A pilot study on Paxlovid therapy for hemodialysis patients with severe acute respiratory syndrome coronavirus 2 infections

Xu Hao, Zhiyao Bao, Ranran Dai, Xiaojing Wu, Xin Li, Muyin Zhang, Hao Li, Lili Xu, Panpan Qiao, Xuefei Liu, Weiting Hu, Ze Zhang, Jie Fang, Min Zhou, Weiming Wang, Jieming Qu

PDF(3118 KB)
PDF(3118 KB)
Front. Med. ›› 2024, Vol. 18 ›› Issue (1) : 169-179. DOI: 10.1007/s11684-023-1011-0
RESEARCH ARTICLE

A pilot study on Paxlovid therapy for hemodialysis patients with severe acute respiratory syndrome coronavirus 2 infections

Author information +
History +

Abstract

We aimed to investigate the safety and efficacy of nirmatrelvir/ritonavir (Paxlovid) therapy for hemodialysis-dependent patients with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. Thirteen hemodialysis patients infected with the Omicron variant of SARS-CoV-2 from April 3 to May 30, 2022, were recruited. Laboratory parameters and chest CT (computed tomography) imaging were analyzed. The treatment group included six patients who received 150 mg/100 mg of Paxlovid orally once daily for 5 days, whereas the control group included seven patients who received basic treatment. No serious adverse reactions or safety events were recorded. Four control patients progressed to moderate disease, and none in the treatment group showed progression of chest CT findings (P < 0.05). Paxlovid therapy tended toward early viral clearance and low viral load on Day 8. Moreover, 83.3% of the patients in the treatment group and 57.1% of the patients in the control group turned negative within 22 days. In the Paxlovid treatment group, we found significantly increased levels of lymphocytes (P=0.03) and eosinophils (P=0.02) and decreased levels of D-dimer on Day 8 compared with those on Day 1. Paxlovid therapy showed a potential therapeutic effect with good tolerance in hemodialysis patients. The optimal dose and effectiveness evaluation must be further investigated in a largeer cohort.

Keywords

Paxlovid / hemodialysis / SARS-CoV-2 / viral load / chest CT scan

Cite this article

Download citation ▾
Xu Hao, Zhiyao Bao, Ranran Dai, Xiaojing Wu, Xin Li, Muyin Zhang, Hao Li, Lili Xu, Panpan Qiao, Xuefei Liu, Weiting Hu, Ze Zhang, Jie Fang, Min Zhou, Weiming Wang, Jieming Qu. A pilot study on Paxlovid therapy for hemodialysis patients with severe acute respiratory syndrome coronavirus 2 infections. Front. Med., 2024, 18(1): 169‒179 https://doi.org/10.1007/s11684-023-1011-0

Xu Hao et al.

References

[1]
Goffin E, Candellier A, Vart P, Noordzij M, Arnol M, Covic A, Lentini P, Malik S, Reichert LJ, Sever MS, Watschinger B, Jager KJ, Gansevoort RT; ERACODA Collaborators. COVID-19-related mortality in kidney transplant and haemodialysis patients: a comparative, prospective registry-based study. Nephrol Dial Transplant 2021; 36(11): 2094–2105
CrossRef Google scholar
[2]
Wilde B, Korth J, Jahn M, Kribben A. COVID-19 vaccination in patients receiving dialysis. Nat Rev Nephrol 2021; 17(12): 788–789
CrossRef Google scholar
[3]
Ortiz A, Cozzolino M, Fliser D, Fouque D, Goumenos D, Massy ZA, Rosenkranz AR, Rychlık I, Soler MJ, Stevens K, Torra R, Tuglular S, Wanner C, Gansevoort RT, Duivenvoorden R, Franssen CFM, Hemmelder MH, Hilbrands LB, Jager KJ, Noordzij M, Vart P, Gansevoort RT. Chronic kidney disease is a key risk factor for severe COVID-19: a call to action by the ERA-EDTA. Nephrol Dial Transplant 2021; 36(1): 87–94
CrossRef Google scholar
[4]
Taji L, Thomas D, Oliver MJ, Ip J, Tang Y, Yeung A, Cooper R, House AA, McFarlane P, Blake PG. COVID-19 in patients undergoing long-term dialysis in Ontario. CMAJ 2021; 193(8): E278–E284
CrossRef Google scholar
[5]
Viana R, Moyo S, Amoako DG, Tegally H, Scheepers C, Althaus CL, Anyaneji UJ, Bester PA, Boni MF, Chand M, Choga WT, Colquhoun R, Davids M, Deforche K, Doolabh D, du Plessis L, Engelbrecht S, Everatt J, Giandhari J, Giovanetti M, Hardie D, Hill V, Hsiao NY, Iranzadeh A, Ismail A, Joseph C, Joseph R, Koopile L, Kosakovsky Pond SL, Kraemer MUG, Kuate-Lere L, Laguda-Akingba O, Lesetedi-Mafoko O, Lessells RJ, Lockman S, Lucaci AG, Maharaj A, Mahlangu B, Maponga T, Mahlakwane K, Makatini Z, Marais G, Maruapula D, Masupu K, Matshaba M, Mayaphi S, Mbhele N, Mbulawa MB, Mendes A, Mlisana K, Mnguni A, Mohale T, Moir M, Moruisi K, Mosepele M, Motsatsi G, Motswaledi MS, Mphoyakgosi T, Msomi N, Mwangi PN, Naidoo Y, Ntuli N, Nyaga M, Olubayo L, Pillay S, Radibe B, Ramphal Y, Ramphal U, San JE, Scott L, Shapiro R, Singh L, Smith-Lawrence P, Stevens W, Strydom A, Subramoney K, Tebeila N, Tshiabuila D, Tsui J, van Wyk S, Weaver S, Wibmer CK, Wilkinson E, Wolter N, Zarebski AE, Zuze B, Goedhals D, Preiser W, Treurnicht F, Venter M, Williamson C, Pybus OG, Bhiman J, Glass A, Martin DP, Rambaut A, Gaseitsiwe S, von Gottberg A, de Oliveira T. Rapid epidemic expansion of the SARS-CoV-2 Omicron variant in southern Africa. Nature 2022; 603(7902): 679–686
CrossRef Google scholar
[6]
Hung YP, Lee JC, Chiu CW, Lee CC, Tsai PJ, Hsu IL, Ko WC. Oral nirmatrelvir/ritonavir therapy for COVID-19: the dawn in the dark?. Antibiotics (Basel) 2022; 11(2): 220
CrossRef Google scholar
[7]
Owen DR, Allerton CMN, Anderson AS, Aschenbrenner L, Avery M, Berritt S, Bora B, Cardin RD, Carlo A, Coffman KJ, Dantonio A, Di L, Eng H, Ferre R, Gajiwala KS, Gibson SA, Greasley SE, Hurst BL, Kadar EP, Kalgutkar AS, Lee JC, Lee J, Liu W, Mason SW, Noell S, Novak JJ, Obach RS, Ogilvie K, Patel NC, Pettersson M, Rai DK, Reese MR, Sammons MF, Sathish JG, Singh SP, Steppan CM, Stewart AE, Tuttle JB, Updyke L, Verhoest PR, Wei L, Yang Q, Zhu Y. An oral SARS-CoV-2 M pro inhibitor clinical candidate for the treatment of COVID-19. Science 2021; 374(6575): 1586–1593
CrossRef Google scholar
[8]
Hammond J, Leister-Tebbe H, Gardner A, Abreu P, Bao W, Wisemandle W, Baniecki M, Hendrick VM, Damle B, Simón-Campos A, Pypstra R, Rusnak JM. Oral nirmatrelvir for high-risk, nonhospitalized adults with COVID-19. N Engl J Med 2022; 386(15): 1397–1408
CrossRef Google scholar
[9]
Hiremath S, Blake PG, Yeung A, McGuinty M, Thomas D, Ip J, Brown PA, Pandes M, Burke A, Sohail QZ, To K, Blackwell L, Oliver M, Jain AK, Chagla Z, Cooper R. Early experience with modified dose nirmatrelvir/ritonavir in dialysis patients with coronavirus disease 2019. Clin J Am Soc Nephrol 2023; 18(4): 485–490
CrossRef Google scholar
[10]
Mohapatra RK, Sarangi AK, Kandi V, Azam M, Tiwari R, Dhama K. Omicron (B.1.1.529 variant of SARS-CoV-2); an emerging threat: current global scenario. J Med Virol 2022; 94(5): 1780–1783
CrossRef Google scholar
[11]
Najja-Debbiny R, Gronich N, Weber G, Khoury J, Amar M, Stein N, Goldstein LH, Saliba W. Effectiveness of Paxlovid in reducing severe COVID-19 and mortality in high risk patients. Clin Infect Dis 2023; 76(3): e342–e349
CrossRef Google scholar
[12]
Madhi SA, Kwatra G, Myers JE, Jassat W, Dhar N, Mukendi CK, Nana AJ, Blumberg L, Welch R, Ngorima-Mabhena N, Mutevedzi PC. Population immunity and COVID-19 severity with Omicron variant in South Africa. N Engl J Med 2022; 386(14): 1314–1326
CrossRef Google scholar
[13]
Chen N, Zhou M, Dong X, Qu J, Gong F, Han Y, Qiu Y, Wang J, Liu Y, Wei Y, Xia J, Yu T, Zhang X, Zhang L. Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China—a descriptive study. Lancet 2020; 395(10223): 507–513
CrossRef Google scholar
[14]
Uraki R, Kiso M, Iida S, Imai M, Takashita E, Kuroda M, Halfmann PJ, Loeber S, Maemura T, Yamayoshi S, Fujisaki S, Wang Z, Ito M, Ujie M, Iwatsuki-Horimoto K, Furusawa Y, Wright R, Chong Z, Ozono S, Yasuhara A, Ueki H, Sakai-Tagawa Y, Li R, Liu Y, Larson D, Koga M, Tsutsumi T, Adachi E, Saito M, Yamamoto S, Hagihara M, Mitamura K, Sato T, Hojo M, Hattori SI, Maeda K, Valdez R; IASO study team; Okuda M, Murakami J, Duong C, Godbole S, Douek DC, Maeda K, Watanabe S, Gordon A, Ohmagari N, Yotsuyanagi H, Diamond MS, Hasegawa H, Mitsuya H, Suzuki T, Kawaoka Y. Characterization and antiviral susceptibility of SARS-CoV-2 Omicron BA.2. Nature 2022; 607(7917): 119–127
CrossRef Google scholar
[15]
Zhang X, Zhang W, Chen S. Shanghai’s life-saving efforts against the current omicron wave of the COVID-19 pandemic. Lancet 2022; 399(10340): 2011–2012
CrossRef Google scholar
[16]
El Karoui K, De Vriese AS. COVID-19 in dialysis: clinical impact, immune response, prevention, and treatment. Kidney Int 2022; 101(5): 883–894
CrossRef Google scholar
[17]
Vriese ASD, Reynoders M. IgG antibody response to SARS-CoV-2 infection and viral RNA persistence in patients on maintenance hemodialysis. Am J Kidney Dis 2020; 76(3): 440–441
CrossRef Google scholar
[18]
Binnicker MJ. Can testing predict SARS-CoV-2 infectivity? The potential for certain methods to be surrogates for replication-competent virus. J Clin Microbiol 2021; 59(11): e0046921
CrossRef Google scholar
[19]
Huang C, Wang Y, Li X, Ren L, Zhao J, Hu Y, Zhang L, Fan G, Xu J, Gu X, Cheng Z, Yu T, Xia J, Wei Y, Wu W, Xie X, Yin W, Li H, Liu M, Xiao Y, Gao H, Guo L, Xie J, Wang G, Jiang R, Gao Z, Jin Q, Wang J, Cao B. Xia Ja, Wei Y, Wu W, Xie X, Yin W, Li H, Liu M, Xiao Y, Gao H, Guo L, Xie J, Wang G, Jiang R, Gao Z, Jin Q, Wang J, Cao B. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet 2022; 395(10223): 497–506
CrossRef Google scholar
[20]
Zhou F, Yu T, Du R, Fan G, Liu Y, Liu Z, Xiang J, Wang Y, Song B, Gu X, Guan L, Wei Y, Li H, Wu X, Xu J, Tu S, Zhang Y, Chen H, Cao B. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China—a retrospective cohort study. Lancet 2020; 395(10229): 1054–1062
CrossRef Google scholar
[21]
Liu WJ, Zhao M, Liu K, Xu K, Wong G, Tan W, Gao GF. T-cell immunity of SARS-CoV: implications for vaccine development against MERS-CoV. Antiviral Res 2017; 137: 82–92
CrossRef Google scholar
[22]
Zhang J, Dong X, Cao Y, Yuan Y, Yang Y, Yan Y, Akdis CA, Gao Y. Clinical characteristics of 140 patients infected with SARS-CoV-2 in Wuhan, China. Allergy 2020; 75(7): 1730–1741
CrossRef Google scholar
[23]
Du Y, Tu L, Zhu P, Mu M, Wang R, Yang P, Wang X, Hu C, Ping R, Hu P, Li T, Cao F, Chang C, Hu Q, Jin Y, Xu G. Clinical features of 85 fatal cases of COVID-19 from Wuhan. A retrospective observational study. Am J Respir Crit Care Med 2020; 201(11): 1372–1379
CrossRef Google scholar
[24]
Lindsley AW, Schwartz JT, Rothenberg ME. Eosinophil responses during COVID-19 infections and coronavirus vaccination. J Allergy Clin Immunol 2020; 146(1): 1–7
CrossRef Google scholar
[25]
Ji HL, Zhao R, Matalon S, Matthay MA. Elevated plasmin(ogen) as a common risk factor for COVID-19 susceptibility. Physiol Rev 2020; 100(3): 1065–1075
CrossRef Google scholar
[26]
Li Y, Zhao K, Wei H, Chen W, Wang W, Jia L, Liu Q, Zhang J, Shan T, Peng Z, Liu Y, Yan X. Dynamic relationship between D-dimer and COVID-19 severity. Br J Haematol 2020; 190(1): e24–e27
CrossRef Google scholar

Acknowledgements

We thank all patients who agreed to participate in the study. This work is funded by grants from Shanghai Key Laboratory of Emergency Prevention, Diagnosis and Treatment of Respiratory of Infectious Diseases (No. 20dz2261100).

Electronic Supplementary Material

Supplementary material is available in the online version of this article at https://doi.org/10.1007/s11684-023-1011-0 and is accessible for authorized users.

Compliance with ethics guidelines

Conflicts of interest Xu Hao, Zhiyao Bao, Ranran Dai, Xiaojing Wu, Xin Li, Muyin Zhang, Hao Li, Lili Xu, Panpan Qiao, Xuefei Liu, Weiting Hu, Ze Zhang, Jie Fang, Min Zhou, Weiming Wang, and Jieming Qu declared that they had no conflicts of interest.
The study was approved by the Clinical Trial Ethics Committee of the Shanghai Ruijin Hospital, Shanghai Jiao Tong University School of Medicine and the study was performed in accordance with the ethical standards as laid down in the 1964 Declaration of Helsinki and its later amendments or comparable ethical standards. Informed consent was obtained from all patients for being included in the study.

RIGHTS & PERMISSIONS

2023 Higher Education Press
AI Summary AI Mindmap
PDF(3118 KB)

Accesses

Citations

Detail

Sections
Recommended

/