Decitabine induces IRF7-mediated immune responses in p53-mutated triple-negative breast cancer: a clinical and translational study
Haoyu Wang, Zhengyuan Wang, Zheng Wang, Xiaoyang Li, Yuntong Li, Ni Yan, Lili Wu, Ying Liang, Jiale Wu, Huaxin Song, Qing Qu, Jiahui Huang, Chunkang Chang, Kunwei Shen, Xiaosong Chen, Min Lu
Decitabine induces IRF7-mediated immune responses in p53-mutated triple-negative breast cancer: a clinical and translational study
p53 is mutated in half of cancer cases. However, no p53-targeting drugs have been approved. Here, we reposition decitabine for triple-negative breast cancer (TNBC), a subtype with frequent p53 mutations and extremely poor prognosis. In a retrospective study on tissue microarrays with 132 TNBC cases, DNMT1 overexpression was associated with p53 mutations (P = 0.037) and poor overall survival (OS) (P = 0.010). In a prospective DEciTabinE and Carboplatin in TNBC (DETECT) trial (NCT03295552), decitabine with carboplatin produced an objective response rate (ORR) of 42% in 12 patients with stage IV TNBC. Among the 9 trialed patients with available TP53 sequencing results, the 6 patients with p53 mutations had higher ORR (3/6 vs. 0/3) and better OS (16.0 vs. 4.0 months) than the patients with wild-type p53. In a mechanistic study, isogenic TNBC cell lines harboring DETECT-derived p53 mutations exhibited higher DNMT1 expression and decitabine sensitivity than the cell line with wild-type p53. In the DETECT trial, decitabine induced strong immune responses featuring the striking upregulation of the innate immune player IRF7 in the p53-mutated TNBC cell line (upregulation by 16-fold) and the most responsive patient with TNBC. Our integrative studies reveal the potential of repurposing decitabine for the treatment of p53-mutated TNBC and suggest IRF7 as a potential biomarker for decitabine-based treatments.
p53 mutation / triple-negative breast cancer / decitabine / DNMT1 / IRF7 / innate immune response
[1] |
Tannock IF, Hickman JA. Limits to personalized cancer medicine. N Engl J Med 2016; 375(13): 1289–1294
CrossRef
Google scholar
|
[2] |
Prasad V. Perspective: The precision-oncology illusion. Nature 2016; 537(7619): S63
CrossRef
Google scholar
|
[3] |
Joerger AC, Fersht AR. The p53 pathway: origins, inactivation in cancer, and emerging therapeutic approaches. Annu Rev Biochem 2016; 85(1): 375–404
CrossRef
Google scholar
|
[4] |
Muller PAJ, Vousden KH. Mutant p53 in cancer: new functions and therapeutic opportunities. Cancer Cell 2014; 25(3): 304–317
CrossRef
Google scholar
|
[5] |
Muller PAJ, Vousden KH. p53 mutations in cancer. Nat Cell Biol 2013; 15(1): 2–8
CrossRef
Google scholar
|
[6] |
Sabapathy K, Lane DP. Therapeutic targeting of p53: all mutants are equal, but some mutants are more equal than others. Nat Rev Clin Oncol 2018; 15(1): 13–30
CrossRef
Google scholar
|
[7] |
Loh SN. Arsenic and an old place: rescuing p53 mutants in cancer. Cancer Cell 2021; 39(2): 140–142
CrossRef
Google scholar
|
[8] |
Gummlich L. ATO stabilizes structural p53 mutants. Nat Rev Cancer 2021; 21(3): 141
CrossRef
Google scholar
|
[9] |
Chen S, Wu JL, Liang Y, Tang YG, Song HX, Wu LL, Xing YF, Yan N, Li YT, Wang ZY, Xiao SJ, Lu X, Chen SJ, Lu M. Arsenic trioxide rescues structural p53 mutations through a cryptic allosteric site. Cancer Cell 2021; 39(2): 225–239.e8
CrossRef
Google scholar
|
[10] |
Basu A, Bodycombe NE, Cheah JH, Price EV, Liu K, Schaefer GI, Ebright RY, Stewart ML, Ito D, Wang S, Bracha AL, Liefeld T, Wawer M, Gilbert JC, Wilson AJ, Stransky N, Kryukov GV, Dancik V, Barretina J, Garraway LA, Hon CSY, Munoz B, Bittker JA, Stockwell BR, Khabele D, Stern AM, Clemons PA, Shamji AF, Schreiber SL. An interactive resource to identify cancer genetic and lineage dependencies targeted by small molecules. Cell 2013; 154(5): 1151–1161
CrossRef
Google scholar
|
[11] |
Leijen S, van Geel RMJM, Sonke GS, de Jong D, Rosenberg EH, Marchetti S, Pluim D, van Werkhoven E, Rose S, Lee MA, Freshwater T, Beijnen JH, Schellens JHM. Phase II study of WEE1 inhibitor AZD1775 plus carboplatin in patients with TP53-mutated ovarian cancer refractory or resistant to first-line therapy within 3 months. J Clin Oncol 2016; 34(36): 4354–4361
CrossRef
Google scholar
|
[12] |
Xu L, Gu ZH, Li Y, Zhang JL, Chang CK, Pan CM, Shi JY, Shen Y, Chen B, Wang YY, Jiang L, Lu J, Xu X, Tan JL, Chen Y, Wang SY, Li X, Chen Z, Chen SJ. Genomic landscape of CD34+ hematopoietic cells in myelodysplastic syndrome and gene mutation profiles as prognostic markers. Proc Natl Acad Sci U S A 2014; 111(23): 8589–8594
CrossRef
Google scholar
|
[13] |
Chang C, Zhao Y, Xu F, Li X. A primary study of the gene mutations in predicting treatment response to decitabine in patients with MDS. Blood 2015; 126(23): 1689
CrossRef
Google scholar
|
[14] |
Chang CK, Zhao YS, Xu F, Guo J, Zhang Z, He Q, Wu D, Wu LY, Su JY, Song LX, Xiao C, Li X. TP53 mutations predict decitabine-induced complete responses in patients with myelodysplastic syndromes. Br J Haematol 2017; 176(4): 600–608
CrossRef
Google scholar
|
[15] |
Wu J, Li Y, Wu J, Song H, Tang Y, Yan N, Wu L, Zhang S, Chang C, Lu M. Decitabine activates type I interferon signaling to inhibit p53-deficient myeloid malignant cells. Clin Transl Med 2021; 11(11): e593
CrossRef
Google scholar
|
[16] |
Welch JS, Petti AA, Miller CA, Fronick CC, O’Laughlin M, Fulton RS, Wilson RK, Baty JD, Duncavage EJ, Tandon B, Lee YS, Wartman LD, Uy GL, Ghobadi A, Tomasson MH, Pusic I, Romee R, Fehniger TA, Stockerl-Goldstein KE, Vij R, Oh ST, Abboud CN, Cashen AF, Schroeder MA, Jacoby MA, Heath SE, Luber K, Janke MR, Hantel A, Khan N, Sukhanova MJ, Knoebel RW, Stock W, Graubert TA, Walter MJ, Westervelt P, Link DC, DiPersio JF, Ley TJ. TP53 and decitabine in acute myeloid leukemia and myelodysplastic syndromes. N Engl J Med 2016; 375(21): 2023–2036
CrossRef
Google scholar
|
[17] |
Appleton K, Mackay HJ, Judson I, Plumb JA, McCormick C, Strathdee G, Lee C, Barrett S, Reade S, Jadayel D, Tang A, Bellenger K, Mackay L, Setanoians A, Schätzlein A, Twelves C, Kaye SB, Brown R. Phase I and pharmacodynamic trial of the DNA methyltransferase inhibitor decitabine and carboplatin in solid tumors. J Clin Oncol 2007; 25(29): 4603–4609
CrossRef
Google scholar
|
[18] |
Samlowski WE, Leachman SA, Wade M, Cassidy P, Porter-Gill P, Busby L, Wheeler R, Boucher K, Fitzpatrick F, Jones DA, Karpf AR. Evaluation of a 7-day continuous intravenous infusion of decitabine: inhibition of promoter-specific and global genomic DNA methylation. J Clin Oncol 2005; 23(17): 3897–3905
CrossRef
Google scholar
|
[19] |
Fu X, Zhang Y, Wang X, Chen M, Wang Y, Nie J, Meng Y, Han W. Low dose decitabine combined with taxol and platinum chemotherapy to treat refractory/recurrent ovarian cancer: an open-label, single-arm, phase I/II study. Curr Protein Pept Sci 2015; 16(4): 329–336
CrossRef
Google scholar
|
[20] |
Matei D, Fang F, Shen C, Schilder J, Arnold A, Zeng Y, Berry WA, Huang T, Nephew KP. Epigenetic resensitization to platinum in ovarian cancer. Cancer Res 2012; 72(9): 2197–2205
CrossRef
Google scholar
|
[21] |
Zhang Y, Mei Q, Liu Y, Li X, Brock MV, Chen M, Dong L, Shi L, Wang Y, Guo M, Nie J, Han W. The safety, efficacy, and treatment outcomes of a combination of low-dose decitabine treatment in patients with recurrent ovarian cancer. Oncoimmunology 2017; 6(9): e1323619
CrossRef
Google scholar
|
[22] |
van der Westhuizen A, Knoblauch N, Graves MC, Levy R, Vilain RE, Bowden NA. Pilot early phase II study of decitabine and carboplatin in patients with advanced melanoma. Medicine (Baltimore) 2020; 99(25): e20705
CrossRef
Google scholar
|
[23] |
Stathis A, Hotte SJ, Chen EX, Hirte HW, Oza AM, Moretto P, Webster S, Laughlin A, Stayner LA, McGill S, Wang L, Zhang WJ, Espinoza-Delgado I, Holleran JL, Egorin MJ, Siu LL. Phase I study of decitabine in combination with vorinostat in patients with advanced solid tumors and non-Hodgkin’s lymphomas. Clin Cancer Res 2011; 17(6): 1582–1590
CrossRef
Google scholar
|
[24] |
Leroy B, Anderson M, Soussi T. TP53 mutations in human cancer: database reassessment and prospects for the next decade. Hum Mutat 2014; 35(6): 672–688
CrossRef
Google scholar
|
[25] |
Fang F, Balch C, Schilder J, Breen T, Zhang S, Shen C, Li L, Kulesavage C, Snyder AJ, Nephew KP, Matei DE. A phase 1 and pharmacodynamic study of decitabine in combination with carboplatin in patients with recurrent, platinum-resistant, epithelial ovarian cancer. Cancer 2010; 116(17): 4043–4053
CrossRef
Google scholar
|
[26] |
Yu J, Qin B, Moyer AM, Nowsheen S, Liu T, Qin S, Zhuang Y, Liu D, Lu SW, Kalari KR, Visscher DW, Copland JA, McLaughlin SA, Moreno-Aspitia A, Northfelt DW, Gray RJ, Lou Z, Suman VJ, Weinshilboum R, Boughey JC, Goetz MP, Wang L. DNA methyltransferase expression in triple-negative breast cancer predicts sensitivity to decitabine. J Clin Invest 2018; 128(6): 2376–2388
CrossRef
Google scholar
|
[27] |
Stathis A, Hotte SJ, Chen EX, Hirte HW, Oza AM, Moretto P, Webster S, Laughlin A, Stayner LA, McGill S, Wang L, Zhang WJ, Espinoza-Delgado I, Holleran JL, Egorin MJ, Siu LL. Phase I study of decitabine in combination with vorinostat in patients with advanced solid tumors and non-Hodgkin’s lymphomas. Clin Cancer Res 2011; 17(6): 1582–1590
CrossRef
Google scholar
|
[28] |
Patel K, Dickson J, Din S, Macleod K, Jodrell D, Ramsahoye B. Targeting of 5-aza-2′-deoxycytidine residues by chromatin-associated DNMT1 induces proteasomal degradation of the free enzyme. Nucleic Acids Res 2010; 38(13): 4313–4324
CrossRef
Google scholar
|
[29] |
Creusot F, Acs G, Christman JK. Inhibition of DNA methyltransferase and induction of Friend erythroleukemia cell differentiation by 5-azacytidine and 5-aza-2′-deoxycytidine. J Biol Chem 1982; 257(4): 2041–2048
CrossRef
Google scholar
|
[30] |
Stewart DJ, Issa JP, Kurzrock R, Nunez MI, Jelinek J, Hong D, Oki Y, Guo Z, Gupta S, Wistuba II. Decitabine effect on tumor global DNA methylation and other parameters in a phase I trial in refractory solid tumors and lymphomas. Clin Cancer Res 2009; 15(11): 3881–3888
CrossRef
Google scholar
|
[31] |
Yu J, Qin B, Moyer AM, Nowsheen S, Liu T, Qin S, Zhuang Y, Liu D, Lu SW, Kalari KR, Visscher DW, Copland JA, McLaughlin SA, Moreno-Aspitia A, Northfelt DW, Gray RJ, Lou Z, Suman VJ, Weinshilboum R, Boughey JC, Goetz MP, Wang L. DNA methyltransferase expression in triple-negative breast cancer predicts sensitivity to decitabine. J Clin Invest 2018; 128(6): 2376–2388
CrossRef
Google scholar
|
[32] |
Köbel M, Reuss A, du Bois A, Kommoss S, Kommoss F, Gao D, Kalloger SE, Huntsman DG, Gilks CB. The biological and clinical value of p53 expression in pelvic high-grade serous carcinomas. J Pathol 2010; 222(2): 191–198
CrossRef
Google scholar
|
[33] |
Talhouk A, McConechy MK, Leung S, Yang W, Lum A, Senz J, Boyd N, Pike J, Anglesio M, Kwon JS, Karnezis AN, Huntsman DG, Gilks CB, McAlpine JN. Confirmation of ProMisE: a simple, genomics-based clinical classifier for endometrial cancer. Cancer 2017; 123(5): 802–813
CrossRef
Google scholar
|
[34] |
Talhouk A, McConechy MK, Leung S, Li-Chang HH, Kwon JS, Melnyk N, Yang W, Senz J, Boyd N, Karnezis AN, Huntsman DG, Gilks CB, McAlpine JN. A clinically applicable molecular-based classification for endometrial cancers. Br J Cancer 2015; 113(2): 299–310
CrossRef
Google scholar
|
[35] |
Cancer Genome Atlas Network. Comprehensive molecular portraits of human breast tumours. Nature 2012; 490(7418): 61–70
CrossRef
Google scholar
|
[36] |
Pereira B, Chin SF, Rueda OM, Vollan HKM, Provenzano E, Bardwell HA, Pugh M, Jones L, Russell R, Sammut SJ, Tsui DWY, Liu B, Dawson SJ, Abraham J, Northen H, Peden JF, Mukherjee A, Turashvili G, Green AR, McKinney S, Oloumi A, Shah S, Rosenfeld N, Murphy L, Bentley DR, Ellis IO, Purushotham A, Pinder SE, Børresen-Dale AL, Earl HM, Pharoah PD, Ross MT, Aparicio S, Caldas C. Erratum: The somatic mutation profiles of 2433 breast cancers refine their genomic and transcriptomic landscapes. Nat Commun 2016; 7(1): 11908
CrossRef
Google scholar
|
[37] |
Maisano R, Zavettieri M, Azzarello D, Raffaele M, Maisano M, Bottari M, Nardi M. Carboplatin and gemcitabine combination in metastatic triple-negative anthracycline- and taxane-pretreated breast cancer patients: a phase II study. J Chemother 2011; 23(1): 40–43
CrossRef
Google scholar
|
[38] |
Tutt A, Tovey H, Cheang MCU, Kernaghan S, Kilburn L, Gazinska P, Owen J, Abraham J, Barrett S, Barrett-Lee P, Brown R, Chan S, Dowsett M, Flanagan JM, Fox L, Grigoriadis A, Gutin A, Harper-Wynne C, Hatton MQ, Hoadley KA, Parikh J, Parker P, Perou CM, Roylance R, Shah V, Shaw A, Smith IE, Timms KM, Wardley AM, Wilson G, Gillett C, Lanchbury JS, Ashworth A, Rahman N, Harries M, Ellis P, Pinder SE, Bliss JM. Carboplatin in BRCA1/2-mutated and triple-negative breast cancer BRCAness subgroups: the TNT Trial. Nat Med 2018; 24(5): 628–637
CrossRef
Google scholar
|
[39] |
O’Shaughnessy J, Schwartzberg L, Danso MA, Miller KD, Rugo HS, Neubauer M, Robert N, Hellerstedt B, Saleh M, Richards P, Specht JM, Yardley DA, Carlson RW, Finn RS, Charpentier E, Garcia-Ribas I, Winer EP. Phase III study of iniparib plus gemcitabine and carboplatin versus gemcitabine and carboplatin in patients with metastatic triple-negative breast cancer. J Clin Oncol 2014; 32(34): 3840–3847
CrossRef
Google scholar
|
[40] |
Isakoff SJ, Mayer EL, He L, Traina TA, Carey LA, Krag KJ, Rugo HS, Liu MC, Stearns V, Come SE, Timms KM, Hartman AR, Borger DR, Finkelstein DM, Garber JE, Ryan PD, Winer EP, Goss PE, Ellisen LW. TBCRC009: a multicenter phase II clinical trial of platinum monotherapy with biomarker assessment in metastatic triple-negative breast cancer. J Clin Oncol 2015; 33(17): 1902–1909
CrossRef
Google scholar
|
[41] |
Carey LA, Rugo HS, Marcom PK, Mayer EL, Esteva FJ, Ma CX, Liu MC, Storniolo AM, Rimawi MF, Forero-Torres A, Wolff AC, Hobday TJ, Ivanova A, Chiu WK, Ferraro M, Burrows E, Bernard PS, Hoadley KA, Perou CM, Winer EP. TBCRC 001: randomized phase II study of cetuximab in combination with carboplatin in stage IV triple-negative breast cancer. J Clin Oncol 2012; 30(21): 2615–2623
CrossRef
Google scholar
|
[42] |
Wu J, Song H, Wang Z, Lu M. Three optimized assays for the evaluation of compounds that can rescue p53 mutants. STAR Protoc 2021; 2(3): 100688
CrossRef
Google scholar
|
[43] |
Christman JK. 5-Azacytidine and 5-aza-2′-deoxycytidine as inhibitors of DNA methylation: mechanistic studies and their implications for cancer therapy. Oncogene 2002; 21(35): 5483–5495
CrossRef
Google scholar
|
[44] |
Stresemann C, Lyko F. Modes of action of the DNA methyltransferase inhibitors azacytidine and decitabine. Int J Cancer 2008; 123(1): 8–13
CrossRef
Google scholar
|
[45] |
Brady CA, Jiang D, Mello SS, Johnson TM, Jarvis LA, Kozak MM, Kenzelmann Broz D, Basak S, Park EJ, McLaughlin ME, Karnezis AN, Attardi LD. Distinct p53 transcriptional programs dictate acute DNA-damage responses and tumor suppression. Cell 2011; 145(4): 571–583
CrossRef
Google scholar
|
[46] |
Olivier M, Hollstein M, Hainaut P. TP53 mutations in human cancers: origins, consequences, and clinical use. Cold Spring Harb Perspect Biol 2010; 2(1): a001008
CrossRef
Google scholar
|
[47] |
Bhattacharya S, Dunn P, Thomas CG, Smith B, Schaefer H, Chen J, Hu Z, Zalocusky KA, Shankar RD, Shen-Orr SS, Thomson E, Wiser J, Butte AJ. ImmPort, toward repurposing of open access immunological assay data for translational and clinical research. Sci Data 2018; 5(1): 180015
CrossRef
Google scholar
|
[48] |
Colina R, Costa-Mattioli M, Dowling RJ, Jaramillo M, Tai LH, Breitbach CJ, Martineau Y, Larsson O, Rong L, Svitkin YV, Makrigiannis AP, Bell JC, Sonenberg N. Translational control of the innate immune response through IRF-7. Nature 2008; 452(7185): 323–328
CrossRef
Google scholar
|
[49] |
Sgarbanti M, Marsili G, Remoli AL, Orsatti R, Battistini A. IRF-7: new role in the regulation of genes involved in adaptive immunity. Ann N Y Acad Sci 2007; 1095(1): 325–333
CrossRef
Google scholar
|
[50] |
Lu R, Au WC, Yeow WS, Hageman N, Pitha PM. Regulation of the promoter activity of interferon regulatory factor-7 gene. Activation by interferon snd silencing by hypermethylation. J Biol Chem 2000; 275(41): 31805–31812
CrossRef
Google scholar
|
[51] |
Yu J, Zhang HY, Ma ZZ, Lu W, Wang YF, Zhu JD. Methylation profiling of twenty four genes and the concordant methylation behaviours of nineteen genes that may contribute to hepatocellular carcinogenesis. Cell Res 2003; 13(5): 319–333
CrossRef
Google scholar
|
[52] |
Li Q, Tang L, Roberts PC, Kraniak JM, Fridman AL, Kulaeva OI, Tehrani OS, Tainsky MA. Interferon regulatory factors IRF5 and IRF7 inhibit growth and induce senescence in immortal Li-Fraumeni fibroblasts. Mol Cancer Res 2008; 6(5): 770–784
CrossRef
Google scholar
|
/
〈 | 〉 |