Association of TRMT2B gene variants with juvenile amyotrophic lateral sclerosis

Yanling Liu, Xi He, Yanchun Yuan, Bin Li, Zhen Liu, Wanzhen Li, Kaixuan Li, Shuo Tan, Quan Zhu, Zhengyan Tang, Feng Han, Ziqiang Wu, Lu Shen, Hong Jiang, Beisha Tang, Jian Qiu, Zhengmao Hu, Junling Wang

PDF(4489 KB)
PDF(4489 KB)
Front. Med. ›› 2024, Vol. 18 ›› Issue (1) : 68-80. DOI: 10.1007/s11684-023-1005-y
RESEARCH ARTICLE

Association of TRMT2B gene variants with juvenile amyotrophic lateral sclerosis

Author information +
History +

Abstract

Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease characterized by progressive degeneration of motor neurons, and it demonstrates high clinical heterogeneity and complex genetic architecture. A variation within TRMT2B (c.1356G>T; p.K452N) was identified to be associated with ALS in a family comprising two patients with juvenile ALS (JALS). Two missense variations and one splicing variation were identified in 10 patients with ALS in a cohort with 910 patients with ALS, and three more variants were identified in a public ALS database including 3317 patients with ALS. A decreased number of mitochondria, swollen mitochondria, lower expression of ND1, decreased mitochondrial complex I activities, lower mitochondrial aerobic respiration, and a high level of ROS were observed functionally in patient-originated lymphoblastoid cell lines and TRMT2B interfering HEK293 cells. Further, TRMT2B variations overexpression cells also displayed decreased ND1. In conclusion, a novel JALS-associated gene called TRMT2B was identified, thus broadening the clinical and genetic spectrum of ALS.

Keywords

TRMT2B / amyotrophic lateral sclerosis / mitochondrial complex I / tRNA methylation / reactive oxygen species

Cite this article

Download citation ▾
Yanling Liu, Xi He, Yanchun Yuan, Bin Li, Zhen Liu, Wanzhen Li, Kaixuan Li, Shuo Tan, Quan Zhu, Zhengyan Tang, Feng Han, Ziqiang Wu, Lu Shen, Hong Jiang, Beisha Tang, Jian Qiu, Zhengmao Hu, Junling Wang. Association of TRMT2B gene variants with juvenile amyotrophic lateral sclerosis. Front. Med., 2024, 18(1): 68‒80 https://doi.org/10.1007/s11684-023-1005-y

References

[1]
van Es MA, Hardiman O, Chio A, Al-Chalabi A, Pasterkamp RJ, Veldink JH, van den Berg LH. Amyotrophic lateral sclerosis. Lancet 2017; 390(10107): 2084–2098
CrossRef Google scholar
[2]
Longinetti E, Fang F. Epidemiology of amyotrophic lateral sclerosis: an update of recent literature. Curr Opin Neurol 2019; 32(5): 771–776
CrossRef Google scholar
[3]
Chia R, Chiò A, Traynor BJ. Novel genes associated with amyotrophic lateral sclerosis: diagnostic and clinical implications. Lancet Neurol 2018; 17(1): 94–102
CrossRef Google scholar
[4]
Oskarsson B, Horton DK, Mitsumoto H. Potential environmental factors in amyotrophic lateral sclerosis. Neurol Clin 2015; 33(4): 877–888
CrossRef Google scholar
[5]
Talbott EO, Malek AM, Lacomis D. The epidemiology of amyotrophic lateral sclerosis. Handb Clin Neurol 2016; 138: 225–238
CrossRef Google scholar
[6]
Hou L, Jiao B, Xiao T, Zhou L, Zhou Z, Du J, Yan X, Wang J, Tang B, Shen L. Screening of SOD1, FUS and TARDBP genes in patients with amyotrophic lateral sclerosis in central-southern China. Sci Rep 2016; 6(1): 32478
CrossRef Google scholar
[7]
Liu Z, Yuan Y, Wang M, Ni J, Li W, Huang L, Hu Y, Liu P, Hou X, Hou X, Du J, Weng L, Zhang R, Niu Q, Tang J, Jiang H, Shen L, Tang B, Wang J. Mutation spectrum of amyotrophic lateral sclerosis in Central South China. Neurobiol Aging 2021; 107: 181–188
CrossRef Google scholar
[8]
Orban P, Devon RS, Hayden MR, Leavitt BR. Chapter 15 Juvenile amyotrophic lateral sclerosis. Handb Clin Neurol 2007; 82: 301–312
CrossRef Google scholar
[9]
Johnson JO, Chia R, Miller DE, Li R, Kumaran R, Abramzon Y, Alahmady N, Renton AE, Topp SD, Gibbs JR, Cookson MR, Sabir MS, Dalgard CL, Troakes C, Jones AR, Shatunov A, Iacoangeli A, Al Khleifat A, Ticozzi N, Silani V, Gellera C, Blair IP, Dobson-Stone C, Kwok JB, Bonkowski ES, Palvadeau R, Tienari PJ, Morrison KE, Shaw PJ, Al-Chalabi A, Brown RH Jr, Calvo A, Mora G, Al-Saif H, Gotkine M, Leigh F, Chang IJ, Perlman SJ, Glass I, Scott AI, Shaw CE, Basak AN, Landers JE, Chiò A, Crawford TO, Smith BN, Traynor BJ; FALS Sequencing Consortium; American Genome Center; International ALS Genomics Consortium;, ITALSGEN Consortium. . Association of variants in the SPTLC1 gene with juvenile amyotrophic lateral sclerosis. JAMA Neurol 2021; 78(10): 1236–1248
CrossRef Google scholar
[10]
Lanteri P, Meola I, Canosa A, De Marco G, Lomartire A, Rinaudo MT, Albamonte E, Sansone VA, Lunetta C, Manera U, Vasta R, Moglia C, Calvo A, Origone P, Chiò A, Mandich P. The heterozygous deletion c.1509_1510delAG in exon 14 of FUS causes an aggressive childhood-onset ALS with cognitive impairment. Neurobiol Aging 2021; 103: 130.e1–130.e7
CrossRef Google scholar
[11]
Sprute R, Jergas H, Ölmez A, Alawbathani S, Karasoy H, Dafsari HS, Becker K, Daimagüler HS, Nürnberg P, Muntoni F, Topaloglu H, Uyanik G, Cirak S. Genotype-phenotype correlation in seven motor neuron disease families with novel ALS2 mutations. Am J Med Genet A 2021; 185(2): 344–354
CrossRef Google scholar
[12]
Chen YZ, Bennett CL, Huynh HM, Blair IP, Puls I, Irobi J, Dierick I, Abel A, Kennerson ML, Rabin BA, Nicholson GA, Auer-Grumbach M, Wagner K, De Jonghe P, Griffin JW, Fischbeck KH, Timmerman V, Cornblath DR, Chance PF. DNA/RNA helicase gene mutations in a form of juvenile amyotrophic lateral sclerosis (ALS4). Am J Hum Genet 2004; 74(6): 1128–1135
CrossRef Google scholar
[13]
Orlacchio A, Babalini C, Borreca A, Patrono C, Massa R, Basaran S, Munhoz RP, Rogaeva EA, St George-Hyslop PH, Bernardi G, Kawarai T. SPATACSIN mutations cause autosomal recessive juvenile amyotrophic lateral sclerosis. Brain 2010; 133(2): 591–598
CrossRef Google scholar
[14]
Al-Saif A, Al-Mohanna F, Bohlega S. A mutation in sigma-1 receptor causes juvenile amyotrophic lateral sclerosis. Ann Neurol 2011; 70(6): 913–919
CrossRef Google scholar
[15]
Altman T, Ionescu A, Ibraheem A, Priesmann D, Gradus-Pery T, Farberov L, Alexandra G, Shelestovich N, Dafinca R, Shomron N, Rage F, Talbot K, Ward ME, Dori A, Krüger M, Perlson E. Axonal TDP-43 condensates drive neuromuscular junction disruption through inhibition of local synthesis of nuclear encoded mitochondrial proteins. Nat Commun 2021; 12(1): 6914
CrossRef Google scholar
[16]
Anoar S, Woodling NS, Niccoli T. Mitochondria dysfunction in frontotemporal dementia/amyotrophic lateral sclerosis: lessons from Drosophila models. Front Neurosci 2021; 15: 786076
CrossRef Google scholar
[17]
Theunissen F, West PK, Brennan S, Petrović B, Hooshmand K, Akkari PA, Keon M, Guennewig B. New perspectives on cytoskeletal dysregulation and mitochondrial mislocalization in amyotrophic lateral sclerosis. Transl Neurodegener 2021; 10(1): 46
CrossRef Google scholar
[18]
Martin LJ. Mitochondriopathy in Parkinson disease and amyotrophic lateral sclerosis. J Neuropathol Exp Neurol 2006; 65(12): 1103–1110
CrossRef Google scholar
[19]
Wang T, Liu H, Itoh K, Oh S, Zhao L, Murata D, Sesaki H, Hartung T, Na CH, Wang J. C9orf72 regulates energy homeostasis by stabilizing mitochondrial complex I assembly. Cell Metab 2021; 33(3): 531–546.e9
CrossRef Google scholar
[20]
Ludolph A, Drory V, Hardiman O, Nakano I, Ravits J, Robberecht W, Shefner J; WFN Research Group On ALS/MND. A revision of the El Escorial criteria—2015. Amyotrop Lat Scl Fr Deg 2015; 16(5–6): 291–292
CrossRef Google scholar
[21]
Jiang X, Teng Y, Chen X, Liang N, Li Z, Liang D, Wu L. Six novel mutation analysis of the androgen receptor gene in 17 Chinese patients with androgen insensitivity syndrome. Clin Chim Acta 2020; 506: 180–186
CrossRef Google scholar
[22]
Guo H, Tong P, Liu Y, Xia L, Wang T, Tian Q, Li Y, Hu Y, Zheng Y, Jin X, Li Y, Xiong W, Tang B, Feng Y, Li J, Pan Q, Hu Z, Xia K. Mutations of P4HA2 encoding prolyl 4-hydroxylase 2 are associated with nonsyndromic high myopia. Genet Med 2015; 17(4): 300–306
CrossRef Google scholar
[23]
Tian Y, Wang JL, Huang W, Zeng S, Jiao B, Liu Z, Chen Z, Li Y, Wang Y, Min HX, Wang XJ, You Y, Zhang RX, Chen XY, Yi F, Zhou YF, Long HY, Zhou CJ, Hou X, Wang JP, Xie B, Liang F, Yang ZY, Sun QY, Allen EG, Shafik AM, Kong HE, Guo JF, Yan XX, Hu ZM, Xia K, Jiang H, Xu HW, Duan RH, Jin P, Tang BS, Shen L. Expansion of human-specific GGC repeat in neuronal intranuclear inclusion disease-related disorders. Am J Hum Genet 2019; 105(1): 166–176
CrossRef Google scholar
[24]
He X, Huang Z, Liu W, Liu Y, Qian H, Lei T, Hua L, Hu Y, Zhang Y, Lei P. Electrospun polycaprolactone/hydroxyapatite/ZnO films as potential biomaterials for application in bone-tendon interface repair. Coll Surf B Bioint 2021; 204: 111825
CrossRef Google scholar
[25]
Grieco JP, Compton SLE, Bano N, Brookover L, Nichenko AS, Drake JC, Schmelz EM. Mitochondrial plasticity supports proliferative outgrowth and invasion of ovarian cancer spheroids during adhesion. Front Oncol 2023; 12: 1043670
CrossRef Google scholar
[26]
Brooks BR, Miller RG, Swash M, Munsat TL; World Federation of Neurology Research Group on Motor Neuron Diseases. El Escorial revisited: revised criteria for the diagnosis of amyotrophic lateral sclerosis. Amyotrop Lat Scl Oth Mot Neur Dis 2000; 1(5): 293–299
CrossRef Google scholar
[27]
McCombe PA, Wray NR, Henderson RD. Extra-motor abnormalities in amyotrophic lateral sclerosis: another layer of heterogeneity. Expert Rev Neurother 2017; 17(6): 561–577
CrossRef Google scholar
[28]
Taylor JP. Multisystem proteinopathy: intersecting genetics in muscle, bone, and brain degeneration. Neurology 2015; 85(8): 658–660
CrossRef Google scholar
[29]
Teoh HL, Carey K, Sampaio H, Mowat D, Roscioli T, Farrar M. Inherited paediatric motor neuron disorders: beyond spinal muscular atrophy. Neural Plast 2017; 2017: 6509493
CrossRef Google scholar
[30]
Pereira M, Francisco S, Varanda AS, Santos M, Santos MAS, Soares AR. Impact of tRNA modifications and tRNA-modifying enzymes on proteostasis and human disease. Int J Mol Sci 2018; 19(12): 3738
CrossRef Google scholar
[31]
Laptev I, Shvetsova E, Levitskii S, Serebryakova M, Rubtsova M, Bogdanov A, Kamenski P, Sergiev P, Dontsova O. Mouse Trmt2B protein is a dual specific mitochondrial metyltransferase responsible for m5U formation in both tRNA and rRNA. RNA Biol 2020; 17(4): 441–450
CrossRef Google scholar
[32]
Powell CA, Minczuk M. TRMT2B is responsible for both tRNA and rRNA m5U-methylation in human mitochondria. RNA Biol 2020; 17(4): 451–462
CrossRef Google scholar
[33]
Zhang F, Yoon K, Zhang DY, Kim NS, Ming GL, Song H. Epitranscriptomic regulation of cortical neurogenesis via Mettl8-dependent mitochondrial tRNA m3C modification. Cell Stem Cell 2023; 30(3): 300–311.e11
CrossRef Google scholar
[34]
Sekar S, McDonald J, Cuyugan L, Aldrich J, Kurdoglu A, Adkins J, Serrano G, Beach TG, Craig DW, Valla J, Reiman EM, Liang WS. Alzheimer’s disease is associated with altered expression of genes involved in immune response and mitochondrial processes in astrocytes. Neurobiol Aging 2015; 36(2): 583–591
CrossRef Google scholar
[35]
Davarniya B, Hu H, Kahrizi K, Musante L, Fattahi Z, Hosseini M, Maqsoud F, Farajollahi R, Wienker TF, Ropers HH, Najmabadi H. The role of a novel TRMT1 gene mutation and rare GRM1 gene defect in intellectual disability in two Azeri families. PLoS One 2015; 10(8): e0129631
CrossRef Google scholar
[36]
Igoillo-Esteve M, Genin A, Lambert N, Désir J, Pirson I, Abdulkarim B, Simonis N, Drielsma A, Marselli L, Marchetti P, Vanderhaeghen P, Eizirik DL, Wuyts W, Julier C, Chakera AJ, Ellard S, Hattersley AT, Abramowicz M, Cnop M. tRNA methyltransferase homolog gene TRMT10A mutation in young onset diabetes and primary microcephaly in humans. PLoS Genet 2013; 9(10): e1003888
CrossRef Google scholar
[37]
KoscielnyGYaikhom GIyerVMeehanTFMorganH Atienza-HerreroJBlakeAChenCK EastyRDi Fenza AFiegelTGrifithsMHorneA KarpNAKurbatova NMasonJCMatthewsPOakleyDJ QaziARegnart JRethaASantosLASneddonDJ WarrenJWesterberg HWilsonRJMelvinDGSmedleyD BrownSDFlicek PSkarnesWCMallonAMParkinson H. The International Mouse Phenotyping Consortium Web Portal, a unified point of access for knockout mice and related phenotyping data. Nucleic Acids Res 2014; 42(Database issue): D802–D809 doi:10.1093/nar/gkt977
Pubmed
[38]
De Vos KJ, Chapman AL, Tennant ME, Manser C, Tudor EL, Lau KF, Brownlees J, Ackerley S, Shaw PJ, McLoughlin DM, Shaw CE, Leigh PN, Miller CCJ, Grierson AJ. Familial amyotrophic lateral sclerosis-linked SOD1 mutants perturb fast axonal transport to reduce axonal mitochondria content. Hum Mol Genet 2007; 16(22): 2720–2728
CrossRef Google scholar
[39]
Wang P, Deng J, Dong J, Liu J, Bigio EH, Mesulam M, Wang T, Sun L, Wang L, Lee AY, McGee WA, Chen X, Fushimi K, Zhu L, Wu JY. TDP-43 induces mitochondrial damage and activates the mitochondrial unfolded protein response. PLoS Genet 2019; 15(5): e1007947
CrossRef Google scholar
[40]
Murphy MP. Mitochondrial dysfunction indirectly elevates ROS production by the endoplasmic reticulum. Cell Metab 2013; 18(2): 145–146
CrossRef Google scholar
[41]
Sivandzade F, Prasad S, Bhalerao A, Cucullo L. NRF2 and NF-қB interplay in cerebrovascular and neurodegenerative disorders: molecular mechanisms and possible therapeutic approaches. Redox Biol 2019; 21: 101059
CrossRef Google scholar

Acknowledgements

The authors wish to thank the patients and their families for their participation in this project. This work was supported by the Program of the National Natural Science Foundation of China (Nos. 82171431 and 31972886), the Natural Science Fund for Distinguished Young Scholars of Hunan Province, China (Nos. 2020JJ2057 and 2021JJ10074), Natural Science Foundation of Changsha City (No. kq2208402), the Program of the National Natural Science Foundation of Hunan Province (No. 2021JJ40989), the Project Program of National Clinical Research Center for Geriatric Disorders at Xiangya Hospital (No. 2020LNJJ13), the Science and Technology Innovation 2030 (STI2030-Major Projects, No. 2021ZD0201803), the National Key R&D Program of China (No. 2021YFA0805202) the Innovation Team Project of Hunan Province (No. 2019RS1010), and the Innovation Team Project of Central South University (No. 2020CX016).

Electronic Supplementary Material

Supplementary material is available in the online version of this article at https://doi.org/10.1007/s11684-023-1005-y and is accessible for authorized users.

Compliance with ethics guidelines

Conflicts of interest Yanling Liu, Xi He, Yanchun Yuan, Bin Li, Zhen Liu, Wanzhen Li, Kaixuan Li, Shuo Tan, Quan Zhu, Zhengyan Tang, Feng Han, Ziqiang Wu, Lu Shen, Hong Jiang, Beisha Tang, Jian Qiu, Zhengmao Hu, and Junling Wang declare that they have no conflict of interest.
This study was approved by the Ethics Committee of Xiangya Hospital, Central South University, China. The approved number is 202103191. The study was performed in accordance with the ethical standards as laid down in the 1964 Declaration of Helsinki and its later amendments or comparable ethical standards. All participants provided written informed consent to the study. The authors affirm that human research participants provided informed consent for the publication of the images in Fig.1 and Fig. S1.

RIGHTS & PERMISSIONS

2023 Higher Education Press
AI Summary AI Mindmap
PDF(4489 KB)

Accesses

Citations

Detail

Sections
Recommended

/