Topological reorganization and functional alteration of distinct genomic components in gallbladder cancer

Guoqiang Li, Peng Pu, Mengqiao Pan, Xiaoling Weng, Shimei Qiu, Yiming Li, Sk Jahir Abbas, Lu Zou, Ke Liu, Zheng Wang, Ziyu Shao, Lin Jiang, Wenguang Wu, Yun Liu, Rong Shao, Fatao Liu, Yingbin Liu

PDF(9386 KB)
PDF(9386 KB)
Front. Med. ›› 2024, Vol. 18 ›› Issue (1) : 109-127. DOI: 10.1007/s11684-023-1008-8
RESEARCH ARTICLE

Topological reorganization and functional alteration of distinct genomic components in gallbladder cancer

Author information +
History +

Abstract

Altered three-dimensional architecture of chromatin influences various genomic regulators and subsequent gene expression in human cancer. However, knowledge of the topological rearrangement of genomic hierarchical layers in cancer is largely limited. Here, by taking advantage of in situ Hi-C, RNA-sequencing, and chromatin immunoprecipitation sequencing (ChIP-seq), we investigated structural reorganization and functional changes in chromosomal compartments, topologically associated domains (TADs), and CCCTC binding factor (CTCF)-mediated loops in gallbladder cancer (GBC) tissues and cell lines. We observed that the chromosomal compartment A/B switch was correlated with CTCF binding levels and gene expression changes. Increased inter-TAD interactions with weaker TAD boundaries were identified in cancer cell lines relative to normal controls. Furthermore, the chromatin short loops and cancer unique loops associated with chromatin remodeling and epithelial–mesenchymal transition activation were enriched in cancer compared with their control counterparts. Cancer-specific enhancer–promoter loops, which contain multiple transcription factor binding motifs, acted as a central element to regulate aberrant gene expression. Depletion of individual enhancers in each loop anchor that connects with promoters led to the inhibition of their corresponding gene expressions. Collectively, our data offer the landscape of hierarchical layers of cancer genome and functional alterations that contribute to the development of GBC.

Keywords

3D genome / cancer / TADs / loop / gene regulation

Cite this article

Download citation ▾
Guoqiang Li, Peng Pu, Mengqiao Pan, Xiaoling Weng, Shimei Qiu, Yiming Li, Sk Jahir Abbas, Lu Zou, Ke Liu, Zheng Wang, Ziyu Shao, Lin Jiang, Wenguang Wu, Yun Liu, Rong Shao, Fatao Liu, Yingbin Liu. Topological reorganization and functional alteration of distinct genomic components in gallbladder cancer. Front. Med., 2024, 18(1): 109‒127 https://doi.org/10.1007/s11684-023-1008-8

References

[1]
Kloetgen A, Thandapani P, Ntziachristos P, Ghebrechristos Y, Nomikou S, Lazaris C, Chen X, Hu H, Bakogianni S, Wang J, Fu Y, Boccalatte F, Zhong H, Paietta E, Trimarchi T, Zhu Y, Van Vlierberghe P, Inghirami GG, Lionnet T, Aifantis I, Tsirigos A. Three-dimensional chromatin landscapes in T cell acute lymphoblastic leukemia. Nat Genet 2020; 52(4): 388–400
CrossRef Google scholar
[2]
Kaaij LJT, Mohn F, van der Weide RH, de Wit E, Bühler M. The ChAHP complex counteracts chromatin looping at CTCF sites that emerged from SINE expansions in mouse. Cell 2019; 178(6): 1437–1451.e14
CrossRef Google scholar
[3]
Zha J, Lai Q, Deng M, Shi P, Zhao H, Chen Q, Wu H, Xu B. Disruption of CTCF boundary at HOXA locus promote BET inhibitors’ therapeutic sensitivity in acute myeloid leukemia. Stem Cell Rev Rep 2020; 16(6): 1280–1291
CrossRef Google scholar
[4]
Guo Y, Xu Q, Canzio D, Shou J, Li J, Gorkin DU, Jung I, Wu H, Zhai Y, Tang Y, Lu Y, Wu Y, Jia Z, Li W, Zhang MQ, Ren B, Krainer AR, Maniatis T, Wu Q. CRISPR inversion of CTCF sites alters genome topology and enhancer/promoter function. Cell 2015; 162(4): 900–910
CrossRef Google scholar
[5]
Pope BD, Ryba T, Dileep V, Yue F, Wu W, Denas O, Vera DL, Wang Y, Hansen RS, Canfield TK, Thurman RE, Cheng Y, Gülsoy G, Dennis JH, Snyder MP, Stamatoyannopoulos JA, Taylor J, Hardison RC, Kahveci T, Ren B, Gilbert DM. Topologically associating domains are stable units of replication-timing regulation. Nature 2014; 515(7527): 402–405
CrossRef Google scholar
[6]
Yu M, Ren B. The three-dimensional organization of mammalian genomes. Annu Rev Cell Dev Biol 2017; 33(1): 265–289
CrossRef Google scholar
[7]
Misteli T. The self-organizing genome: principles of genome architecture and function. Cell 2020; 183(1): 28–45
CrossRef Google scholar
[8]
Lieberman-Aiden E, van Berkum NL, Williams L, Imakaev M, Ragoczy T, Telling A, Amit I, Lajoie BR, Sabo PJ, Dorschner MO, Sandstrom R, Bernstein B, Bender MA, Groudine M, Gnirke A, Stamatoyannopoulos J, Mirny LA, Lander ES, Dekker J. Comprehensive mapping of long-range interactions reveals folding principles of the human genome. Science 2009; 326(5950): 289–293
CrossRef Google scholar
[9]
Wu P, Li T, Li R, Jia L, Zhu P, Liu Y, Chen Q, Tang D, Yu Y, Li C. 3D genome of multiple myeloma reveals spatial genome disorganization associated with copy number variations. Nat Commun 2017; 8(1): 1937
CrossRef Google scholar
[10]
Pandey A, Stawiski EW, Durinck S, Gowda H, Goldstein LD, Barbhuiya MA, Schröder MS, Sreenivasamurthy SK, Kim SW, Phalke S, Suryamohan K, Lee K, Chakraborty P, Kode V, Shi X, Chatterjee A, Datta K, Khan AA, Subbannayya T, Wang J, Chaudhuri S, Gupta S, Shrivastav BR, Jaiswal BS, Poojary SS, Bhunia S, Garcia P, Bizama C, Rosa L, Kwon W, Kim H, Han Y, Yadav TD, Ramprasad VL, Chaudhuri A, Modrusan Z, Roa JC, Tiwari PK, Jang JY, Seshagiri S. Integrated genomic analysis reveals mutated ELF3 as a potential gallbladder cancer vaccine candidate. Nat Commun 2020; 11(1): 4225
CrossRef Google scholar
[11]
Zhang L, Miao R, Zhang X, Chen W, Zhou Y, Wang R, Zhang R, Pang Q, Xu X, Liu C. Exploring the diagnosis markers for gallbladder cancer based on clinical data. Front Med 2015; 9(3): 350–355
CrossRef Google scholar
[12]
Aloia TA, Járufe N, Javle M, Maithel SK, Roa JC, Adsay V, Coimbra FJ, Jarnagin WR. Gallbladder cancer: expert consensus statement. HPB (Oxford) 2015; 17(8): 681–690
CrossRef Google scholar
[13]
Rustagi T, Dasanu CA. Risk factors for gallbladder cancer and cholangiocarcinoma: similarities, differences and updates. J Gastrointest Cancer 2012; 43(2): 137–147
CrossRef Google scholar
[14]
Li M, Liu F, Zhang F, Zhou W, Jiang X, Yang Y, Qu K, Wang Y, Ma Q, Wang T, Bai L, Wang Z, Song X, Zhu Y, Yuan R, Gao Y, Liu Y, Jin Y, Li H, Xiang S, Ye Y, Zhang Y, Jiang L, Hu Y, Hao Y, Lu W, Chen S, Gu J, Zhou J, Gong W, Zhang Y, Wang X, Liu X, Liu C, Liu H, Liu Y, Liu Y. Genomic ERBB2/ERBB3 mutations promote PD-L1-mediated immune escape in gallbladder cancer: a whole-exome sequencing analysis. Gut 2019; 68(6): 1024–1033
CrossRef Google scholar
[15]
Li M, Zhang Z, Li X, Ye J, Wu X, Tan Z, Liu C, Shen B, Wang XA, Wu W, Zhou D, Zhang D, Wang T, Liu B, Qu K, Ding Q, Weng H, Ding Q, Mu J, Shu Y, Bao R, Cao Y, Chen P, Liu T, Jiang L, Hu Y, Dong P, Gu J, Lu W, Shi W, Lu J, Gong W, Tang Z, Zhang Y, Wang X, Chin YE, Weng X, Zhang H, Tang W, Zheng Y, He L, Wang H, Liu Y, Liu Y. Whole-exome and targeted gene sequencing of gallbladder carcinoma identifies recurrent mutations in the ErbB pathway. Nat Genet 2014; 46(8): 872–876
CrossRef Google scholar
[16]
Hu YP, Wu ZB, Jiang L, Jin YP, Li HF, Zhang YJ, Ma Q, Ye YY, Wang Z, Liu YC, Chen HZ, Liu YB. STYK1 promotes cancer cell proliferation and malignant transformation by activating PI3K-AKT pathway in gallbladder carcinoma. Int J Biochem Cell Biol 2018; 97: 16–27
CrossRef Google scholar
[17]
Jin YP, Hu YP, Wu XS, Wu YS, Ye YY, Li HF, Liu YC, Jiang L, Liu FT, Zhang YJ, Hao YJ, Liu XY, Liu YB. miR-143-3p targeting of ITGA6 suppresses tumour growth and angiogenesis by downregulating PLGF expression via the PI3K/AKT pathway in gallbladder carcinoma. Cell Death Dis 2018; 9(2): 182
CrossRef Google scholar
[18]
Li H, Jin Y, Hu Y, Jiang L, Liu F, Zhang Y, Hao Y, Chen S, Wu X, Liu Y. The PLGF/c-MYC/miR-19a axis promotes metastasis and stemness in gallbladder cancer. Cancer Sci 2018; 109(5): 1532–1544
CrossRef Google scholar
[19]
Rao SS, Huntley MH, Durand NC, Stamenova EK, Bochkov ID, Robinson JT, Sanborn AL, Machol I, Omer AD, Lander ES, Aiden EL. A 3D map of the human genome at kilobase resolution reveals principles of chromatin looping. Cell 2014; 159(7): 1665–1680
CrossRef Google scholar
[20]
Servant N, Varoquaux N, Lajoie BR, Viara E, Chen CJ, Vert JP, Heard E, Dekker J, Barillot E. HiC-Pro: an optimized and flexible pipeline for Hi-C data processing. Genome Biol 2015; 16(1): 259
CrossRef Google scholar
[21]
Imakaev M, Fudenberg G, McCord RP, Naumova N, Goloborodko A, Lajoie BR, Dekker J, Mirny LA. Iterative correction of Hi-C data reveals hallmarks of chromosome organization. Nat Methods 2012; 9(10): 999–1003
CrossRef Google scholar
[22]
Rausch T, Zichner T, Schlattl A, Stütz AM, Benes V, Korbel JO. DELLY: structural variant discovery by integrated paired-end and split-read analysis. Bioinformatics 2012; 28(18): i333–i339
CrossRef Google scholar
[23]
Wang X, Xu J, Zhang B, Hou Y, Song F, Lyu H, Yue F. Genome-wide detection of enhancer-hijacking events from chromatin interaction data in rearranged genomes. Nat Methods 2021; 18(6): 661–668
CrossRef Google scholar
[24]
Durand NC, Shamim MS, Machol I, Rao SS, Huntley MH, Lander ES, Aiden EL. Juicer provides a one-click system for analyzing loop-resolution Hi-C experiments. Cell Syst 2016; 3(1): 95–98
CrossRef Google scholar
[25]
Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 2014; 30(15): 2114–2120
CrossRef Google scholar
[26]
Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C, Jha S, Batut P, Chaisson M, Gingeras TR. STAR: ultrafast universal RNA-seq aligner. Bioinformatics 2013; 29(1): 15–21
CrossRef Google scholar
[27]
Anders S, Pyl PT, Huber W. HTSeq—a Python framework to work with high-throughput sequencing data. Bioinformatics 2015; 31(2): 166–169
CrossRef Google scholar
[28]
Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol 2014; 15(12): 550
CrossRef Google scholar
[29]
Robinson MD, McCarthy DJ, Smyth GK. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 2010; 26(1): 139–140
CrossRef Google scholar
[30]
Langmead B, Salzberg SL. Fast gapped-read alignment with Bowtie 2. Nat Methods 2012; 9(4): 357–359
CrossRef Google scholar
[31]
Zhang Y, Liu T, Meyer CA, Eeckhoute J, Johnson DS, Bernstein BE, Nusbaum C, Myers RM, Brown M, Li W, Liu XS. Model-based analysis of ChIP-Seq (MACS). Genome Biol 2008; 9(9): R137
CrossRef Google scholar
[32]
Ramírez F, Ryan DP, Grüning B, Bhardwaj V, Kilpert F, Richter AS, Heyne S, Dündar F, Manke T. deepTools2: a next generation web server for deep-sequencing data analysis. Nucleic Acids Res 2016; 44(W1): W160–5
CrossRef Google scholar
[33]
Quinlan AR, Hall IM. BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics 2010; 26(6): 841–842
CrossRef Google scholar
[34]
Crane E, Bian Q, McCord RP, Lajoie BR, Wheeler BS, Ralston EJ, Uzawa S, Dekker J, Meyer BJ. Condensin-driven remodelling of X chromosome topology during dosage compensation. Nature 2015; 523(7559): 240–244
CrossRef Google scholar
[35]
Yu G, Wang LG, Han Y, He QY. clusterProfiler: an R package for comparing biological themes among gene clusters. OMICS 2012; 16(5): 284–287
CrossRef Google scholar
[36]
Heinz S, Benner C, Spann N, Bertolino E, Lin YC, Laslo P, Cheng JX, Murre C, Singh H, Glass CK. Simple combinations of lineage-determining transcription factors prime cis-regulatory elements required for macrophage and B-cell identities. Mol Cell 2010; 38(4): 576–589
CrossRef Google scholar
[37]
Wu XS, Wang F, Li HF, Hu YP, Jiang L, Zhang F, Li ML, Wang XA, Jin YP, Zhang YJ, Lu W, Wu WG, Shu YJ, Weng H, Cao Y, Bao RF, Liang HB, Wang Z, Zhang YC, Gong W, Zheng L, Sun SH, Liu YB. LncRNA-PAGBC acts as a microRNA sponge and promotes gallbladder tumorigenesis. EMBO Rep 2017; 18(10): 1837–1853
CrossRef Google scholar
[38]
Ran FA, Hsu PD, Wright J, Agarwala V, Scott DA, Zhang F. Genome engineering using the CRISPR‒Cas9 system. Nat Protoc 2013; 8(11): 2281–2308
CrossRef Google scholar
[39]
Ortiz B, Fabius AW, Wu WH, Pedraza A, Brennan CW, Schultz N, Pitter KL, Bromberg JF, Huse JT, Holland EC, Chan TA. Loss of the tyrosine phosphatase PTPRD leads to aberrant STAT3 activation and promotes gliomagenesis. Proc Natl Acad Sci USA 2014; 111(22): 8149–8154
CrossRef Google scholar
[40]
Harder L, Puller AC, Horstmann MA. ZNF423: transcriptional modulation in development and cancer. Mol Cell Oncol 2014; 1(3): e969655
CrossRef Google scholar
[41]
Hnisz D, Day DS, Young RA. Insulated neighborhoods: structural and functional units of mammalian gene control. Cell 2016; 167(5): 1188–1200
CrossRef Google scholar
[42]
Wutz G, Várnai C, Nagasaka K, Cisneros DA, Stocsits RR, Tang W, Schoenfelder S, Jessberger G, Muhar M, Hossain MJ, Walther N, Koch B, Kueblbeck M, Ellenberg J, Zuber J, Fraser P, Peters JM. Topologically associating domains and chromatin loops depend on cohesin and are regulated by CTCF, WAPL, and PDS5 proteins. EMBO J 2017; 36(24): 3573–3599
CrossRef Google scholar
[43]
Song J, Nabeel-Shah S, Pu S, Lee H, Braunschweig U, Ni Z, Ahmed N, Marcon E, Zhong G, Ray D, Ha KCH, Guo X, Zhang Z, Hughes TR, Blencowe BJ, Greenblatt JF. Regulation of alternative polyadenylation by the C2H2-zinc-finger protein Sp1. Mol Cell 2022; 82(17): 3135–3150.e9
CrossRef Google scholar
[44]
Mayr B, Montminy M. Transcriptional regulation by the phosphorylation-dependent factor CREB. Nat Rev Mol Cell Biol 2001; 2(8): 599–609
CrossRef Google scholar
[45]
Dongre A, Weinberg RA. New insights into the mechanisms of epithelial-mesenchymal transition and implications for cancer. Nat Rev Mol Cell Biol 2019; 20(2): 69–84
CrossRef Google scholar
[46]
Burotto M, Chiou VL, Lee JM, Kohn EC. The MAPK pathway across different malignancies: a new perspective. Cancer 2014; 120(22): 3446–3456
CrossRef Google scholar
[47]
Dawson MA, Kouzarides T. Cancer epigenetics: from mechanism to therapy. Cell 2012; 150(1): 12–27
CrossRef Google scholar
[48]
Rao SSP, Huang SC, Glenn St Hilaire B, Engreitz JM, Perez EM, Kieffer-Kwon KR, Sanborn AL, Johnstone SE, Bascom GD, Bochkov ID, Huang X, Shamim MS, Shin J, Turner D, Ye Z, Omer AD, Robinson JT, Schlick T, Bernstein BE, Casellas R, Lander ES, Aiden EL. Cohesin loss eliminates all loop domains. Cell 2017; 171(2): 305–320.e24
CrossRef Google scholar
[49]
Nora EP, Caccianini L, Fudenberg G, So K, Kameswaran V, Nagle A, Uebersohn A, Hajj B, Saux AL, Coulon A, Mirny LA, Pollard KS, Dahan M, Bruneau BG. Molecular basis of CTCF binding polarity in genome folding. Nat Commun 2020; 11(1): 5612
CrossRef Google scholar
[50]
Martínez VG, Rubio C, Martínez-Fernández M, Segovia C, López-Calderón F, Garín MI, Teijeira A, Munera-Maravilla E, Varas A, Sacedón R, Guerrero F, Villacampa F, de la Rosa F, Castellano D, López-Collazo E, Paramio JM, Vicente Á, Dueñas M. BMP4 induces M2 macrophage polarization and favors tumor progression in bladder cancer. Clin Cancer Res 2017; 23(23): 7388–7399
CrossRef Google scholar
[51]
Yuan X, Yi M, Dong B, Chu Q, Wu K. Prognostic significance of KRT19 in lung squamous cancer. J Cancer 2021; 12(4): 1240–1248
CrossRef Google scholar
[52]
Wang DH, Tiwari A, Kim ME, Clemons NJ, Regmi NL, Hodges WA, Berman DM, Montgomery EA, Watkins DN, Zhang X, Zhang Q, Jie C, Spechler SJ, Souza RF. Hedgehog signaling regulates FOXA2 in esophageal embryogenesis and Barrett’s metaplasia. J Clin Invest 2014; 124(9): 3767–3780
CrossRef Google scholar
[53]
PCAWG Transcriptome Core Group; Calabrese C, Davidson NR, Demircioğlu D, Fonseca NA, He Y, Kahles A, Lehmann KV, Liu F, Shiraishi Y, Soulette CM, Urban L, Greger L, Li S, Liu D, Perry MD, Xiang Q, Zhang F, Zhang J, Bailey P, Erkek S, Hoadley KA, Hou Y, Huska MR, Kilpinen H, Korbel JO, Marin MG, Markowski J, Nandi T, Pan-Hammarström Q, Pedamallu CS, Siebert R, Stark SG, Su H, Tan P, Waszak SM, Yung C, Zhu S, Awadalla P, Creighton CJ, Meyerson M, Ouellette BFF, Wu K, Yang H; PCAWG Transcriptome Working Group; Brazma A, Brooks AN, Göke J, Rätsch G, Schwarz RF, Stegle O, Zhang Z; PCAWG Consortium. Genomic basis for RNA alterations in cancer. Nature 2020; 578(7793): 129–136
CrossRef Google scholar
[54]
Quigley DA, Dang HX, Zhao SG, Lloyd P, Aggarwal R, Alumkal JJ, Foye A, Kothari V, Perry MD, Bailey AM, Playdle D, Barnard TJ, Zhang L, Zhang J, Youngren JF, Cieslik MP, Parolia A, Beer TM, Thomas G, Chi KN, Gleave M, Lack NA, Zoubeidi A, Reiter RE, Rettig MB, Witte O, Ryan CJ, Fong L, Kim W, Friedlander T, Chou J, Li H, Das R, Li H, Moussavi-Baygi R, Goodarzi H, Gilbert LA, Lara PN Jr, Evans CP, Goldstein TC, Stuart JM, Tomlins SA, Spratt DE, Cheetham RK, Cheng DT, Farh K, Gehring JS, Hakenberg J, Liao A, Febbo PG, Shon J, Sickler B, Batzoglou S, Knudsen KE, He HH, Huang J, Wyatt AW, Dehm SM, Ashworth A, Chinnaiyan AM, Maher CA, Small EJ, Feng FY. Genomic hallmarks and structural variation in metastatic prostate cancer. Cell 2018; 174(3): 758–769.e9
CrossRef Google scholar
[55]
Misteli T. Higher-order genome organization in human disease. Cold Spring Harb Perspect Biol 2010; 2(8): a000794
CrossRef Google scholar
[56]
Zuin J, Dixon JR, van der Reijden MI, Ye Z, Kolovos P, Brouwer RW, van de Corput MP, van de Werken HJ, Knoch TA, van IJcken WF, Grosveld FG, Ren B, Wendt KS. Cohesin and CTCF differentially affect chromatin architecture and gene expression in human cells. Proc Natl Acad Sci USA 2014; 111(3): 996–1001
CrossRef Google scholar
[57]
Vietri Rudan M, Barrington C, Henderson S, Ernst C, Odom DT, Tanay A, Hadjur S. Comparative Hi-C reveals that CTCF underlies evolution of chromosomal domain architecture. Cell Rep 2015; 10(8): 1297–1309
CrossRef Google scholar
[58]
Ong CT, Corces VG. CTCF: an architectural protein bridging genome topology and function. Nat Rev Genet 2014; 15(4): 234–246
CrossRef Google scholar
[59]
Dixon JR, Selvaraj S, Yue F, Kim A, Li Y, Shen Y, Hu M, Liu JS, Ren B. Topological domains in mammalian genomes identified by analysis of chromatin interactions. Nature 2012; 485(7398): 376–380
CrossRef Google scholar
[60]
Fortin JP, Hansen KD. Reconstructing A/B compartments as revealed by Hi-C using long-range correlations in epigenetic data. Genome Biol 2015; 16(1): 180
CrossRef Google scholar
[61]
Rowley MJ, Nichols MH, Lyu X, Ando-Kuri M, Rivera ISM, Hermetz K, Wang P, Ruan Y, Corces VG. Evolutionarily conserved principles predict 3D chromatin organization. Mol Cell 2017; 67(5): 837–852.e7
CrossRef Google scholar
[62]
Rosa-Garrido M, Chapski DJ, Schmitt AD, Kimball TH, Karbassi E, Monte E, Balderas E, Pellegrini M, Shih TT, Soehalim E, Liem D, Ping P, Galjart NJ, Ren S, Wang Y, Ren B, Vondriska TM. High-resolution mapping of chromatin conformation in cardiac myocytes reveals structural remodeling of the epigenome in heart failure. Circulation 2017; 136(17): 1613–1625
CrossRef Google scholar
[63]
Li T, Li R, Dong X, Shi L, Lin M, Peng T, Wu P, Liu Y, Li X, He X, Han X, Kang B, Wang Y, Liu Z, Chen Q, Shen Y, Feng M, Wang X, Wu D, Wang J, Li C. Integrative analysis of genome, 3D genome, and transcriptome alterations of clinical lung cancer samples. Genom Proteom Bioinfor 2021; 19(5): 741–753
CrossRef Google scholar
[64]
Ren B, Yang J, Wang C, Yang G, Wang H, Chen Y, Xu R, Fan X, You L, Zhang T, Zhao Y. High-resolution Hi-C maps highlight multiscale 3D epigenome reprogramming during pancreatic cancer metastasis. J Hematol Oncol 2021; 14(1): 120
CrossRef Google scholar
[65]
Luo Z, Rhie SK, Lay FD, Farnham PJ. A prostate cancer risk element functions as a repressive loop that regulates HOXA13. Cell Rep 2017; 21(6): 1411–1417
CrossRef Google scholar
[66]
Xiang JF, Yin QF, Chen T, Zhang Y, Zhang XO, Wu Z, Zhang S, Wang HB, Ge J, Lu X, Yang L, Chen LL. Human colorectal cancer-specific CCAT1-L lncRNA regulates long-range chromatin interactions at the MYC locus. Cell Res 2014; 24(5): 513–531
CrossRef Google scholar
[67]
Pomerantz MM, Ahmadiyeh N, Jia L, Herman P, Verzi MP, Doddapaneni H, Beckwith CA, Chan JA, Hills A, Davis M, Yao K, Kehoe SM, Lenz HJ, Haiman CA, Yan C, Henderson BE, Frenkel B, Barretina J, Bass A, Tabernero J, Baselga J, Regan MM, Manak JR, Shivdasani R, Coetzee GA, Freedman ML. The 8q24 cancer risk variant rs6983267 shows long-range interaction with MYC in colorectal cancer. Nat Genet 2009; 41(8): 882–884
CrossRef Google scholar
[68]
Oh S, Shao J, Mitra J, Xiong F, D’Antonio M, Wang R, Garcia-Bassets I, Ma Q, Zhu X, Lee JH, Nair SJ, Yang F, Ohgi K, Frazer KA, Zhang ZD, Li W, Rosenfeld MG. Enhancer release and retargeting activates disease-susceptibility genes. Nature 2021; 595(7869): 735–740
CrossRef Google scholar
[69]
Nanavaty V, Abrash EW, Hong C, Park S, Fink EE, Li Z, Sweet TJ, Bhasin JM, Singuri S, Lee BH, Hwang TH, Ting AH. DNA methylation regulates alternative polyadenylation via CTCF and the cohesin complex. Mol Cell 2020; 78(4): 752–764.e6
CrossRef Google scholar

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 81874181, 81902361, 3213000192, and 91940305); the National Science and Technology Major Projects for “Major New Drug Innovation and Development” (No. 2019ZX09301-158); the Shanghai Sailing Program (No. 19YF1433000); the Open Project Program of State Key Laboratory of Oncogenes and Related Genes (No. KF2120).

Electronic Supplementary Material

Supplementary material is available in the online version of this article at https://doi.org/10.1007/s11684-023-1008-8 and is accessible for authorized users.

Compliance with ethics guidelines

Conflict of interest Guoqiang Li, Peng Pu, Mengqiao Pan, Xiaoling Weng, Shimei Qiu, Yiming Li, Sk Jahir Abbas, Lu Zou, Ke Liu, Zheng Wang, Ziyu Shao, Lin Jiang, Wenguang Wu, Yun Liu, Rong Shao, Fatao Liu, and Yingbin Liu declare no competing interests.
All the patients were subjected to accept the written informed consent before enrollment. The study was approved by the ethics committee of Xinhua hospital (No. XHEC-D-2021-071) and the study was performed in accordance with the ethical standards as laid down in the 1964 Declaration of Helsinki and its later amendments or comparable ethical standards. Informed consent was obtained from all patients for being included in the study.

RIGHTS & PERMISSIONS

2023 Higher Education Press
AI Summary AI Mindmap
PDF(9386 KB)

Accesses

Citations

Detail

Sections
Recommended

/