Long noncoding RNA LOC646029 functions as a ceRNA to suppress ovarian cancer progression through the miR-627-3p/SPRED1 axis

Pengfei Zhao , Yating Wang , Xiao Yu , Yabing Nan , Shi Liu , Bin Li , Zhumei Cui , Zhihua Liu

Front. Med. ›› 2023, Vol. 17 ›› Issue (5) : 924 -938.

PDF (3864KB)
Front. Med. ›› 2023, Vol. 17 ›› Issue (5) : 924 -938. DOI: 10.1007/s11684-023-1004-z
RESEARCH ARTICLE
RESEARCH ARTICLE

Long noncoding RNA LOC646029 functions as a ceRNA to suppress ovarian cancer progression through the miR-627-3p/SPRED1 axis

Author information +
History +
PDF (3864KB)

Abstract

Long noncoding RNAs (lncRNAs) play a crucial regulatory role in the development and progression of multiple cancers. However, the potential mechanism by which lncRNAs affect the recurrence and metastasis of ovarian cancer remains unclear. In the current study, the lncRNA LOC646029 was markedly downregulated in metastatic ovarian tumors compared with primary tumors. Gain- and loss-of-function assays demonstrated that LOC646029 inhibits the proliferation, invasiveness, and metastasis of ovarian cancer cells in vivo and in vitro. Moreover, the downregulation of LOC646029 in metastatic ovarian tumors was strongly correlated with poor prognosis. Mechanistically, LOC646029 served as a miR-627-3p sponge to promote the expression of Sprouty-related EVH1 domain-containing protein 1, which is necessary for suppressing tumor metastasis and inhibiting KRAS signaling. Collectively, our results demonstrated that LOC646029 is involved in the progression and metastasis of ovarian cancer, which may be a potential prognostic biomarker.

Keywords

ovarian cancer / lncRNA LOC646029 / metastasis / microRNA 627-3p / SPRED1

Cite this article

Download citation ▾
Pengfei Zhao, Yating Wang, Xiao Yu, Yabing Nan, Shi Liu, Bin Li, Zhumei Cui, Zhihua Liu. Long noncoding RNA LOC646029 functions as a ceRNA to suppress ovarian cancer progression through the miR-627-3p/SPRED1 axis. Front. Med., 2023, 17(5): 924-938 DOI:10.1007/s11684-023-1004-z

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, Bray F. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 2021; 71(3): 209–249

[2]

Matulonis UA, Sood AK, Fallowfield L, Howitt BE, Sehouli J, Karlan BY. Ovarian cancer. Nat Rev Dis Primers 2016; 2(1): 16061

[3]

SEER. SEER stat fact sheets: ovarian cancer. 2022. Available at the website of SEER, National Cancer Institute, NIH

[4]

Goodall GJ, Wickramasinghe VO. RNA in cancer. Nat Rev Cancer 2021; 21(1): 22–36

[5]

Wang KC, Chang HY. Molecular mechanisms of long noncoding RNAs. Mol Cell 2011; 43(6): 904–914

[6]

Nan Y, Luo Q, Wu X, Liu S, Zhao P, Chang W, Zhou A, Liu Z. DLGAP1-AS2-mediated phosphatidic acid synthesis activates YAP signaling and confers chemoresistance in squamous cell carcinoma. Cancer Res 2022; 82(16): 2887–2903

[7]

Liu J, Liu ZX, Wu QN, Lu YX, Wong CW, Miao L, Wang Y, Wang Z, Jin Y, He MM, Ren C, Wang DS, Chen DL, Pu HY, Feng L, Li B, Xie D, Zeng MS, Huang P, Lin A, Lin D, Xu RH, Ju HQ. Long noncoding RNA AGPG regulates PFKFB3-mediated tumor glycolytic reprogramming. Nat Commun 2020; 11(1): 1507

[8]

Xu L, Huan L, Guo T, Wu Y, Liu Y, Wang Q, Huang S, Xu Y, Liang L, He X. lncRNA SNHG11 facilitates tumor metastasis by interacting with and stabilizing HIF-1α. Oncogene 2020; 39(46): 7005–7018

[9]

Statello L, Guo CJ, Chen LL, Huarte M. Gene regulation by long non-coding RNAs and its biological functions. Nat Rev Mol Cell Biol 2021; 22(2): 96–118

[10]

Xue ST, Zheng B, Cao SQ, Ding JC, Hu GS, Liu W, Chen C. Long non-coding RNA LINC00680 functions as a ceRNA to promote esophageal squamous cell carcinoma progression through the miR-423-5p/PAK6 axis. Mol Cancer 2022; 21(1): 69

[11]

Zheng ZQ, Li ZX, Zhou GQ, Lin L, Zhang LL, Lv JW, Huang XD, Liu RQ, Chen F, He XJ, Kou J, Zhang J, Wen X, Li YQ, Ma J, Liu N, Sun Y. Long noncoding RNA FAM225A promotes nasopharyngeal carcinoma tumorigenesis and metastasis by acting as ceRNA to sponge miR-590-3p/miR-1275 and upregulate ITGB3. Cancer Res 2019; 79(18): 4612–4626

[12]

Zhang M, Wang Y, Jiang L, Song X, Zheng A, Gao H, Wei M, Zhao L. lncRNA CBR3-AS1 regulates of breast cancer drug sensitivity as a competing endogenous RNA through the JNK1/MEK4-mediated MAPK signal pathway. J Exp Clin Cancer Res 2021; 40(1): 41

[13]

Lorenzo C, McCormick F. SPRED proteins and their roles in signal transduction, development, and malignancy. Genes Dev 2020; 34(21–22): 1410–1421

[14]

Spurlock G, Bennett E, Chuzhanova N, Thomas N, Jim HP, Side L, Davies S, Haan E, Kerr B, Huson SM, Upadhyaya M. SPRED1 mutations (Legius syndrome): another clinically useful genotype for dissecting the neurofibromatosis type 1 phenotype. J Med Genet 2009; 46(7): 431–437

[15]

Wakioka T, Sasaki A, Kato R, Shouda T, Matsumoto A, Miyoshi K, Tsuneoka M, Komiya S, Baron R, Yoshimura A. Spred is a Sprouty-related suppressor of Ras signalling. Nature 2001; 412(6847): 647–651

[16]

Ablain J, Liu S, Moriceau G, Lo RS, Zon LI. SPRED1 deletion confers resistance to MAPK inhibition in melanoma. J Exp Med 2021; 218(3): e20201097

[17]

Qiao J, Liang C, Zhao D, Nguyen LXT, Chen F, Suo S, Hoang DH, Pellicano F, Rodriguez IR, Elhajmoussa Y, Ghoda L, Yoshimura A, Stein AS, Ali H, Koller P, Perrotti D, Copland M, Han A, Zhang BA, Marcucci G. Spred1 deficit promotes treatment resistance and transformation of chronic phase CML. Leukemia 2022; 36(2): 492–506

[18]

Jiang CF, Shi ZM, Li DM, Qian YC, Ren Y, Bai XM, Xie YX, Wang L, Ge X, Liu WT, Zhen LL, Liu LZ, Jiang BH. Estrogen-induced miR-196a elevation promotes tumor growth and metastasis via targeting SPRED1 in breast cancer. Mol Cancer 2018; 17(1): 83

[19]

Dykes IM, Emanueli C. Transcriptional and post-transcriptional gene regulation by long non-coding RNA. Genomics Proteomics Bioinformatics 2017; 15(3): 177–186

[20]

Chen Y, Wang X. miRDB: an online database for prediction of functional microRNA targets. Nucleic Acids Res 2020; 48(D1): D127–D131

[21]

Mo SP, Coulson JM, Prior IA. RAS variant signalling. Biochem Soc Trans 2018; 46(5): 1325–1332

[22]

Prior IA, Lewis PD, Mattos C. A comprehensive survey of Ras mutations in cancer. Cancer Res 2012; 72(10): 2457–2467

[23]

Nonami A, Taketomi T, Kimura A, Saeki K, Takaki H, Sanada T, Taniguchi K, Harada M, Kato R, Yoshimura A. The Sprouty-related protein, Spred-1, localizes in a lipid raft/caveola and inhibits ERK activation in collaboration with caveolin-1. Genes Cells 2005; 10(9): 887–895

[24]

Torre LA, Trabert B, DeSantis CE, Miller KD, Samimi G, Runowicz CD, Gaudet MM, Jemal A, Siegel RL. Ovarian cancer statistics, 2018. CA Cancer J Clin 2018; 68(4): 284–296

[25]

Siegel RL, Miller KD, Fuchs HE, Jemal A. Cancer statistics, 2022. CA Cancer J Clin 2022; 72(1): 7–33

[26]

Jia Y, Tian C, Wang H, Yu F, Lv W, Duan Y, Cheng Z, Wang X, Wang Y, Liu T, Wang J, Liu L. Long non-coding RNA NORAD/miR-224-3p/MTDH axis contributes to CDDP resistance of esophageal squamous cell carcinoma by promoting nuclear accumulation of β-catenin. Mol Cancer 2021; 20(1): 162

[27]

Liu HT, Liu S, Liu L, Ma RR, Gao P. EGR1-mediated transcription of lncRNA-HNF1A-AS1 promotes cell-cycle progression in gastric cancer. Cancer Res 2018; 78(20): 5877–5890

[28]

Tang J, Yan T, Bao Y, Shen C, Yu C, Zhu X, Tian X, Guo F, Liang Q, Liu Q, Zhong M, Chen J, Ge Z, Li X, Chen X, Cui Y, Chen Y, Zou W, Chen H, Hong J, Fang JY. LncRNA GLCC1 promotes colorectal carcinogenesis and glucose metabolism by stabilizing c-Myc. Nat Commun 2019; 10(1): 3499

[29]

Yamamura S, Imai-Sumida M, Tanaka Y, Dahiya R. Interaction and cross-talk between non-coding RNAs. Cell Mol Life Sci 2018; 75(3): 467–484

[30]

Wang M, Mao C, Ouyang L, Liu Y, Lai W, Liu N, Shi Y, Chen L, Xiao D, Yu F, Wang X, Zhou H, Cao Y, Liu S, Yan Q, Tao Y, Zhang B. Long noncoding RNA LINC00336 inhibits ferroptosis in lung cancer by functioning as a competing endogenous RNA. Cell Death Differ 2019; 26(11): 2329–2343

[31]

Hu YP, Jin YP, Wu XS, Yang Y, Li YS, Li HF, Xiang SS, Song XL, Jiang L, Zhang YJ, Huang W, Chen SL, Liu FT, Chen C, Zhu Q, Chen HZ, Shao R, Liu YB. LncRNA-HGBC stabilized by HuR promotes gallbladder cancer progression by regulating miR-502-3p/SET/AKT axis. Mol Cancer 2019; 18(1): 167

[32]

Luo A, Zhou X, Shi X, Zhao Y, Men Y, Chang X, Chen H, Ding F, Li Y, Su D, Xiao Z, Hui Z, Liu Z. Exosome-derived miR-339-5p mediates radiosensitivity by targeting Cdc25A in locally advanced esophageal squamous cell carcinoma. Oncogene 2019; 38(25): 4990–5006

[33]

Vescarelli E, Gerini G, Megiorni F, Anastasiadou E, Pontecorvi P, Solito L, De Vitis C, Camero S, Marchetti C, Mancini R, Benedetti Panici P, Dominici C, Romano F, Angeloni A, Marchese C, Ceccarelli S. MiR-200c sensitizes Olaparib-resistant ovarian cancer cells by targeting Neuropilin 1. J Exp Clin Cancer Res 2020; 39(1): 3

[34]

Li ZY, Xie Y, Deng M, Zhu L, Wu X, Li G, Shi NX, Wen C, Huang W, Duan Y, Yin Z, Lin XJ. c-Myc-activated intronic miR-210 and lncRNA MIR210HG synergistically promote the metastasis of gastric cancer. Cancer Lett 2022; 526: 322–334

[35]

Li Z, Zhang J, Zheng H, Li C, Xiong J, Wang W, Bao H, Jin H, Liang P. Modulating lncRNA SNHG15/CDK6/miR-627 circuit by palbociclib, overcomes temozolomide resistance and reduces M2-polarization of glioma associated microglia in glioblastoma multiforme. J Exp Clin Cancer Res 2019; 38(1): 380

[36]

Liu H, Li J, Zhao H, Liu X, Ye X. DNAJC2 is reversely regulated by miR-627-3p, promoting the proliferation of colorectal cancer. Mol Med Rep 2021; 24(2): 589

[37]

Meng L, Zheng Y, Liu S, Ju Y, Ren S, Sang Y, Zhu Y, Gu L, Liu F, Zhao Y, Zhang X, Sang M. ZEB1 represses biogenesis of circ-DOCK5 to facilitate metastasis in esophageal squamous cell carcinoma via a positive feedback loop with TGF-β. Cancer Lett 2021; 519: 117–129

[38]

Li D, Wang L, Feng J, Shen YW, Liu LN, Wang Y. RP11-284F21.9 promotes lung carcinoma proliferation and invasion via the regulation of miR-627-3p/CCAR1. Oncol Rep 2020; 44(4): 1638–1648

[39]

Pasmant E, Gilbert-Dussardier B, Petit A, de Laval B, Luscan A, Gruber A, Lapillonne H, Deswarte C, Goussard P, Laurendeau I, Uzan B, Pflumio F, Brizard F, Vabres P, Naguibvena I, Fasola S, Millot F, Porteu F, Vidaud D, Landman-Parker J, Ballerini P. SPRED1, a RAS MAPK pathway inhibitor that causes Legius syndrome, is a tumour suppressor downregulated in paediatric acute myeloblastic leukaemia. Oncogene 2015; 34(5): 631–638

[40]

Ablain J, Xu M, Rothschild H, Jordan RC, Mito JK, Daniels BH, Bell CF, Joseph NM, Wu H, Bastian BC, Zon LI, Yeh I. Human tumor genomics and zebrafish modeling identify SPRED1 loss as a driver of mucosal melanoma. Science 2018; 362(6418): 1055–1060

[41]

Brems H, Legius E. Legius syndrome, an Update. Molecular pathology of mutations in SPRED1. Keio J Med 2013; 62(4): 107–112

RIGHTS & PERMISSIONS

Higher Education Press

AI Summary AI Mindmap
PDF (3864KB)

Supplementary files

FMD-23023-OF-LZH_suppl_1

FMD-23023-OF-LZH_suppl_2

3158

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/