High frequency of alternative splicing variants of the oncogene Focal Adhesion Kinase in neuroendocrine tumors of the pancreas and breast
Dawei Xie, Zheng Wang, Beibei Sun, Liwei Qu, Musheng Zeng, Lin Feng, Mingzhou Guo, Guizhen Wang, Jihui Hao, Guangbiao Zhou
High frequency of alternative splicing variants of the oncogene Focal Adhesion Kinase in neuroendocrine tumors of the pancreas and breast
The characteristic genetic abnormality of neuroendocrine neoplasms (NENs), a heterogeneous group of tumors found in various organs, remains to be identified. Here, based on the analysis of the splicing variants of an oncogene Focal Adhesion Kinase (FAK) in The Cancer Genome Atlas datasets that contain 9193 patients of 33 cancer subtypes, we found that Box 6/Box 7-containing FAK variants (FAK6/7) were observed in 7 (87.5%) of 8 pancreatic neuroendocrine carcinomas and 20 (11.76%) of 170 pancreatic ductal adenocarcinomas (PDACs). We tested FAK variants in 157 tumor samples collected from Chinese patients with pancreatic tumors, and found that FAK6/7 was positive in 34 (75.6%) of 45 pancreatic NENs, 19 (47.5%) of 40 pancreatic solid pseudopapillary neoplasms, and 2 (2.9%) of 69 PDACs. We further tested FAK splicing variants in breast neuroendocrine carcinoma (BrNECs), and found that FAK6/7 was positive in 14 (93.3%) of 15 BrNECs but 0 in 23 non-NEC breast cancers. We explored the underlying mechanisms and found that a splicing factor serine/arginine repetitive matrix protein 4 (SRRM4) was overexpressed in FAK6/7-positive pancreatic tumors and breast tumors, which promoted the formation of FAK6/7 in cells. These results suggested that FAK6/7 could be a biomarker of NENs and represent a potential therapeutic target for these orphan diseases.
FAK6/7 / SRRM4 / neuroendocrine neoplasms / pancreas / breast
[1] |
Jiao Y, Shi C, Edil BH, de Wilde RF, Klimstra DS, Maitra A, Schulick RD, Tang LH, Wolfgang CL, Choti MA, Velculescu VE, Diaz LA Jr, Vogelstein B, Kinzler KW, Hruban RH, Papadopoulos N. DAXX/ATRX, MEN1, and mTOR pathway genes are frequently altered in pancreatic neuroendocrine tumors. Science 2011; 331(6021): 1199–1203
CrossRef
Google scholar
|
[2] |
Sun H, Dai S, Xu J, Liu L, Yu J, Sun T. Primary neuroendocrine tumor of the breast: current understanding and future perspectives. Front Oncol 2022; 12: 848485
CrossRef
Google scholar
|
[3] |
Mizrahi JD, Surana R, Valle JW, Shroff RT. Pancreatic cancer. Lancet 2020; 395(10242): 2008–2020
CrossRef
Google scholar
|
[4] |
Cives M, Strosberg JR. Gastroenteropancreatic neuroendocrine tumors. CA Cancer J Clin 2018; 68(6): 471–487
CrossRef
Google scholar
|
[5] |
Nagtegaal ID, Odze RD, Klimstra D, Paradis V, Rugge M, Schirmacher P, Washington KM, Carneiro F, Cree IA; WHO Classification of Tumours Editorial Board. The 2019 WHO classification of tumours of the digestive system. Histopathology 2020; 76(2): 182–188
CrossRef
Google scholar
|
[6] |
Pokrzywa CJ, Abbott DE, Matkowskyj KA, Ronnekleiv-Kelly SM, Winslow ER, Weber SM, Fisher AV. Natural history and treatment trends in pancreatic cancer subtypes. J Gastrointest Surg 2019; 23(4): 768–778
CrossRef
Google scholar
|
[7] |
Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, Bray F. Global Cancer Statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 2021; 71(3): 209–249
CrossRef
Google scholar
|
[8] |
Connor AA, Gallinger S. Pancreatic cancer evolution and heterogeneity: integrating omics and clinical data. Nat Rev Cancer 2022; 22(3): 131–142
CrossRef
Google scholar
|
[9] |
Ishida H, Lam AK. Pancreatic neuroendocrine neoplasms: updates on genomic changes in inherited tumour syndromes and sporadic tumours based on WHO classification. Crit Rev Oncol Hematol 2022; 172: 103648
CrossRef
Google scholar
|
[10] |
Sorbye H, Strosberg J, Baudin E, Klimstra DS, Yao JC. Gastroenteropancreatic high-grade neuroendocrine carcinoma. Cancer 2014; 120(18): 2814–2823
CrossRef
Google scholar
|
[11] |
Dinarvand P, Lai J. Solid pseudopapillary neoplasm of the pancreas: a rare entity with unique features. Arch Pathol Lab Med 2017; 141(7): 990–995
CrossRef
Google scholar
|
[12] |
Santini D, Poli F, Lega S. Solid-papillary tumors of the pancreas: histopathology. JOP 2006; 7(1): 131–136
|
[13] |
La Rosa S, Bongiovanni M. Pancreatic solid pseudopapillary neoplasm: key pathologic and genetic features. Arch Pathol Lab Med 2020; 144(7): 829–837
CrossRef
Google scholar
|
[14] |
Wang S, Zheng Y, Yang F, Zhu L, Zhu XQ, Wang ZF, Wu XL, Zhou CH, Yan JY, Hu BY, Kong B, Fu DL, Bruns C, Zhao Y, Qin LX, Dong QZ. The molecular biology of pancreatic adenocarcinoma: translational challenges and clinical perspectives. Signal Transduct Target Ther 2021; 6(1): 249
CrossRef
Google scholar
|
[15] |
Qian Y, Gong Y, Fan Z, Luo G, Huang Q, Deng S, Cheng H, Jin K, Ni Q, Yu X, Liu C. Molecular alterations and targeted therapy in pancreatic ductal adenocarcinoma. J Hematol Oncol 2020; 13(1): 130
CrossRef
Google scholar
|
[16] |
Fraenkel M, Kim MK, Faggiano A, Valk GD. Epidemiology of gastroenteropancreatic neuroendocrine tumours. Best Pract Res Clin Gastroenterol 2012; 26(6): 691–703
CrossRef
Google scholar
|
[17] |
Gao C, Wang Y, Broaddus R, Sun L, Xue F, Zhang W. Exon 3 mutations of CTNNB1 drive tumorigenesis: a review. Oncotarget 2018; 9(4): 5492–5508
CrossRef
Google scholar
|
[18] |
Omiyale AO. Solid pseudopapillary neoplasm of the pancreas. World J Hepatol 2021; 13(8): 896–903
CrossRef
Google scholar
|
[19] |
Schaller MD. Cellular functions of FAK kinases: insight into molecular mechanisms and novel functions. J Cell Sci 2010; 123(7): 1007–1013
CrossRef
Google scholar
|
[20] |
Sulzmaier FJ, Jean C, Schlaepfer DD. FAK in cancer: mechanistic findings and clinical applications. Nat Rev Cancer 2014; 14(9): 598–610
CrossRef
Google scholar
|
[21] |
Jiang H, Hegde S, Knolhoff BL, Zhu Y, Herndon JM, Meyer MA, Nywening TM, Hawkins WG, Shapiro IM, Weaver DT, Pachter JA, Wang-Gillam A, DeNardo DG. Targeting focal adhesion kinase renders pancreatic cancers responsive to checkpoint immunotherapy. Nat Med 2016; 22(8): 851–860
CrossRef
Google scholar
|
[22] |
Davidson C, Taggart D, Sims AH, Lonergan DW, Canel M, Serrels A. FAK promotes stromal PD-L2 expression associated with poor survival in pancreatic cancer. Br J Cancer 2022; 127(10): 1893–1905
CrossRef
Google scholar
|
[23] |
Stokes JB, Adair SJ, Slack-Davis JK, Walters DM, Tilghman RW, Hershey ED, Lowrey B, Thomas KS, Bouton AH, Hwang RF, Stelow EB, Parsons JT, Bauer TW. Inhibition of focal adhesion kinase by PF-562,271 inhibits the growth and metastasis of pancreatic cancer concomitant with altering the tumor microenvironment. Mol Cancer Ther 2011; 10(11): 2135–2145
CrossRef
Google scholar
|
[24] |
François RA, Maeng K, Nawab A, Kaye FJ, Hochwald SN, Zajac-Kaye M. Targeting focal adhesion kinase and resistance to mTOR inhibition in pancreatic neuroendocrine tumors. J Natl Cancer Inst 2015; 107(8): djv123
CrossRef
Google scholar
|
[25] |
Zaghdoudi S, Decaup E, Belhabib I, Samain R, Cassant-Sourdy S, Rochotte J, Brunel A, Schlaepfer D, Cros J, Neuzillet C, Strehaiano M, Alard A, Tomasini R, Rajeeve V, Perraud A, Mathonnet M, Pearce OM, Martineau Y, Pyronnet S, Bousquet C, Jean C. FAK activity in cancer-associated fibroblasts is a prognostic marker and a druggable key metastatic player in pancreatic cancer. EMBO Mol Med 2020; 12(11): e12010
CrossRef
Google scholar
|
[26] |
Roy-Luzarraga M, Reynolds LE, de Luxán-Delgado B, Maiques O, Wisniewski L, Newport E, Rajeeve V, Drake RJG, Gómez-Escudero J, Richards FM, Weller C, Dormann C, Meng YM, Vermeulen PB, Saur D, Sanz-Moreno V, Wong PP, Géraud C, Cutillas PR, Hodivala-Dilke K. Suppression of endothelial cell FAK expression reduces pancreatic ductal adenocarcinoma metastasis after gemcitabine treatment. Cancer Res 2022; 82(10): 1909–1925
CrossRef
Google scholar
|
[27] |
Lander VE, Belle JI, Kingston NL, Herndon JM, Hogg GD, Liu X, Kang LI, Knolhoff BL, Bogner SJ, Baer JM, Zuo C, Borcherding NC, Lander DP, Mpoy C, Scott J, Zahner M, Rogers BE, Schwarz JK, Kim H, DeNardo DG. Stromal reprogramming by FAK inhibition overcomes radiation resistance to allow for immune priming and response to checkpoint blockade. Cancer Discov 2022; 12(12): 2774–2799
CrossRef
Google scholar
|
[28] |
Murphy KJ, Reed DA, Vennin C, Conway JRW, Nobis M, Yin JX, Chambers CR, Pereira BA, Lee V, Filipe EC, Trpceski M, Ritchie S, Lucas MC, Warren SC, Skhinas JN, Magenau A, Metcalf XL, Stoehr J, Major G, Parkin A, Bidanel R, Lyons RJ, Zaratzian A, Tayao M, Da Silva A, Abdulkhalek L; Australian Pancreatic Genome Initiative (APGI); Australian Pancreatic Cancer Matrix Atlas (APMA); Gill AJ, Johns AL, Biankin AV, Samra J, Grimmond SM, Chou A, Goetz JG, Samuel MS, Lyons JG, Burgess A, Caldon CE, Horvath LG, Daly RJ, Gadegaard N, Wang Y, Sansom OJ, Morton JP, Cox TR, Pajic M, Herrmann D, Timpson P. Intravital imaging technology guides FAK-mediated priming in pancreatic cancer precision medicine according to Merlin status. Sci Adv 2021; 7(40): eabh0363
CrossRef
Google scholar
|
[29] |
Zhang J, Francois R, Iyer R, Seshadri M, Zajac-Kaye M, Hochwald SN. Current understanding of the molecular biology of pancreatic neuroendocrine tumors. J Natl Cancer Inst 2013; 105(14): 1005–1017
CrossRef
Google scholar
|
[30] |
Moen I, Gebre M, Alonso-Camino V, Chen D, Epstein D, McDonald DM. Anti-metastatic action of FAK inhibitor OXA-11 in combination with VEGFR-2 signaling blockade in pancreatic neuroendocrine tumors. Clin Exp Metastasis 2015; 32(8): 799–817
CrossRef
Google scholar
|
[31] |
Stanley RF, Abdel-Wahab O. Dysregulation and therapeutic targeting of RNA splicing in cancer. Nat Cancer 2022; 3(5): 536–546
CrossRef
Google scholar
|
[32] |
Burgaya F, Toutant M, Studler JM, Costa A, Le Bert M, Gelman M, Girault JA. Alternatively spliced focal adhesion kinase in rat brain with increased autophosphorylation activity. J Biol Chem 1997; 272(45): 28720–28725
CrossRef
Google scholar
|
[33] |
Corsi JM, Rouer E, Girault JA, Enslen H. Organization and post-transcriptional processing of focal adhesion kinase gene. BMC Genomics 2006; 7(1): 198
CrossRef
Google scholar
|
[34] |
Devaud C, Tilkin-Mariamé AF, Vignolle-Vidoni A, Souleres P, Denadai-Souza A, Rolland C, Duthoit C, Blanpied C, Chabot S, Bouillé P, Lluel P, Vergnolle N, Racaud-Sultan C, Ferrand A. FAK alternative splice mRNA variants expression pattern in colorectal cancer. Int J Cancer 2019; 145(2): 494–502
CrossRef
Google scholar
|
[35] |
Fang XQ, Liu XF, Yao L, Chen CQ, Gu ZD, Ni PH, Zheng XM, Fan QS. Somatic mutational analysis of FAK in breast cancer: a novel gain-of-function mutation due to deletion of exon 33. Biochem Biophys Res Commun 2014; 443(2): 363–369
CrossRef
Google scholar
|
[36] |
Ignjatović VB, Janković Miljuš JR, Rončević JV, Tatić SB, Išić Denčić TM, Đorić IĐ, Šelemetjev SA. Focal adhesion kinase splicing and protein activation in papillary thyroid carcinoma progression. Histochem Cell Biol 2022; 157(2): 183–194
CrossRef
Google scholar
|
[37] |
Zhou B, Wang GZ, Wen ZS, Zhou YC, Huang YC, Chen Y, Zhou GB. Somatic mutations and splicing variants of focal adhesion kinase in non-small cell lung cancer. J Natl Cancer Inst 2018; 110(2): 195–204
CrossRef
Google scholar
|
[38] |
Wang Z, Jensen MA, Zenklusen JC. A practical guide to The Cancer Genome Atlas (TCGA). Methods Mol Biol 2016; 1418: 111–141
CrossRef
Google scholar
|
[39] |
Ryan M, Wong WC, Brown R, Akbani R, Su X, Broom B, Melott J, Weinstein J. TCGASpliceSeq a compendium of alternative mRNA splicing in cancer. Nucleic Acids Res 2016; 44(D1): D1018–D1022
CrossRef
Google scholar
|
[40] |
Ghandi M, Huang FW, Jané-Valbuena J, Kryukov GV, Lo CC, McDonald ER 3rd, Barretina J, Gelfand ET, Bielski CM, Li H, Hu K, Andreev-Drakhlin AY, Kim J, Hess JM, Haas BJ, Aguet F, Weir BA, Rothberg MV, Paolella BR, Lawrence MS, Akbani R, Lu Y, Tiv HL, Gokhale PC, de Weck A, Mansour AA, Oh C, Shih J, Hadi K, Rosen Y, Bistline J, Venkatesan K, Reddy A, Sonkin D, Liu M, Lehar J, Korn JM, Porter DA, Jones MD, Golji J, Caponigro G, Taylor JE, Dunning CM, Creech AL, Warren AC, McFarland JM, Zamanighomi M, Kauffmann A, Stransky N, Imielinski M, Maruvka YE, Cherniack AD, Tsherniak A, Vazquez F, Jaffe JD, Lane AA, Weinstock DM, Johannessen CM, Morrissey MP, Stegmeier F, Schlegel R, Hahn WC, Getz G, Mills GB, Boehm JS, Golub TR, Garraway LA, Sellers WR. Next-generation characterization of the Cancer Cell Line Encyclopedia. Nature 2019; 569(7757): 503–508
CrossRef
Google scholar
|
[41] |
Shen W, Song Z, Zhong X, Huang M, Shen D, Gao P, Qian X, Wang M, He X, Wang T, Li S, Song X. Sangerbox: a comprehensive, interaction-friendly clinical bioinformatics analysis platform. iMeta 2022; 1(3): e36
CrossRef
Google scholar
|
[42] |
Li T, Fan J, Wang B, Traugh N, Chen Q, Liu JS, Li B, Liu XS. TIMER: a web server for comprehensive analysis of tumor-infiltrating immune cells. Cancer Res 2017; 77(21): e108–e110
CrossRef
Google scholar
|
[43] |
Lánczky A, Győrffy B. Web-based survival analysis tool tailored for medical research (KMplot): development and implementation. J Med Internet Res 2021; 23(7): e27633
CrossRef
Google scholar
|
[44] |
Zhang C, Zhang J, Liang F, Guo H, Gao S, Yang F, Guo H, Wang G, Wang W, Zhou G. Innate immune checkpoint Siglec10 in cancers: mining of comprehensive omics data and validation in patient samples. Front Med 2022; 16(4): 596–609
CrossRef
Google scholar
|
[45] |
Zhang D, Xu X, Ye Q. Metabolism and immunity in breast cancer. Front Med 2021; 15(2): 178–207
CrossRef
Google scholar
|
[46] |
Seiler M, Peng S, Agrawal AA, Palacino J, Teng T, Zhu P, Smith PG; Cancer Genome Atlas Research Network; Buonamici S, Yu L. Somatic mutational landscape of splicing factor genes and their functional consequences across 33 cancer types. Cell Rep 2018; 23(1): 282–296.e4
CrossRef
Google scholar
|
[47] |
Calarco JA, Superina S, O’Hanlon D, Gabut M, Raj B, Pan Q, Skalska U, Clarke L, Gelinas D, van der Kooy D, Zhen M, Ciruna B, Blencowe BJ. Regulation of vertebrate nervous system alternative splicing and development by an SR-related protein. Cell 2009; 138(5): 898–910
CrossRef
Google scholar
|
[48] |
Torres-Méndez A, Bonnal S, Marquez Y, Roth J, Iglesias M, Permanyer J, Almudí I, O’Hanlon D, Guitart T, Soller M, Gingras AC, Gebauer F, Rentzsch F, Blencowe BJ, Valcárcel J, Irimia M. A novel protein domain in an ancestral splicing factor drove the evolution of neural microexons. Nat Ecol Evol 2019; 3(4): 691–701
CrossRef
Google scholar
|
[49] |
Jensen KB, Dredge BK, Stefani G, Zhong R, Buckanovich RJ, Okano HJ, Yang YY, Darnell RB. Nova-1 regulates neuron-specific alternative splicing and is essential for neuronal viability. Neuron 2000; 25(2): 359–371
CrossRef
Google scholar
|
[50] |
Ule J, Ule A, Spencer J, Williams A, Hu JS, Cline M, Wang H, Clark T, Fraser C, Ruggiu M, Zeeberg BR, Kane D, Weinstein JN, Blume J, Darnell RB. Nova regulates brain-specific splicing to shape the synapse. Nat Genet 2005; 37(8): 844–852
CrossRef
Google scholar
|
[51] |
Raj B, Irimia M, Braunschweig U, Sterne-Weiler T, O’Hanlon D, Lin ZY, Chen GI, Easton LE, Ule J, Gingras AC, Eyras E, Blencowe BJ. A global regulatory mechanism for activating an exon network required for neurogenesis. Mol Cell 2014; 56(1): 90–103
CrossRef
Google scholar
|
[52] |
Shih HP, Panlasigui D, Cirulli V, Sander M. ECM signaling regulates collective cellular dynamics to control pancreas branching morphogenesis. Cell Rep 2016; 14(2): 169–179
CrossRef
Google scholar
|
[53] |
Rodriguez UA, Dahiya S, Raymond ML, Gao C, Martins-Cargill CP, Piganelli JD, Gittes GK, Hu J, Esni F. Focal adhesion kinase-mediated signaling controls the onset of pancreatic cell differentiation. Development 2022; 149(17): dev200761
CrossRef
Google scholar
|
[54] |
Serrels A, Lund T, Serrels B, Byron A, McPherson RC, von Kriegsheim A, Gómez-Cuadrado L, Canel M, Muir M, Ring JE, Maniati E, Sims AH, Pachter JA, Brunton VG, Gilbert N, Anderton SM, Nibbs RJ, Frame MC. Nuclear FAK controls chemokine transcription, Tregs, and evasion of anti-tumor immunity. Cell 2015; 163(1): 160–173
CrossRef
Google scholar
|
[55] |
Demircioglu F, Wang J, Candido J, Costa ASH, Casado P, de Luxan Delgado B, Reynolds LE, Gomez-Escudero J, Newport E, Rajeeve V, Baker AM, Roy-Luzarraga M, Graham TA, Foster J, Wang Y, Campbell JJ, Singh R, Zhang P, Schall TJ, Balkwill FR, Sosabowski J, Cutillas PR, Frezza C, Sancho P, Hodivala-Dilke K. Cancer associated fibroblast FAK regulates malignant cell metabolism. Nat Commun 2020; 11(1): 1290
CrossRef
Google scholar
|
[56] |
Tavora B, Reynolds LE, Batista S, Demircioglu F, Fernandez I, Lechertier T, Lees DM, Wong PP, Alexopoulou A, Elia G, Clear A, Ledoux A, Hunter J, Perkins N, Gribben JG, Hodivala-Dilke KM. Endothelial-cell FAK targeting sensitizes tumours to DNA-damaging therapy. Nature 2014; 514(7520): 112–116
CrossRef
Google scholar
|
[57] |
Rigiracciolo DC, Cirillo F, Talia M, Muglia L, Gutkind JS, Maggiolini M, Lappano R. Focal adhesion kinase fine tunes multifaced signals toward breast cancer progression. Cancers (Basel) 2021; 13(4): 645
CrossRef
Google scholar
|
[58] |
Luo M, Fan H, Nagy T, Wei H, Wang C, Liu S, Wicha MS, Guan JL. Mammary epithelial-specific ablation of the focal adhesion kinase suppresses mammary tumorigenesis by affecting mammary cancer stem/progenitor cells. Cancer Res 2009; 69(2): 466–474
CrossRef
Google scholar
|
[59] |
Llewellyn RA, Gutknecht MF, Thomas KS, Conaway MR, Bouton AH. Focal adhesion kinase (FAK) deficiency in mononuclear phagocytes alters murine breast tumor progression. Am J Cancer Res 2018; 8(4): 675–687
|
[60] |
Gallego-Paez LM, Bordone MC, Leote AC, Saraiva-Agostinho N, Ascensão-Ferreira M, Barbosa-Morais NL. Alternative splicing: the pledge, the turn, and the prestige: the key role of alternative splicing in human biological systems. Hum Genet 2017; 136(9): 1015–1042
CrossRef
Google scholar
|
[61] |
Ladomery M. Aberrant alternative splicing is another hallmark of cancer. Int J Cell Biol 2013; 2013: 463786
CrossRef
Google scholar
|
[62] |
Quesnel-Vallières M, Irimia M, Cordes SP, Blencowe BJ. Essential roles for the splicing regulator nSR100/SRRM4 during nervous system development. Genes Dev 2015; 29(7): 746–759
CrossRef
Google scholar
|
[63] |
Irimia M, Weatheritt RJ, Ellis JD, Parikshak NN, Gonatopoulos-Pournatzis T, Babor M, Quesnel-Vallières M, Tapial J, Raj B, O’Hanlon D, Barrios-Rodiles M, Sternberg MJ, Cordes SP, Roth FP, Wrana JL, Geschwind DH, Blencowe BJ. A highly conserved program of neuronal microexons is misregulated in autistic brains. Cell 2014; 159(7): 1511–1523
CrossRef
Google scholar
|
[64] |
Head SA, Hernandez-Alias X, Yang JS, Ciampi L, Beltran-Sastre V, Torres-Méndez A, Irimia M, Schaefer MH, Serrano L. Silencing of SRRM4 suppresses microexon inclusion and promotes tumor growth across cancers. PLoS Biol 2021; 19(2): e3001138
CrossRef
Google scholar
|
[65] |
Li Y, Donmez N, Sahinalp C, Xie N, Wang Y, Xue H, Mo F, Beltran H, Gleave M, Wang Y, Collins C, Dong X. SRRM4 drives neuroendocrine transdifferentiation of prostate adenocarcinoma under androgen receptor pathway inhibition. Eur Urol 2017; 71(1): 68–78
CrossRef
Google scholar
|
[66] |
Zhang X, Coleman IM, Brown LG, True LD, Kollath L, Lucas JM, Lam HM, Dumpit R, Corey E, Chéry L, Lakely B, Higano CS, Montgomery B, Roudier M, Lange PH, Nelson PS, Vessella RL, Morrissey C. SRRM4 expression and the loss of REST activity may promote the emergence of the neuroendocrine phenotype in castration-resistant prostate cancer. Clin Cancer Res 2015; 21(20): 4698–4708
CrossRef
Google scholar
|
[67] |
Gan Y, Li Y, Long Z, Lee AR, Xie N, Lovnicki JM, Tang Y, Chen X, Huang J, Dong X. Roles of alternative RNA splicing of the Bif-1 gene by SRRM4 during the development of treatment-induced neuroendocrine prostate cancer. EBioMedicine 2018; 31: 267–275
CrossRef
Google scholar
|
[68] |
Li Y, Xie N, Chen R, Lee AR, Lovnicki J, Morrison EA, Fazli L, Zhang Q, Musselman CA, Wang Y, Huang J, Gleave ME, Collins C, Dong X. RNA splicing of the BHC80 gene contributes to neuroendocrine prostate cancer progression. Eur Urol 2019; 76(2): 157–166
CrossRef
Google scholar
|
[69] |
Zuccato C, Tartari M, Crotti A, Goffredo D, Valenza M, Conti L, Cataudella T, Leavitt BR, Hayden MR, Timmusk T, Rigamonti D, Cattaneo E. Huntingtin interacts with REST/NRSF to modulate the transcription of NRSE-controlled neuronal genes. Nat Genet 2003; 35(1): 76–83
CrossRef
Google scholar
|
[70] |
Shimojo M, Shudo Y, Ikeda M, Kobashi T, Ito S. The small cell lung cancer-specific isoform of RE1-silencing transcription factor (REST) is regulated by neural-specific Ser/Arg repeat-related protein of 100 kDa (nSR100). Mol Cancer Res 2013; 11(10): 1258–1268
CrossRef
Google scholar
|
/
〈 | 〉 |