Skinner I, Faragher I, Croxford M, Bampton C, Haydon A, Jones IT, S Karapetis C, Price T, Schaefer MJ, Ptak J, Dobbyn L, Silliman N, Kinde I, Tomasetti C, Papadopoulos N, Kinzler K, Volgestein B, Gibbs P. Serial circulating tumour DNA analysis during multimodality treatment of locally advanced rectal cancer: a prospective biomarker study. Gut 2019; 68(4): 663–671
CrossRef
Google scholar
|
[137] |
Anandappa G, Starling N, Begum R, Bryant A, Sharma S, Renner D, Aresu M, Peckitt C, Sethi H, Feber A, Potter VA, Paraoan M, Abulafi M, George N, Branagan G, Duff S, West N, Aleshin A, Chau I, Cunningham D; UK Colorectal Cancer TRACC Study Group. Minimal residual disease (MRD) detection with circulating tumor DNA (ctDNA) from personalized assays in stage II–III colorectal cancer patients in a UK multicenter prospective study (TRACC). J Clin Oncol 2021; 39(3_suppl): 102
CrossRef
Google scholar
|
[138] |
Tie J, Cohen JD, Lahouel K, Lo SN, Wang Y, Kosmider S, Wong R, Shapiro J, Lee M, Harris S, Khattak A, Burge M, Harris M, Lynam J, Nott L, Day F, Hayes T, McLachlan SA, Lee B, Ptak J, Silliman N, Dobbyn L, Popoli M, Hruban R, Lennon AM, Papadopoulos N, Kinzler KW, Vogelstein B, Tomasetti C, Gibbs P; DYNAMIC Investigators. Circulating tumor DNA analysis guiding adjuvant therapy in stage II colon cancer. N Engl J Med 2022; 386(24): 2261–2272
CrossRef
Google scholar
|
[139] |
Diehn M, Alizadeh AA, Adams H-P, Lee JJ, Klassen S, Palma JF, Hinzman B, Lovejoy AF, Newman AM, Yao LJ, Yaung S, Balasubramanyam A, Rohr UP, Rosenthal A, Kube R, Steinmüller T, Marusch F, Mantke R, Heise M, Pross M. Early prediction of clinical outcomes in resected stage II and III colorectal cancer (CRC) through deep sequencing of circulating tumor DNA (ctDNA). J Clin Oncol 2017; 35(15_suppl): 3591
CrossRef
Google scholar
|
[140] |
Schøler LV, Reinert T, Ørntoft MW, Kassentoft CG, Árnadóttir SS, Vang S, Nordentoft I, Knudsen M, Lamy P, Andreasen D, Mortensen FV, Knudsen AR, Stribolt K, Sivesgaard K, Mouritzen P, Nielsen HJ, Laurberg S, Ørntoft TF, Andersen CL. Clinical implications of monitoring circulating tumor DNA in patients with colorectal cancer. Clin Cancer Res 2017; 23(18): 5437–5445
CrossRef
Google scholar
|
[141] |
Magbanua MJM, Swigart LB, Wu HT, Hirst GL, Yau C, Wolf DM, Tin A, Salari R, Shchegrova S, Pawar H, Delson AL, DeMichele A, Liu MC, Chien AJ, Tripathy D, Asare S, Lin CJ, Billings P, Aleshin A, Sethi H, Louie M, Zimmermann B, Esserman LJ, van’t Veer LJ. Circulating tumor DNA in neoadjuvant-treated breast cancer reflects response and survival. Ann Oncol 2021; 32(2): 229–239
CrossRef
Google scholar
|
[142] |
Rothé F, Silva MJ, Venet D, Campbell C, Bradburry I, Rouas G, de Azambuja E, Maetens M, Fumagalli D, Rodrik-Outmezguine V, Di Cosimo S, Rosa D, Chia S, Wardley A, Ueno T, Janni W, Huober J, Baselga J, Piccart M, Loi S, Sotiriou C, Dawson SJ, Ignatiadis M. Circulating tumor DNA in HER2-amplified breast cancer: a translational research substudy of the NeoALTTO phase III trial. Clin Cancer Res 2019; 25(12): 3581–3588
CrossRef
Google scholar
|
[143] |
Zhou Q, Gampenrieder SP, Frantal S, Rinnerthaler G, Singer CF, Egle D, Pfeiler G, Bartsch R, Wette V, Pichler A, Petru E, Dubsky PC, Bago-Horvath Z, Fesl C, Rudas M, Ståhlberg A, Graf R, Weber S, Dandachi N, Filipits M, Gnant M, Balic M, Heitzer E. Persistence of ctDNA in patients with breast cancer during neoadjuvant treatment is a significant predictor of poor tumor response. Clin Cancer Res 2022; 28(4): 697–707
CrossRef
Google scholar
|
[144] |
Li S, Lai H, Liu J, Liu Y, Jin L, Li Y, Liu F, Gong Y, Guan Y, Yi X, Shi Q, Cai Z, Li Q, Li Y, Zhu M, Wang J, Yang Y, Wei W, Yin D, Song E, Liu Q. Circulating tumor DNA predicts the response and prognosis in patients with early breast cancer receiving neoadjuvant chemotherapy. JCO Precis Oncol 2020; 4: PO.19.00292
CrossRef
Google scholar
|
[145] |
Hrebien S, Citi V, Garcia-Murillas I, Cutts R, Fenwick K, Kozarewa I, McEwen R, Ratnayake J, Maudsley R, Carr TH, de Bruin EC, Schiavon G, Oliveira M, Turner N. Early ctDNA dynamics as a surrogate for progression-free survival in advanced breast cancer in the BEECH trial. Ann Oncol 2019; 30(6): 945–952
CrossRef
Google scholar
|
[146] |
Garcia-Murillas I, Chopra N, Comino-Méndez I, Beaney M, Tovey H, Cutts RJ, Swift C, Kriplani D, Afentakis M, Hrebien S, Walsh-Crestani G, Barry P, Johnston SRD, Ring A, Bliss J, Russell S, Evans A, Skene A, Wheatley D, Dowsett M, Smith IE, Turner NC. Assessment of molecular relapse detection in early-stage breast cancer. JAMA Oncol 2019; 5(10): 1473–1478
CrossRef
Google scholar
|
[147] |
Wang S, Li M, Zhang J, Xing P, Wu M, Meng F, Jiang F, Wang J, Bao H, Huang J, Ren B, Yu M, Qiu N, Li H, Yuan F, Zhang Z, Jia H, Lu X, Zhang S, Wang X, Xu Y, Xia W, Liu T, Xu W, Xu X, Sun M, Wu X, Shao Y, Wang Q, Dai J, Qiu M, Wang J, Zhang Q, Xu L, Shen H, Yin R. Circulating tumor DNA integrating tissue clonality detects minimal residual disease in resectable non-small-cell lung cancer. J Hematol Oncol 2022; 15(1): 137
CrossRef
Google scholar
|
[148] |
Lee B, Lipton L, Cohen J, Tie J, Javed AA, Li L, Goldstein D, Burge M, Cooray P, Nagrial A, Tebbutt NC, Thomson B, Nikfarjam M, Harris M, Haydon A, Lawrence B, Tai DWM, Simons K, Lennon AM, Wolfgang CL, Tomasetti C, Papadopoulos N, Kinzler KW, Vogelstein B, Gibbs P. Circulating tumor DNA as a potential marker of adjuvant chemotherapy benefit following surgery for localized pancreatic cancer. Ann Oncol 2019; 30(9): 1472–1478
CrossRef
Google scholar
|
[149] |
Pietrasz D, Pécuchet N, Garlan F, Didelot A, Dubreuil O, Doat S, Imbert-Bismut F, Karoui M, Vaillant JC, Taly V, Laurent-Puig P, Bachet JB. Plasma circulating tumor DNA in pancreatic cancer patients is a prognostic marker. Clin Cancer Res 2017; 23(1): 116–123
CrossRef
Google scholar
|
[150] |
Patel H, Okamura R, Fanta P, Patel C, Lanman RB, Raymond VM, Kato S, Kurzrock R. Clinical correlates of blood-derived circulating tumor DNA in pancreatic cancer. J Hematol Oncol 2019; 12(1): 130
CrossRef
Google scholar
|
[151] |
Hussung S, Akhoundova D, Hipp J, Follo M, Klar RFU, Philipp U, Scherer F, von Bubnoff N, Duyster J, Boerries M, Wittel U, Fritsch RM. Longitudinal analysis of cell-free mutated KRAS and CA 19-9 predicts survival following curative resection of pancreatic cancer. BMC Cancer 2021; 21(1): 49
CrossRef
Google scholar
|
[152] |
Groot VP, Mosier S, Javed AA, Teinor JA, Gemenetzis G, Ding D, Haley LM, Yu J, Burkhart RA, Hasanain A, Debeljak M, Kamiyama H, Narang A, Laheru DA, Zheng L, Lin MT, Gocke CD, Fishman EK, Hruban RH, Goggins MG, Molenaar IQ, Cameron JL, Weiss MJ, Velculescu VE, He J, Wolfgang CL, Eshleman JR. Circulating tumor DNA as a clinical test in resected pancreatic cancer. Clin Cancer Res 2019; 25(16): 4973–4984
CrossRef
Google scholar
|
[153] |
Wang SE, Shyr BU, Shyr BS, Chen SC, Chang SC, Shyr YM. Circulating cell-free DNA in pancreatic head adenocarcinoma undergoing pancreaticoduodenectomy. Pancreas 2021; 50(2): 214–218
CrossRef
Google scholar
|
[154] |
Bernard V, Kim DU, San Lucas FA, Castillo J, Allenson K, Mulu FC, Stephens BM, Huang J, Semaan A, Guerrero PA, Kamyabi N, Zhao J, Hurd MW, Koay EJ, Taniguchi CM, Herman JM, Javle M, Wolff R, Katz M, Varadhachary G, Maitra A, Alvarez HA. Circulating nucleic acids are associated with outcomes of patients with pancreatic cancer. Gastroenterology 2019; 156(1): 108–118.e4
CrossRef
Google scholar
|
[155] |
Szabados B, Kockx M, Assaf ZJ, van Dam PJ, Rodriguez-Vida A, Duran I, Crabb SJ, Van Der Heijden MS, Pous AF, Gravis G, Herranz UA, Protheroe A, Ravaud A, Maillet D, Mendez MJ, Suarez C, Linch M, Prendergast A, Tyson C, Stanoeva D, Daelemans S, Rombouts M, Mariathasan S, Tea JS, Mousa K, Sharma S, Aleshin A, Banchereau R, Castellano D, Powles T. Final results of neoadjuvant atezolizumab in cisplatin-ineligible patients with muscle-invasive urothelial cancer of the bladder. Eur Urol 2022; 82(2): 212–222
CrossRef
Google scholar
|
[156] |
Yu JJ, Xiao W, Dong SL, Liang HF, Zhang ZW, Zhang BX, Huang ZY, Chen YF, Zhang WG, Luo HP, Chen Q, Chen XP. Effect of surgical liver resection on circulating tumor cells in patients with hepatocellular carcinoma. BMC Cancer 2018; 18(1): 835
CrossRef
Google scholar
|
[157] |
Zhao W, Qiu L, Liu H, Xu Y, Zhan M, Zhang W, Xin Y, He X, Yang X, Bai J, Xiao J, Guan Y, Li Q, Chang L, Yi X, Li Y, Chen X, Lu L. Circulating tumor DNA as a potential prognostic and predictive biomarker during interventional therapy of unresectable primary liver cancer. J Gastrointest Oncol 2020; 11(5): 1065–1077
CrossRef
Google scholar
|
[158] |
Yang J, Gong Y, Lam VK, Shi Y, Guan Y, Zhang Y, Ji L, Chen Y, Zhao Y, Qian F, Chen J, Li P, Zhang F, Wang J, Zhang X, Yang L, Kopetz S, Futreal PA, Zhang J, Yi X, Xia X, Yu P. Deep sequencing of circulating tumor DNA detects molecular residual disease and predicts recurrence in gastric cancer. Cell Death Dis 2020; 11(5): 346
CrossRef
Google scholar
|
[159] |
Leal A, van Grieken NCT, Palsgrove DN, Phallen J, Medina JE, Hruban C, Broeckaert MAM, Anagnostou V, Adleff V, Bruhm DC, Canzoniero JV, Fiksel J, Nordsmark M, Warmerdam FARM, Verheul HMW, van Spronsen DJ, Beerepoot LV, Geenen MM, Portielje JEA, Jansen EPM, van Sandick J, Meershoek-Klein Kranenbarg E, van Laarhoven HWM, van der Peet DL, van de Velde CJH, Verheij M, Fijneman R, Scharpf RB, Meijer GA, Cats A, Velculescu VE. White blood cell and cell-free DNA analyses for detection of residual disease in gastric cancer. Nat Commun 2020; 11(1): 525
CrossRef
Google scholar
|
[160] |
Huffman BM, Aushev VN, Budde GL, Chao J, Dayyani F, Hanna D, Botta GP, Catenacci DVT, Maron SB, Krinshpun S, Sharma S, George GV, Malhotra M, Jurdi A, Moshkevich S, Aleshin A, Kasi PM, Klempner SJ. Analysis of circulating tumor DNA to predict risk of recurrence in patients with esophageal and gastric cancers. JCO Precis Oncol 2022; 6(6): e2200420
CrossRef
Google scholar
|
[161] |
Escudero L, Martínez-Ricarte F, Seoane J. ctDNA-based liquid biopsy of cerebrospinal fluid in brain cancer. Cancers (Basel) 2021; 13(9): 1989
CrossRef
Google scholar
|
[162] |
Hou JY, Chapman JS, Kalashnikova E, Pierson W, Smith-McCune K, Pineda G, Vattakalam RM, Ross A, Mills M, Suarez CJ, Davis T, Edwards R, Boisen M, Sawyer S, Wu HT, Dashner S, Aushev VN, George GV, Malhotra M, Zimmermann B, Sethi H, ElNaggar AC, Aleshin A, Ford JM. Circulating tumor DNA monitoring for early recurrence detection in epithelial ovarian cancer. Gynecol Oncol 2022; 167(2): 334–341
CrossRef
Google scholar
|
[163] |
Eroglu Z, Krinshpun S, Kalashnikova E, Sudhaman S, Ozturk Topcu T, Nichols M, Martin J, Bui KM, Palsuledesai CC, Malhotra M, Olshan P, Markowitz J, Khushalani NI, Tarhini AA, Messina JL, Aleshin A. Circulating tumor DNA-based molecular residual disease detection for treatment monitoring in advanced melanoma patients. Cancer 2023; 129(11): 1723–1734
CrossRef
Google scholar
|
[164] |
Henriksen TV, Tarazona N, Frydendahl A, Reinert T, Gimeno-Valiente F, Carbonell-Asins JA, Sharma S, Renner D, Hafez D, Roda D, Huerta M, Roselló S, Madsen AH, Løve US, Andersen PV, Thorlacius-Ussing O, Iversen LH, Gotschalck KA, Sethi H, Aleshin A, Cervantes A, Andersen CL. Circulating tumor DNA in stage III colorectal cancer, beyond minimal residual disease detection, toward assessment of adjuvant therapy efficacy and clinical behavior of recurrences. Clin Cancer Res 2022; 28(3): 507–517
CrossRef
Google scholar
|
[165] |
Shohdy KS, Villamar DM, Cao Y, Trieu J, Price KS, Nagy R, Tagawa ST, Molina AM, Sternberg CN, Nanus DM, Mosquera JM, Elemento O, Sonpavde GP, Grivas P, Vogelzang NJ, Faltas BM. Serial ctDNA analysis predicts clinical progression in patients with advanced urothelial carcinoma. Br J Cancer 2022; 126(3): 430–439
CrossRef
Google scholar
|
[166] |
Wang Y, Li L, Cohen JD, Kinde I, Ptak J, Popoli M, Schaefer J, Silliman N, Dobbyn L, Tie J, Gibbs P, Tomasetti C, Kinzler KW, Papadopoulos N, Vogelstein B, Olsson L. Prognostic potential of circulating tumor DNA measurement in postoperative surveillance of nonmetastatic colorectal cancer. JAMA Oncol 2019; 5(8): 1118–1123
CrossRef
Google scholar
|
[167] |
Øgaard N, Reinert T, Henriksen TV, Frydendahl A, Aagaard E, Ørntoft MW, Larsen MØ, Knudsen AR, Mortensen FV, Andersen CL. Tumour-agnostic circulating tumour DNA analysis for improved recurrence surveillance after resection of colorectal liver metastases: a prospective cohort study. Eur J Cancer 2022; 163: 163–176
CrossRef
Google scholar
|
[168] |
Tarazona N, Gimeno-Valiente F, Gambardella V, Zuñiga S, Rentero-Garrido P, Huerta M, Roselló S, Martinez-Ciarpaglini C, Carbonell-Asins JA, Carrasco F, Ferrer-Martínez A, Bruixola G, Fleitas T, Martín J, Tébar-Martínez R, Moro D, Castillo J, Espí A, Roda D, Cervantes A. Targeted next-generation sequencing of circulating-tumor DNA for tracking minimal residual disease in localized colon cancer. Ann Oncol 2019; 30(11): 1804–1812
CrossRef
Google scholar
|
[169] |
Reinert T, Henriksen TV, Christensen E, Sharma S, Salari R, Sethi H, Knudsen M, Nordentoft I, Wu HT, Tin AS, Heilskov Rasmussen M, Vang S, Shchegrova S, Frydendahl Boll Johansen A, Srinivasan R, Assaf Z, Balcioglu M, Olson A, Dashner S, Hafez D, Navarro S, Goel S, Rabinowitz M, Billings P, Sigurjonsson S, Dyrskjøt L, Swenerton R, Aleshin A, Laurberg S, Husted Madsen A, Kannerup AS, Stribolt K, Palmelund Krag S, Iversen LH, Gotschalck Sunesen K, Lin CJ, Zimmermann BG, Lindbjerg Andersen C. Analysis of plasma cell-free DNA by ultradeep sequencing in patients with stages I to III colorectal cancer. JAMA Oncol 2019; 5(8): 1124–1131
CrossRef
Google scholar
|
[170] |
Garcia-Murillas I, Schiavon G, Weigelt B, Ng C, Hrebien S, Cutts RJ, Cheang M, Osin P, Nerurkar A, Kozarewa I, Garrido JA, Dowsett M, Reis-Filho JS, Smith IE, Turner NC. Mutation tracking in circulating tumor DNA predicts relapse in early breast cancer. Sci Transl Med 2015; 7(302): 302ra133
CrossRef
Google scholar
|
[171] |
Lipsyc-Sharf M, de Bruin EC, Santos K, McEwen R, Stetson D, Patel A, Kirkner GJ, Hughes ME, Tolaney SM, Partridge AH, Krop IE, Knape C, Feger U, Marsico G, Howarth K, Winer EP, Lin NU, Parsons HA. Circulating tumor DNA and late recurrence in high-risk hormone receptor-positive, human epidermal growth factor receptor 2-negative breast cancer. J Clin Oncol 2022; 40(22): 2408–2419
CrossRef
Google scholar
|
[172] |
Olsson E, Winter C, George A, Chen Y, Howlin J, Tang MH, Dahlgren M, Schulz R, Grabau D, van Westen D, Fernö M, Ingvar C, Rose C, Bendahl PO, Rydén L, BorgÅ, Gruvberger-Saal SK, Jernström H, Saal LH. Serial monitoring of circulating tumor DNA in patients with primary breast cancer for detection of occult metastatic disease. EMBO Mol Med 2015; 7(8): 1034–1047
CrossRef
Google scholar
|
[173] |
Sausen M, Phallen J, Adleff V, Jones S, Leary RJ, Barrett MT, Anagnostou V, Parpart-Li S, Murphy D, Kay Li Q, Hruban CA, Scharpf R, White JR, O’Dwyer PJ, Allen PJ, Eshleman JR, Thompson CB, Klimstra DS, Linehan DC, Maitra A, Hruban RH, Diaz LA Jr, Von Hoff DD, Johansen JS, Drebin JA, Velculescu VE. Clinical implications of genomic alterations in the tumour and circulation of pancreatic cancer patients. Nat Commun 2015; 6(1): 7686
CrossRef
Google scholar
|
[174] |
Moding EJ, Liu Y, Nabet BY, Chabon JJ, Chaudhuri AA, Hui AB, Bonilla RF, Ko RB, Yoo CH, Gojenola L, Jones CD, He J, Qiao Y, Xu T, Heymach JV, Tsao A, Liao Z, Gomez DR, Das M, Padda SK, Ramchandran KJ, Neal JW, Wakelee HA, Loo BW Jr, Lin SH, Alizadeh AA, Diehn M. Circulating tumor DNA dynamics predict benefit from consolidation immunotherapy in locally advanced non-small cell lung cancer. Nat Can 2020; 1(2): 176–183
CrossRef
Google scholar
|
[175] |
Bellmunt J, Hussain M, Gschwend JE, Albers P, Oudard S, Castellano D, Daneshmand S, Nishiyama H, Majchrowicz M, Degaonkar V, Shi Y, Mariathasan S, Grivas P, Drakaki A, O’Donnell PH, Rosenberg JE, Geynisman DM, Petrylak DP, Hoffman-Censits J, Bedke J, Kalebasty AR, Zakharia Y, van der Heijden MS, Sternberg CN, Davarpanah NN, Powles T; IMvigor010 Study Group. Adjuvant atezolizumab versus observation in muscle-invasive urothelial carcinoma (IMvigor010): a multicentre, open-label, randomised, phase 3 trial. Lancet Oncol 2021; 22(4): 525–537
CrossRef
Google scholar
|
[176] |
Powles T, Assaf ZJ, Davarpanah N, Banchereau R, Szabados BE, Yuen KC, Grivas P, Hussain M, Oudard S, Gschwend JE, Albers P, Castellano D, Nishiyama H, Daneshmand S, Sharma S, Zimmermann BG, Sethi H, Aleshin A, Perdicchio M, Zhang J, Shames DS, Degaonkar V, Shen X, Carter C, Bais C, Bellmunt J, Mariathasan S. ctDNA guiding adjuvant immunotherapy in urothelial carcinoma. Nature 2021; 595(7867): 432–437
CrossRef
Google scholar
|
[177] |
Smith JJ, Strombom P, Chow OS, Roxburgh CS, Lynn P, Eaton A, Widmar M, Ganesh K, Yaeger R, Cercek A, Weiser MR, Nash GM, Guillem JG, Temple LKF, Chalasani SB, Fuqua JL, Petkovska I, Wu AJ, Reyngold M, Vakiani E, Shia J, Segal NH, Smith JD, Crane C, Gollub MJ, Gonen M, Saltz LB, Garcia-Aguilar J, Paty PB. Assessment of a watch-and-wait strategy for rectal cancer in patients with a complete response after neoadjuvant therapy. JAMA Oncol 2019; 5(4): e185896
CrossRef
Google scholar
|
[178] |
Wang Y, Yang L, Bao H, Fan X, Xia F, Wan J, Shen L, Guan Y, Bao H, Wu X, Xu Y, Shao Y, Sun Y, Tong T, Li X, Xu Y, Cai S, Zhu J, Zhang Z. Utility of ctDNA in predicting response to neoadjuvant chemoradiotherapy and prognosis assessment in locally advanced rectal cancer: a prospective cohort study. PLoS Med 2021; 18(8): e1003741
CrossRef
Google scholar
|
[179] |
Steensma DP, Bejar R, Jaiswal S, Lindsley RC, Sekeres MA, Hasserjian RP, Ebert BL. Clonal hematopoiesis of indeterminate potential and its distinction from myelodysplastic syndromes. Blood 2015; 126(1): 9–16
CrossRef
Google scholar
|
[180] |
Xie M, Lu C, Wang J, McLellan MD, Johnson KJ, Wendl MC, McMichael JF, Schmidt HK, Yellapantula V, Miller CA, Ozenberger BA, Welch JS, Link DC, Walter MJ, Mardis ER, Dipersio JF, Chen F, Wilson RK, Ley TJ, Ding L. Age-related mutations associated with clonal hematopoietic expansion and malignancies. Nat Med 2014; 20(12): 1472–1478
CrossRef
Google scholar
|
[181] |
Yong E. Cancer biomarkers: written in blood. Nature 2014; 511(7511): 524–526
CrossRef
Google scholar
|
[182] |
Chen K, Zhao H, Shi Y, Yang F, Wang LT, Kang G, Nie Y, Wang J. Perioperative dynamic changes in circulating tumor dna in patients with lung cancer (DYNAMIC). Clin Cancer Res 2019; 25(23): 7058–7067
CrossRef
Google scholar
|
[183] |
Giuliano AE, Edge SB, Hortobagyi GN. Eighth Edition of the AJCC Cancer Staging Manual: Breast Cancer. Ann Surg Oncol 2018; 25(7): 1783–1785
CrossRef
Google scholar
|
[184] |
Lee JS, Han Y, Yun WG, Kwon W, Kim H, Jeong H, Seo MS, Park Y, Cho SI, Kim H, Kim JY, Seong MW, Jang JY, Park SS. Parallel analysis of pre- and postoperative circulating tumor DNA and matched tumor tissues in resectable pancreatic ductal adenocarcinoma: a prospective cohort study. Clin Chem 2022; 68(12): 1509–1518
CrossRef
Google scholar
|
[185] |
Mo S, Ye L, Wang D, Han L, Zhou S, Wang H, Dai W, Wang Y, Luo W, Wang R, Xu Y, Cai S, Liu R, Wang Z, Cai G. Early detection of molecular residual disease and risk stratification for stage I to III colorectal cancer via circulating tumor dna methylation. JAMA Oncol 2023; 9(6): 770–778
CrossRef
Google scholar
|
[186] |
Tie J, Cohen JD, Lahouel K, Lo SN, Wang Y, Kosmider S, Wong R, Shapiro J, Lee M, Harris S, Khattak A, Burge M, Harris M, Lynam J, Nott L, Day F, Hayes T, McLachlan SA, Lee B, Ptak J, Silliman N, Dobbyn L, Popoli M, Hruban R, Lennon AM, Papadopoulos N, Kinzler KW, Vogelstein B, Tomasetti C, Gibbs P; DYNAMIC Investigators. Circulating tumor DNA analysis guiding adjuvant therapy in stage II colon cancer. N Engl J Med 2022; 386(24): 2261–2272
CrossRef
Google scholar
|
[187] |
Du J, Lu C, Mao L, Zhu Y, Kong W, Shen S, Tang M, Bao S, Cheng H, Li G, Chen J, Li Q, He J, Li A, Qiu X, Gu Q, Chen D, Qi C, Song Y, Qian X, Wang L, Qiu Y, Liu B. PD-1 blockade plus chemoradiotherapy as preoperative therapy for patients with BRPC/LAPC: a biomolecular exploratory, phase II trial. Cell Rep Med 2023; 4(3): 100972
CrossRef
Google scholar
|
[188] |
Cheng H, Liu C, Jiang J, Luo G, Lu Y, Jin K, Guo M, Zhang Z, Xu J, Liu L, Ni Q, Yu X. Analysis of ctDNA to predict prognosis and monitor treatment responses in metastatic pancreatic cancer patients. Int J Cancer 2017; 140(10): 2344–2350
CrossRef
Google scholar
|
/
〈 | 〉 |