Liver cell therapies: cellular sources and grafting strategies
Wencheng Zhang, Yangyang Cui, Yuan Du, Yong Yang, Ting Fang, Fengfeng Lu, Weixia Kong, Canjun Xiao, Jun Shi, Lola M. Reid, Zhiying He
Liver cell therapies: cellular sources and grafting strategies
The liver has a complex cellular composition and a remarkable regenerative capacity. The primary cell types in the liver are two parenchymal cell populations, hepatocytes and cholangiocytes, that perform most of the functions of the liver and that are helped through interactions with non-parenchymal cell types comprising stellate cells, endothelia and various hemopoietic cell populations. The regulation of the cells in the liver is mediated by an insoluble complex of proteins and carbohydrates, the extracellular matrix, working synergistically with soluble paracrine and systemic signals. In recent years, with the rapid development of genetic sequencing technologies, research on the liver’s cellular composition and its regulatory mechanisms during various conditions has been extensively explored. Meanwhile breakthroughs in strategies for cell transplantation are enabling a future in which there can be a rescue of patients with end-stage liver diseases, offering potential solutions to the chronic shortage of livers and alternatives to liver transplantation. This review will focus on the cellular mechanisms of liver homeostasis and how to select ideal sources of cells to be transplanted to achieve liver regeneration and repair. Recent advances are summarized for promoting the treatment of end-stage liver diseases by forms of cell transplantation that now include grafting strategies.
liver regeneration / hepatocytes / cholangiocytes / stem cells / organoids / regulatory mechanisms / transplantation/grafting strategies
[1] |
Michalopoulos GK. Hepatostat: liver regeneration and normal liver tissue maintenance. Hepatology 2017; 65(4): 1384–1392
CrossRef
Google scholar
|
[2] |
Campana L, Esser H, Huch M, Forbes S. Liver regeneration and inflammation: from fundamental science to clinical applications. Nat Rev Mol Cell Biol 2021; 22(9): 608–624
CrossRef
Google scholar
|
[3] |
Gadd VL, Aleksieva N, Forbes SJ. Epithelial plasticity during liver injury and regeneration. Cell Stem Cell 2020; 27(4): 557–573
CrossRef
Google scholar
|
[4] |
SigalSHBrill SFiorinoASReidLM. The liver as a stem cell and lineage system. Am J Physiol 1992; 263(2 Pt 1): G139–G148
Pubmed
|
[5] |
Sigal SH, Gupta S, Gebhard DF Jr, Holst P, Neufeld D, Reid LM. Evidence for a terminal differentiation process in the rat liver. Differentiation 1995; 59(1): 35–42
CrossRef
Google scholar
|
[6] |
ZhangWAllen AWauthierEYiXHaniH SethupathyPGerber DCardinaleVCarpinoGDominguez-Bendala JLanzoniGAlvaroDGaudioE ReidL. Stem cell-fueled maturational lineages in hepatic and pancreatic organogenesis. In: Arias IM, Alter HJ, Boyer JL, Cohen DE, Shafritz DA, Thorgeirsson SS, Wolkoff AW. The Liver: Biology and Pathobiology. John Wiley & Sons Ltd. 2020. 523–538
|
[7] |
Cardinale V, Wang Y, Carpino G, Mendel G, Alpini G, Gaudio E, Reid LM, Alvaro D. The biliary tree—a reservoir of multipotent stem cells. Nat Rev Gastroenterol Hepatol 2012; 9(4): 231–240
CrossRef
Google scholar
|
[8] |
Alvaro D, Gaudio E. Liver capsule: biliary tree stem cell subpopulations. Hepatology 2016; 64(2): 644
CrossRef
Google scholar
|
[9] |
Carpino G, Cardinale V, Onori P, Franchitto A, Berloco PB, Rossi M, Wang Y, Semeraro R, Anceschi M, Brunelli R, Alvaro D, Reid LM, Gaudio E. Biliary tree stem/progenitor cells in glands of extrahepatic and intraheptic bile ducts: an anatomical in situ study yielding evidence of maturational lineages. J Anat 2012; 220(2): 186–199
CrossRef
Google scholar
|
[10] |
Zajicek G, Oren R, Weinreb M Jr. The streaming liver. Liver 1985; 5(6): 293–300
CrossRef
Google scholar
|
[11] |
Arber N, Zajicek G, Ariel I. The streaming liver. II. Hepatocyte life history. Liver 1988; 8(2): 80–87
CrossRef
Google scholar
|
[12] |
Sigal SH, Rajvanshi P, Gorla GR, Sokhi RP, Saxena R, Gebhard DR Jr, Reid LM, Gupta S. Partial hepatectomy-induced polyploidy attenuates hepatocyte replication and activates cell aging events. Am J Physiol 1999; 276(5): G1260–G1272
|
[13] |
Sigal SH, Rajvanshi P, Reid LM, Gupta S. Demonstration of differentiation in hepatocyte progenitor cells using dipeptidyl peptidase IV deficient mutant rats. Cell Mol Biol Res 1995; 41(1): 39–47
|
[14] |
Reid LM. Stem cell biology, hormone/matrix synergies and liver differentiation. Curr Opin Cell Biol 1990; 2(1): 121–130
CrossRef
Google scholar
|
[15] |
Reid LM, Fiorino AS, Sigal SH, Brill S, Holst PA. Extracellular matrix gradients in the space of Disse: relevance to liver biology. Hepatology 1992; 15(6): 1198–1203
CrossRef
Google scholar
|
[16] |
Brill S, Holst P, Sigal S, Zvibel I, Fiorino A, Ochs A, Somasundaran U, Reid LM. Hepatic progenitor populations in embryonic, neonatal, and adult liver. Proc Soc Exp Biol Med 1993; 204(3): 261–269
CrossRef
Google scholar
|
[17] |
Brill S, Zvibel I, Reid LM. Maturation-dependent changes in the regulation of liver-specific gene expression in embryonal versus adult primary liver cultures. Differentiation 1995; 59(2): 95–102
CrossRef
Google scholar
|
[18] |
Brill S, Zvibel I, Reid LM. Expansion conditions for early hepatic progenitor cells from embryonal and neonatal rat livers. Dig Dis Sci 1999; 44(2): 364–371
CrossRef
Google scholar
|
[19] |
XuASLLuntz TLMacdonaldJMKubotaHHsuE LondonREReid LM. Lineage biology and liver. In: Lanza R, Langer R, Vacanti J. Principles of Tissue Engineering. 2nd Ed. Academic Press, 2000. 559–597
|
[20] |
Susick R, Moss N, Kubota H, Lecluyse E, Hamilton G, Luntz T, Ludlow J, Fair J, Gerber D, Bergstrand K, White J, Bruce A, Drury O, Gupta S, Reid LM. Hepatic progenitors and strategies for liver cell therapies. Ann N Y Acad Sci 2001; 944(1): 398–419
CrossRef
Google scholar
|
[21] |
Kubota H, Reid LM. Clonogenic hepatoblasts, common precursors for hepatocytic and biliary lineages, are lacking classical major histocompatibility complex class I antigen. Proc Natl Acad Sci USA 2000; 97(22): 12132–12137
CrossRef
Google scholar
|
[22] |
Kubota H, Storms RW, Reid LM. Variant forms of alpha-fetoprotein transcripts expressed in human hematopoietic progenitors. Implications for their developmental potential towards endoderm. J Biol Chem 2002; 277(31): 27629–27635
CrossRef
Google scholar
|
[23] |
Kubota H, Yao HL, Reid LM. Identification and characterization of vitamin A-storing cells in fetal liver: implications for functional importance of hepatic stellate cells in liver development and hematopoiesis. Stem Cells 2007; 25(9): 2339–2349
CrossRef
Google scholar
|
[24] |
Rajvanshi P, Liu D, Ott M, Gagandeep S, Schilsky ML, Gupta S. Fractionation of rat hepatocyte subpopulations with varying metabolic potential, proliferative capacity, and retroviral gene transfer efficiency. Exp Cell Res 1998; 244(2): 405–419
CrossRef
Google scholar
|
[25] |
Okabe M, Tsukahara Y, Tanaka M, Suzuki K, Saito S, Kamiya Y, Tsujimura T, Nakamura K, Miyajima A. Potential hepatic stem cells reside in EpCAM+ cells of normal and injured mouse liver. Development 2009; 136(11): 1951–1960
CrossRef
Google scholar
|
[26] |
Kaneko K, Kamimoto K, Miyajima A, Itoh T. Adaptive remodeling of the biliary architecture underlies liver homeostasis. Hepatology 2015; 61(6): 2056–2066
CrossRef
Google scholar
|
[27] |
Tanaka M, Okabe M, Suzuki K, Kamiya Y, Tsukahara Y, Saito S, Miyajima A. Mouse hepatoblasts at distinct developmental stages are characterized by expression of EpCAM and DLK1: drastic change of EpCAM expression during liver development. Mech Dev 2009; 126(8–9): 665–676
CrossRef
Google scholar
|
[28] |
Katoonizadeh A, Poustchi H, Malekzadeh R. Hepatic progenitor cells in liver regeneration: current advances and clinical perspectives. Liver Int 2014; 34(10): 1464–1472
CrossRef
Google scholar
|
[29] |
Itoh T, Miyajima A. Liver regeneration by stem/progenitor cells. Hepatology 2014; 59(4): 1617–1626
CrossRef
Google scholar
|
[30] |
Miyajima A, Tanaka M, Itoh T. Stem/progenitor cells in liver development, homeostasis, regeneration, and reprogramming. Cell Stem Cell 2014; 14(5): 561–574
CrossRef
Google scholar
|
[31] |
Huch M, Boj SF, Clevers H. Lgr5(+) liver stem cells, hepatic organoids and regenerative medicine. Regen Med 2013; 8(4): 385–387
CrossRef
Google scholar
|
[32] |
Tanaka M, Itoh T, Tanimizu N, Miyajima A. Liver stem/progenitor cells: their characteristics and regulatory mechanisms. J Biochem 2011; 149(3): 231–239
CrossRef
Google scholar
|
[33] |
Barker N, van Es JH, Kuipers J, Kujala P, van den Born M, Cozijnsen M, Haegebarth A, Korving J, Begthel H, Peters PJ, Clevers H. Identification of stem cells in small intestine and colon by marker gene Lgr5. Nature 2007; 449(7165): 1003–1007
CrossRef
Google scholar
|
[34] |
Huch M, Dorrell C, Boj SF, van Es JH, Li VS, van de Wetering M, Sato T, Hamer K, Sasaki N, Finegold MJ, Haft A, Vries RG, Grompe M, Clevers H. In vitro expansion of single Lgr5+ liver stem cells induced by Wnt-driven regeneration. Nature 2013; 494(7436): 247–250
CrossRef
Google scholar
|
[35] |
Schmelzer E, Wauthier E, Reid LM. The phenotypes of pluripotent human hepatic progenitors. Stem Cells 2006; 24(8): 1852–1858
CrossRef
Google scholar
|
[36] |
Schmelzer E, Reid LM. Human telomerase activity, telomerase and telomeric template expression in hepatic stem cells and in livers from fetal and postnatal donors. Eur J Gastroenterol Hepatol 2009; 21(10): 1191–1198
CrossRef
Google scholar
|
[37] |
Schmelzer E, Zhang L, Bruce A, Wauthier E, Ludlow J, Yao HL, Moss N, Melhem A, McClelland R, Turner W, Kulik M, Sherwood S, Tallheden T, Cheng N, Furth ME, Reid LM. Human hepatic stem cells from fetal and postnatal donors. J Exp Med 2007; 204(8): 1973–1987
CrossRef
Google scholar
|
[38] |
Zhang L, Theise N, Chua M, Reid LM. The stem cell niche of human livers: symmetry between development and regeneration. Hepatology 2008; 48: 1598–1607
CrossRef
Google scholar
|
[39] |
Turner WS, Schmelzer E, McClelland R, Wauthier E, Chen W, Reid LM. Human hepatoblast phenotype maintained by hyaluronan hydrogels. J Biomed Mater Res B Appl Biomater 2007; 82(1): 156–168
CrossRef
Google scholar
|
[40] |
Turner WS, Seagle C, Galanko JA, Favorov O, Prestwich GD, Macdonald JM, Reid LM. Nuclear magnetic resonance metabolomic footprinting of human hepatic stem cells and hepatoblasts cultured in hyaluronan-matrix hydrogels. Stem Cells 2008; 26(6): 1547–1555
CrossRef
Google scholar
|
[41] |
Wang B, Zhao L, Fish M, Logan CY, Nusse R. Self-renewing diploid Axin2(+) cells fuel homeostatic renewal of the liver. Nature 2015; 524(7564): 180–185
CrossRef
Google scholar
|
[42] |
Sun T, Annunziato S, Bergling S, Sheng C, Orsini V, Forcella P, Pikiolek M, Kancherla V, Holwerda S, Imanci D, Wu F, Meylan LC, Puehringer LF, Waldt A, Oertli M, Schuierer S, Terracciano LM, Reinker S, Ruffner H, Bouwmeester T, Sailer AW, George E, Roma G, de Weck A, Piscuoglio S, Lohmann F, Naumann U, Liberali P, Cong F, Tchorz JS. ZNRF3 and RNF43 cooperate to safeguard metabolic liver zonation and hepatocyte proliferation. Cell Stem Cell 2021; 28(10): 1822–1837.e10
CrossRef
Google scholar
|
[43] |
Cardinale V, Wang Y, Carpino G, Cui CB, Gatto M, Rossi M, Berloco PB, Cantafora A, Wauthier E, Furth ME, Inverardi L, Dominguez-Bendala J, Ricordi C, Gerber D, Gaudio E, Alvaro D, Reid L. Multipotent stem/progenitor cells in human biliary tree give rise to hepatocytes, cholangiocytes, and pancreatic islets. Hepatology 2011; 54(6): 2159–2172
CrossRef
Google scholar
|
[44] |
Carpino G, Nevi L, Overi D, Cardinale V, Lu WY, Di Matteo S, Safarikia S, Berloco PB, Venere R, Onori P, Franchitto A, Forbes SJ, Alvaro D, Gaudio E. Peribiliary gland niche participates in biliary tree regeneration in mouse and in human primary sclerosing cholangitis. Hepatology 2020; 71(3): 972–989
CrossRef
Google scholar
|
[45] |
Carpino G, Renzi A, Franchitto A, Cardinale V, Onori P, Reid L, Alvaro D, Gaudio E. Stem/progenitor cell niches involved in hepatic and biliary regeneration. Stem Cells Int 2016; 2016: 3658013
CrossRef
Google scholar
|
[46] |
Sicklick JK, Li YX, Melhem A, Schmelzer E, Zdanowicz M, Huang J, Caballero M, Fair JH, Ludlow JW, McClelland RE, Reid LM, Diehl AM. Hedgehog signaling maintains resident hepatic progenitors throughout life. Am J Physiol Gastrointest Liver Physiol 2006; 290(5): G859–G870
CrossRef
Google scholar
|
[47] |
Carpino G, Cardinale V, Folseraas T, Overi D, Grzyb K, Costantini D, Berloco PB, Di Matteo S, Karlsen TH, Alvaro D, Gaudio E. Neoplastic transformation of the peribiliary stem cell niche in cholangiocarcinoma arisen in primary sclerosing cholangitis. Hepatology 2019; 69(2): 622–638
CrossRef
Google scholar
|
[48] |
Carpino G, Cardinale V, Renzi A, Hov JR, Berloco PB, Rossi M, Karlsen TH, Alvaro D, Gaudio E. Activation of biliary tree stem cells within peribiliary glands in primary sclerosing cholangitis. J Hepatol 2015; 63(5): 1220–1228
CrossRef
Google scholar
|
[49] |
Cardinale V, Carpino G, Cantafora A, Reid LM, Gaudio E, Alvaro D. Metabolic oxidation controls the hepatic stem cells (HpSCs) fate and the hepatic lineage organization in physiologic and pathologic conditions. Hepatology 2012; 56(5): 2006–2007
CrossRef
Google scholar
|
[50] |
Cardinale V, Carpino G, Reid L, Gaudio E, Alvaro D. Multiple cells of origin in cholangiocarcinoma underlie biological, epidemiological and clinical heterogeneity. World J Gastrointest Oncol 2012; 4(5): 94–102
CrossRef
Google scholar
|
[51] |
Carpino G, Cardinale V, Gentile R, Onori P, Semeraro R, Franchitto A, Wang Y, Bosco D, Iossa A, Napoletano C, Cantafora A, D’Argenio G, Nuti M, Caporaso N, Berloco P, Venere R, Oikawa T, Reid L, Alvaro D, Gaudio E. Evidence for multipotent endodermal stem/progenitor cell populations in human gallbladder. J Hepatol 2014; 60(6): 1194–1202
CrossRef
Google scholar
|
[52] |
Carpino G, Renzi A, Cardinale V, Franchitto A, Onori P, Overi D, Rossi M, Berloco PB, Alvaro D, Reid LM, Gaudio E. Progenitor cell niches in the human pancreatic duct system and associated pancreatic duct glands: an anatomical and immunophenotyping study. J Anat 2016; 228(3): 474–486
CrossRef
Google scholar
|
[53] |
OveriDCarpino GMorettiMFranchittoANeviL OnoriPDe Smaele EFedericiLSantorelliDMaroderM ReidLMCardinale VAlvaroDGaudioE. Islet regeneration and pancreatic duct glands in human and experimental diabetes. Front Cell Dev Biol 2022; 10: 814165
CrossRef
35186929" target="_blank">Pubmed
Google scholar
|
[54] |
ZhangWWang XLanzoniGWauthierESimpsonS EzzellJAAllen ASuittCKrolikJJhiradA Dominguez-BendalaJCardinaleVAlvaroD OveriDGaudio ESethupathyPCarpinoGAdinC PiedrahitaJMathews KHeZReidLM. A postnatal network of co-hepato/pancreatic stem/progenitors in the biliary trees of pigs and humans. NPJ Regen Med 2023; [Epub ahead of print]
CrossRef
Google scholar
|
[55] |
Zhang W, Wauthier E, Lanzoni G, Hani H, Yi X, Overi D, Shi L, Simpson S, Allen A, Suitt C, Ezzell JA, Alvaro D, Cardinale V, Gaudio E, Carpino G, Prestwich G, Dominguez-Bendala J, Gerber D, Mathews K, Piedrahita J, Adin C, Sethupathy P, He Z, Reid LM. Patch grafting of organoids of stem/progenitors into solid organs can correct genetic-based disease states. Biomaterials 2022; 288: 121647
CrossRef
Google scholar
|
[56] |
Zhang W, Lanzoni G, Hani H, Overi D, Cardinale V, Simpson S, Pitman W, Allen A, Yi X, Wang X, Gerber D, Prestwich G, Lozoya O, Gaudio E, Alvaro D, Tokaz D, Dominguez-Bendala J, Adin C, Piedrahita J, Mathews K, Sethupathy P, Carpino G, He Z, Wauthier E, Reid LM. Patch grafting, strategies for transplantation of organoids into solid organs such as liver. Biomaterials 2021; 277: 121067
CrossRef
Google scholar
|
[57] |
Cardinale V, Carpino G, Overi D, Safarikia S, Zhang W, Kanke M, Franchitto A, Costantini D, Riccioni O, Nevi L, Chiappetta M, Onori P, Franchitto M, Bini S, Hung YH, Lai Q, Zizzari I, Nuti M, Nicoletti C, Checquolo S, Di Magno L, Giuli MV, Rossi M, Sethupathy P, Reid LM, Alvaro D, Gaudio E. Human duodenal submucosal glands contain a defined stem/progenitor subpopulation with liver-specific regenerative potential. J Hepatol 2023; 78(1): 165–179
CrossRef
Google scholar
|
[58] |
Font-Burgada J, Shalapour S, Ramaswamy S, Hsueh B, Rossell D, Umemura A, Taniguchi K, Nakagawa H, Valasek MA, Ye L, Kopp JL, Sander M, Carter H, Deisseroth K, Verma IM, Karin M. Hybrid periportal hepatocytes regenerate the injured liver without giving rise to cancer. Cell 2015; 162(4): 766–779
CrossRef
Google scholar
|
[59] |
Sun T, Pikiolek M, Orsini V, Bergling S, Holwerda S, Morelli L, Hoppe PS, Planas-Paz L, Yang Y, Ruffner H, Bouwmeester T, Lohmann F, Terracciano LM, Roma G, Cong F, Tchorz JS. AXIN2+ pericentral hepatocytes have limited contributions to liver homeostasis and regeneration. Cell Stem Cell 2020; 26(1): 97–107.e6
CrossRef
Google scholar
|
[60] |
Chen F, Jimenez RJ, Sharma K, Luu HY, Hsu BY, Ravindranathan A, Stohr BA, Willenbring H. Broad distribution of hepatocyte proliferation in liver homeostasis and regeneration. Cell Stem Cell 2020; 26(1): 27–33.e4
CrossRef
Google scholar
|
[61] |
Matsumoto T, Wakefield L, Tarlow BD, Grompe M. In vivo lineage tracing of polyploid hepatocytes reveals extensive proliferation during liver regeneration. Cell Stem Cell 2020; 26(1): 34–47.e3
CrossRef
Google scholar
|
[62] |
Wei Y, Wang YG, Jia Y, Li L, Yoon J, Zhang S, Wang Z, Zhang Y, Zhu M, Sharma T, Lin YH, Hsieh MH, Albrecht JH, Le PT, Rosen CJ, Wang T, Zhu H. Liver homeostasis is maintained by midlobular zone 2 hepatocytes. Science 2021; 371(6532): eabb1625
CrossRef
Google scholar
|
[63] |
He L, Pu W, Liu X, Zhang Z, Han M, Li Y, Huang X, Han X, Li Y, Liu K, Shi M, Lai L, Sun R, Wang QD, Ji Y, Tchorz JS, Zhou B. Proliferation tracing reveals regional hepatocyte generation in liver homeostasis and repair. Science 2021; 371(6532): eabc4346
CrossRef
Google scholar
|
[64] |
Tafaleng EN, Mukherjee A, Bell A, Morita K, Guzman-Lepe J, Haep N, Florentino RM, Diaz-Aragon R, Frau C, Ostrowska A, Schultz JR, Martini PGV, Soto-Gutierrez A, Fox IJ. Hepatocyte nuclear factor 4 alpha 2 messenger RNA reprograms liver-enriched transcription factors and functional proteins in end-stage cirrhotic human hepatocytes. Hepatol Commun 2021; 5(11): 1911–1926
CrossRef
Google scholar
|
[65] |
Soltys KA, Setoyama K, Tafaleng EN, Soto Gutiérrez A, Fong J, Fukumitsu K, Nishikawa T, Nagaya M, Sada R, Haberman K, Gramignoli R, Dorko K, Tahan V, Dreyzin A, Baskin K, Crowley JJ, Quader MA, Deutsch M, Ashokkumar C, Shneider BL, Squires RH, Ranganathan S, Reyes-Mugica M, Dobrowolski SF, Mazariegos G, Elango R, Stolz DB, Strom SC, Vockley G, Roy-Chowdhury J, Cascalho M, Guha C, Sindhi R, Platt JL, Fox IJ. Host conditioning and rejection monitoring in hepatocyte transplantation in humans. J Hepatol 2017; 66(5): 987–1000
CrossRef
Google scholar
|
[66] |
Mitchell C, Willenbring H. A reproducible and well-tolerated method for 2/3 partial hepatectomy in mice. Nat Protoc 2008; 3(7): 1167–1170
CrossRef
Google scholar
|
[67] |
Miyaoka Y, Miyajima A. To divide or not to divide: revisiting liver regeneration. Cell Div 2013; 8(1): 8
CrossRef
Google scholar
|
[68] |
Mito M, Kusano M, Kawaura Y. Hepatocyte transplantation in man. Transplant Proc 1992; 24(6): 3052–3053
|
[69] |
Lanzoni G, Oikawa T, Wang Y, Cui CB, Carpino G, Cardinale V, Gerber D, Gabriel M, Dominguez-Bendala J, Furth ME, Gaudio E, Alvaro D, Inverardi L, Reid LM. Concise review: clinical programs of stem cell therapies for liver and pancreas. Stem Cells 2013; 31(10): 2047–2060
CrossRef
Google scholar
|
[70] |
Dhawan A, Puppi J, Hughes RD, Mitry RR. Human hepatocyte transplantation: current experience and future challenges. Nat Rev Gastroenterol Hepatol 2010; 7(5): 288–298
CrossRef
Google scholar
|
[71] |
Puppi J, Strom SC, Hughes RD, Bansal S, Castell JV, Dagher I, Ellis EC, Nowak G, Ericzon BG, Fox IJ, Gómez-Lechón MJ, Guha C, Gupta S, Mitry RR, Ohashi K, Ott M, Reid LM, Roy-Chowdhury J, Sokal E, Weber A, Dhawan A. Improving the techniques for human hepatocyte transplantation: report from a consensus meeting in London. Cell Transplant 2012; 21(1): 1–10
CrossRef
Google scholar
|
[72] |
Fox IJ, Strom SC. To be or not to be: generation of hepatocytes from cells outside the liver. Gastroenterology 2008; 134(3): 878–881
CrossRef
Google scholar
|
[73] |
Smets FN, Stephenne X, Debray G, Menten R, Reding R, Najimi M, Sokal EM. Hepatocyte transplantation transforms severe phenylketonuria to mild hyperphenylalaninemia. Gastroenterology 2011; 140(5): s967
CrossRef
Google scholar
|
[74] |
Fisher RA, Strom SC. Human hepatocyte transplantation: worldwide results. Transplantation 2006; 82(4): 441–449
CrossRef
Google scholar
|
[75] |
Trounson A, McDonald C. Stem cell therapies in clinical trials: progress and challenges. Cell Stem Cell 2015; 17(1): 11–22
CrossRef
Google scholar
|
[76] |
Caplan AI, Correa D. The MSC: an injury drugstore. Cell Stem Cell 2011; 9(1): 11–15
CrossRef
Google scholar
|
[77] |
El Agha E, Kramann R, Schneider RK, Li X, Seeger W, Humphreys BD, Bellusci S. Mesenchymal stem cells in fibrotic disease. Cell Stem Cell 2017; 21(2): 166–177
CrossRef
Google scholar
|
[78] |
Squillaro T, Peluso G, Galderisi U. Clinical trials with mesenchymal stem cells: an update. Cell Transplant 2016; 25(5): 829–848
CrossRef
Google scholar
|
[79] |
Shi M, Zhang Z, Xu R, Lin H, Fu J, Zou Z, Zhang A, Shi J, Chen L, Lv S, He W, Geng H, Jin L, Liu Z, Wang FS. Human mesenchymal stem cell transfusion is safe and improves liver function in acute-on-chronic liver failure patients. Stem Cells Transl Med 2012; 1(10): 725–731
CrossRef
Google scholar
|
[80] |
Shi M, Li YY, Xu RN, Meng FP, Yu SJ, Fu JL, Hu JH, Li JX, Wang LF, Jin L, Wang FS. Mesenchymal stem cell therapy in decompensated liver cirrhosis: a long-term follow-up analysis of the randomized controlled clinical trial. Hepatol Int 2021; 15(6): 1431–1441
CrossRef
Google scholar
|
[81] |
von Bahr L, Batsis I, Moll G, Hägg M, Szakos A, Sundberg B, Uzunel M, Ringden O, Le Blanc K. Analysis of tissues following mesenchymal stromal cell therapy in humans indicates limited long-term engraftment and no ectopic tissue formation. Stem Cells 2012; 30(7): 1575–1578
CrossRef
Google scholar
|
[82] |
Habibullah CM, Syed IH, Qamar A, Taher-Uz Z. Human fetal hepatocyte transplantation in patients with fulminant hepatic failure. Transplantation 1994; 58(8): 951–952
CrossRef
Google scholar
|
[83] |
Khan AA, Shaik MV, Parveen N, Rajendraprasad A, Aleem MA, Habeeb MA, Srinivas G, Raj TA, Tiwari SK, Kumaresan K, Venkateswarlu J, Pande G, Habibullah CM. Human fetal liver-derived stem cell transplantation as supportive modality in the management of end-stage decompensated liver cirrhosis. Cell Transplant 2010; 19(4): 409–418
CrossRef
Google scholar
|
[84] |
Khan AA, Parveen N, Mahaboob VS, Rajendraprasad A, Ravindraprakash HR, Venkateswarlu J, Rao P, Pande G, Lakshmi Narusu M, Khaja MN, Pramila R, Habeeb A, Habibullah CM. Treatment of Crigler-Najjar syndrome type 1 by hepatic progenitor cell therapy: a simple procedure for hyperbilirubinemia. Transplant Proc 2008; 40(4): 1148–1150
CrossRef
Google scholar
|
[85] |
Khan AA, Parveen N, Mahaboob VS, Rajendraprasad A, Ravindraprakash HR, Venkateswarlu J, Rao P, Pande G, Narusu ML, Khaja MN, Pramila R, Habeeb A, Habibullah CM. Management of hyperbilirubinemia in biliary atresia by hepatic progenitor cell transplantation through hepatic artery: a case report. Transplant Proc 2008; 40(4): 1153–1155
CrossRef
Google scholar
|
[86] |
PietrosiGChinnici C. Report on liver cell transplantation using human fetal liver cells. In: Stock P, Christ B. Hepatocyte Transplantation. Springer, 2017. 283–294
|
[87] |
Parveen N, Aleem AK, Habeeb MA, Habibullah CM. An update on hepatic stem cells: bench to bedside. Curr Pharm Biotechnol 2011; 12(2): 226–230
CrossRef
Google scholar
|
[88] |
Li F, He Z, Li Y, Liu P, Chen F, Wang M, Zhu H, Ding X, Wangensteen KJ, Hu Y, Wang X. Combined activin A/LiCl/Noggin treatment improves production of mouse embryonic stem cell-derived definitive endoderm cells. J Cell Biochem 2011; 112(4): 1022–1034
CrossRef
Google scholar
|
[89] |
Wang X, Zhang W, Yang Y, Wang J, Qiu H, Liao L, Oikawa T, Wauthier E, Sethupathy P, Reid LM, Liu Z, He Z. A microRNA-based network provides potential predictive signatures and reveals the crucial role of PI3K/AKT signaling for hepatic lineage maturation. Front Cell Dev Biol 2021; 9: 670059
CrossRef
Google scholar
|
[90] |
Habeeb MA, Vishwakarma SK, Bardia A, Khan AA. Hepatic stem cells: a viable approach for the treatment of liver cirrhosis. World J Stem Cells 2015; 7(5): 859–865
CrossRef
Google scholar
|
[91] |
Aleem Khan A, Parveen N, Habeeb MA, Habibullah CM. Journey from hepatocyte transplantation to hepatic stem cells: a novel treatment strategy for liver diseases. Indian J Med Res 2006; 123(5): 601–614
|
[92] |
Cardinale V, Carpino G, Gentile R, Napoletano C, Rahimi H, Franchitto A, Semeraro R, Nuti M, Onori P, Berloco PB, Rossi M, Bosco D, Brunelli R, Fraveto A, Napoli C, Torrice A, Gatto M, Venere R, Bastianelli C, Aliberti C, Salvatori FM, Bresadola L, Bezzi M, Attili AF, Reid L, Gaudio E, Alvaro D. Transplantation of human fetal biliary tree stem/progenitor cells into two patients with advanced liver cirrhosis. BMC Gastroenterol 2014; 14(1): 204
CrossRef
Google scholar
|
[93] |
Thomson JA, Itskovitz-Eldor J, Shapiro SS, Waknitz MA, Swiergiel JJ, Marshall VS, Jones JM. Embryonic stem cell lines derived from human blastocysts. Science 1998; 282(5391): 1145–1147
CrossRef
Google scholar
|
[94] |
Damdimopoulou P, Rodin S, Stenfelt S, Antonsson L, Tryggvason K, Hovatta O. Human embryonic stem cells. Best Pract Res Clin Obstet Gynaecol 2016; 31: 2–12
CrossRef
Google scholar
|
[95] |
Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T, Tomoda K, Yamanaka S. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 2007; 131(5): 861–872
CrossRef
Google scholar
|
[96] |
Robinton DA, Daley GQ. The promise of induced pluripotent stem cells in research and therapy. Nature 2012; 481(7381): 295–305
CrossRef
Google scholar
|
[97] |
Zhao T, Zhang ZN, Rong Z, Xu Y. Immunogenicity of induced pluripotent stem cells. Nature 2011; 474(7350): 212–215
CrossRef
Google scholar
|
[98] |
Danoy M, Bernier ML, Kimura K, Poulain S, Kato S, Mori D, Kido T, Plessy C, Kusuhara H, Miyajima A, Sakai Y, Leclerc E. Optimized protocol for the hepatic differentiation of induced pluripotent stem cells in a fluidic microenvironment. Biotechnol Bioeng 2019; 116(7): 1762–1776
CrossRef
Google scholar
|
[99] |
Li F, Liu P, Liu C, Xiang D, Deng L, Li W, Wangensteen K, Song J, Ma Y, Hui L, Wei L, Li L, Ding X, Hu Y, He Z, Wang X. Hepatoblast-like progenitor cells derived from embryonic stem cells can repopulate livers of mice. Gastroenterology 2010; 139(6): 2158–2169.e8
CrossRef
Google scholar
|
[100] |
Yan F, Wang Y, Zhang W, Chang M, He Z, Xu J, Shang C, Chen T, Liu J, Wang X, Pei X, Wang Y. Human embryonic stem cell-derived hepatoblasts are an optimal lineage stage for hepatitis C virus infection. Hepatology 2017; 66(3): 717–735
CrossRef
Google scholar
|
[101] |
Ilic D, Ogilvie C. Concise review: Human embryonic stem cells—what have we done? What are we doing? Where are we going? Stem Cells 2017; 35(1): 17–25 doi:10.1002/stem.2450
Pubmed
|
[102] |
Takayama K, Mizuguchi H. Generation of human pluripotent stem cell-derived hepatocyte-like cells for drug toxicity screening. Drug Metab Pharmacokinet 2017; 32(1): 12–20
CrossRef
Google scholar
|
[103] |
Wang Y, Qin J, Wang S, Zhang W, Duan J, Zhang J, Wang X, Yan F, Chang M, Liu X, Feng B, Liu J, Pei X. Conversion of human gastric epithelial cells to multipotent endodermal progenitors using defined small molecules. Cell Stem Cell 2016; 19(4): 449–461
CrossRef
Google scholar
|
[104] |
Huang P, He Z, Ji S, Sun H, Xiang D, Liu C, Hu Y, Wang X, Hui L. Induction of functional hepatocyte-like cells from mouse fibroblasts by defined factors. Nature 2011; 475(7356): 386–389
CrossRef
Google scholar
|
[105] |
Huang P, Zhang L, Gao Y, He Z, Yao D, Wu Z, Cen J, Chen X, Liu C, Hu Y, Lai D, Hu Z, Chen L, Zhang Y, Cheng X, Ma X, Pan G, Wang X, Hui L. Direct reprogramming of human fibroblasts to functional and expandable hepatocytes. Cell Stem Cell 2014; 14(3): 370–384
CrossRef
Google scholar
|
[106] |
Sekiya S, Suzuki A. Direct conversion of mouse fibroblasts to hepatocyte-like cells by defined factors. Nature 2011; 475(7356): 390–393
CrossRef
Google scholar
|
[107] |
Yu B, He ZY, You P, Han QW, Xiang D, Chen F, Wang MJ, Liu CC, Lin XW, Borjigin U, Zi XY, Li JX, Zhu HY, Li WL, Han CS, Wangensteen KJ, Shi Y, Hui LJ, Wang X, Hu YP. Reprogramming fibroblasts into bipotential hepatic stem cells by defined factors. Cell Stem Cell 2013; 13(3): 328–340
CrossRef
Google scholar
|
[108] |
Wu H, Zhou X, Fu GB, He ZY, Wu HP, You P, Ashton C, Wang X, Wang HY, Yan HX. Reversible transition between hepatocytes and liver progenitors for in vitro hepatocyte expansion. Cell Res 2017; 27(5): 709–712
CrossRef
Google scholar
|
[109] |
Xiang C, Du Y, Meng G, Soon Yi L, Sun S, Song N, Zhang X, Xiao Y, Wang J, Yi Z, Liu Y, Xie B, Wu M, Shu J, Sun D, Jia J, Liang Z, Sun D, Huang Y, Shi Y, Xu J, Lu F, Li C, Xiang K, Yuan Z, Lu S, Deng H. Long-term functional maintenance of primary human hepatocytes in vitro. Science 2019; 364(6438): 399–402
CrossRef
Google scholar
|
[110] |
Fu GB, Huang WJ, Zeng M, Zhou X, Wu HP, Liu CC, Wu H, Weng J, Zhang HD, Cai YC, Ashton C, Ding M, Tang D, Zhang BH, Gao Y, Yu WF, Zhai B, He ZY, Wang HY, Yan HX. Expansion and differentiation of human hepatocyte-derived liver progenitor-like cells and their use for the study of hepatotropic pathogens. Cell Res 2019; 29(1): 8–22
CrossRef
Google scholar
|
[111] |
Sun L, Wang Y, Cen J, Ma X, Cui L, Qiu Z, Zhang Z, Li H, Yang RZ, Wang C, Chen X, Wang L, Ye Y, Zhang H, Pan G, Kang JS, Ji Y, Zheng YW, Zheng S, Hui L. Modelling liver cancer initiation with organoids derived from directly reprogrammed human hepatocytes. Nat Cell Biol 2019; 21(8): 1015–1026
CrossRef
Google scholar
|
[112] |
Shi XL, Gao Y, Yan Y, Ma H, Sun L, Huang P, Ni X, Zhang L, Zhao X, Ren H, Hu D, Zhou Y, Tian F, Ji Y, Cheng X, Pan G, Ding YT, Hui L. Improved survival of porcine acute liver failure by a bioartificial liver device implanted with induced human functional hepatocytes. Cell Res 2016; 26(2): 206–216
CrossRef
Google scholar
|
[113] |
Li WJ, Zhu XJ, Yuan TJ, Wang ZY, Bian ZQ, Jing HS, Shi X, Chen CY, Fu GB, Huang WJ, Shi YP, Liu Q, Zeng M, Zhang HD, Wu HP, Yu WF, Zhai B, Yan HX. An extracorporeal bioartificial liver embedded with 3D-layered human liver progenitor-like cells relieves acute liver failure in pigs. Sci Transl Med 2020; 12(551): eaba5146
CrossRef
Google scholar
|
[114] |
Zhang K, Zhang L, Liu W, Ma X, Cen J, Sun Z, Wang C, Feng S, Zhang Z, Yue L, Sun L, Zhu Z, Chen X, Feng A, Wu J, Jiang Z, Li P, Cheng X, Gao D, Peng L, Hui L. In vitro expansion of primary human hepatocytes with efficient liver repopulation capacity. Cell Stem Cell 2018; 23(6): 806–819.e4
CrossRef
Google scholar
|
[115] |
Wang C, Zhang L, Sun Z, Yuan X, Wu B, Cen J, Cui L, Zhang K, Li C, Wu J, Shu Y, Sun W, Wang J, Hui L. Dedifferentiation-associated inflammatory factors of long-term expanded human hepatocytes exacerbate their elimination by macrophages during liver engraftment. Hepatology 2022; 76(6): 1690–1705
CrossRef
Google scholar
|
[116] |
Chang M, Bogacheva MS, Lou YR. Challenges for the applications of human pluripotent stem cell-derived liver organoids. Front Cell Dev Biol 2021; 9: 748576
CrossRef
Google scholar
|
[117] |
Prior N, Inacio P, Huch M. Liver organoids: from basic research to therapeutic applications. Gut 2019; 68(12): 2228–2237
CrossRef
Google scholar
|
[118] |
Sampaziotis F, Muraro D, Tysoe OC, Sawiak S, Beach TE, Godfrey EM, Upponi SS, Brevini T, Wesley BT, Garcia-Bernardo J, Mahbubani K, Canu G, Gieseck R 3rd, Berntsen NL, Mulcahy VL, Crick K, Fear C, Robinson S, Swift L, Gambardella L, Bargehr J, Ortmann D, Brown SE, Osnato A, Murphy MP, Corbett G, Gelson WTH, Mells GF, Humphreys P, Davies SE, Amin I, Gibbs P, Sinha S, Teichmann SA, Butler AJ, See TC, Melum E, Watson CJE, Saeb-Parsy K, Vallier L. Cholangiocyte organoids can repair bile ducts after transplantation in the human liver. Science 2021; 371(6531): 839–846
CrossRef
Google scholar
|
[119] |
Wang Y, Yao HL, Cui CB, Wauthier E, Barbier C, Costello MJ, Moss N, Yamauchi M, Sricholpech M, Gerber D, Loboa EG, Reid LM. Paracrine signals from mesenchymal cell populations govern the expansion and differentiation of human hepatic stem cells to adult liver fates. Hepatology 2010; 52(4): 1443–1454
CrossRef
Google scholar
|
[120] |
Turner R, Gerber D, Reid L. The future of cell transplant therapies: a need for tissue grafting. Transplantation 2010; 90(8): 807–810
CrossRef
Google scholar
|
[121] |
Nevi L, Carpino G, Costantini D, Cardinale V, Riccioni O, Di Matteo S, Melandro F, Berloco PB, Reid L, Gaudio E, Alvaro D. Hyaluronan coating improves liver engraftment of transplanted human biliary tree stem/progenitor cells. Stem Cell Res Ther 2017; 8(1): 68
CrossRef
Google scholar
|
[122] |
Kobayashi J, Kikuchi A, Aoyagi T, Okano T. Cell sheet tissue engineering: cell sheet preparation, harvesting/manipulation, and transplantation. J Biomed Mater Res A 2019; 107(5): 955–967
CrossRef
Google scholar
|
[123] |
Tatsumi K, Okano T. Hepatocyte transplantation: cell sheet technology for liver cell transplantation. Curr Transplant Rep 2017; 4(3): 184–192
CrossRef
Google scholar
|
[124] |
Takeuchi R, Kuruma Y, Sekine H, Dobashi I, Yamato M, Umezu M, Shimizu T, Okano T. In vivo vascularization of cell sheets provided better long-term tissue survival than injection of cell suspension. J Tissue Eng Regen Med 2016; 10(8): 700–710
CrossRef
Google scholar
|
[125] |
Lozoya OA, Wauthier E, Turner RA, Barbier C, Prestwich GD, Guilak F, Superfine R, Lubkin SR, Reid LM. Regulation of hepatic stem/progenitor phenotype by microenvironment stiffness in hydrogel models of the human liver stem cell niche. Biomaterials 2011; 32(30): 7389–7402
CrossRef
Google scholar
|
[126] |
Highley CB, Prestwich GD, Burdick JA. Recent advances in hyaluronic acid hydrogels for biomedical applications. Curr Opin Biotechnol 2016; 40: 35–40
CrossRef
Google scholar
|
[127] |
Zheng Shu X, Liu Y, Palumbo FS, Luo Y, Prestwich GD. In situ crosslinkable hyaluronan hydrogels for tissue engineering. Biomaterials 2004; 25(7–8): 1339–1348
CrossRef
Google scholar
|
[128] |
ShuXZPrestwich GD. Therapeutic biomaterials from chemically modified hyaluronan. In: Garg HG, Hales CA. Chemistry and Biology of Hyaluronan. Elsevier, 2004. 475–504
|
[129] |
Burdick JA, Prestwich GD. Hyaluronic acid hydrogels for biomedical applications. Adv Mater 2011; 23(12): H41–H56
CrossRef
Google scholar
|
[130] |
Fraser JR, Laurent TC, Laurent UB. Hyaluronan: its nature, distribution, functions and turnover. J Intern Med 1997; 242(1): 27–33
CrossRef
Google scholar
|
[131] |
Shirvaikar N, Marquez-Curtis LA, Janowska-Wieczorek A. Hematopoietic stem cell mobilization and homing after transplantation: the role of MMP-2, MMP-9, and MT1-MMP. Biochem Res Int 2012; 2012: 685267
CrossRef
Google scholar
|
[132] |
Pan F, Ma S, Cao W, Liu H, Chen F, Chen X, Shi R. SDF-1α upregulation of MMP-2 is mediated by p38 MAPK signaling in pancreatic cancer cell lines. Mol Biol Rep 2013; 40(7): 4139–4146
CrossRef
Google scholar
|
[133] |
Maslak E, Gregorius A, Chlopicki S. Liver sinusoidal endothelial cells (LSECs) function and NAFLD; NO-based therapy targeted to the liver. Pharmacol Rep 2015; 67(4): 689–694
CrossRef
Google scholar
|
[134] |
Poisson J, Lemoinne S, Boulanger C, Durand F, Moreau R, Valla D, Rautou PE. Liver sinusoidal endothelial cells: physiology and role in liver diseases. J Hepatol 2017; 66(1): 212–227
CrossRef
Google scholar
|
[135] |
Rodriguez-Vita J, Morales-Ruiz M. Down the liver sinusoidal endothelial cell (LSEC) hole. Is there a role for lipid rafts in LSEC fenestration? Hepatology 2013; 57(3): 1272–1274
CrossRef
Google scholar
|
[136] |
Carmeliet P, Jain RK. Molecular mechanisms and clinical applications of angiogenesis. Nature 2011; 473(7347): 298–307
CrossRef
Google scholar
|
[137] |
Ding BS, Nolan DJ, Butler JM, James D, Babazadeh AO, Rosenwaks Z, Mittal V, Kobayashi H, Shido K, Lyden D, Sato TN, Rabbany SY, Rafii S. Inductive angiocrine signals from sinusoidal endothelium are required for liver regeneration. Nature 2010; 468(7321): 310–315
CrossRef
Google scholar
|
[138] |
Yadav N, Jaber FL, Sharma Y, Gupta P, Viswanathan P, Gupta S. Efficient reconstitution of hepatic microvasculature by endothelin receptor antagonism in liver sinusoidal endothelial cells. Hum Gene Ther 2019; 30(3): 365–377
CrossRef
Google scholar
|
[139] |
Sørensen KK, Simon-Santamaria J, McCuskey RS, Smedsrød B. Liver sinusoidal endothelial cells. Compr Physiol 2015; 5(4): 1751–1774
CrossRef
Google scholar
|
[140] |
Hansen B, Longati P, Elvevold K, Nedredal GI, Schledzewski K, Olsen R, Falkowski M, Kzhyshkowska J, Carlsson F, Johansson S, Smedsrød B, Goerdt S, Johansson S, McCourt P. Stabilin-1 and stabilin-2 are both directed into the early endocytic pathway in hepatic sinusoidal endothelium via interactions with clathrin/AP-2, independent of ligand binding. Exp Cell Res 2005; 303(1): 160–173
CrossRef
Google scholar
|
[141] |
Ogasawara H, Inagaki A, Fathi I, Imura T, Yamana H, Saitoh Y, Matsumura M, Fukuoka K, Miyagi S, Nakamura Y, Ohashi K, Unno M, Kamei T, Goto M. Preferable transplant site for hepatocyte transplantation in a rat model. Cell Transplant 2021; 30: 9636897211040012
CrossRef
Google scholar
|
[142] |
Wang MJ, Chen F, Liu QG, Liu CC, Yao H, Yu B, Zhang HB, Yan HX, Ye Y, Chen T, Wangensteen KJ, Wang X, Hu YP, He ZY. Insulin-like growth factor 2 is a key mitogen driving liver repopulation in mice. Cell Death Dis 2018; 9(2): 26
CrossRef
Google scholar
|
[143] |
Du Y, Zhang W, Qiu H, Xiao C, Shi J, Reid LM, He Z. Mouse models of liver parenchyma injuries and regeneration. Front Cell Dev Biol 2022; 10: 903740
CrossRef
Google scholar
|
[144] |
He Z, Zhang H, Zhang X, Xie D, Chen Y, Wangensteen KJ, Ekker SC, Firpo M, Liu C, Xiang D, Zi X, Hui L, Yang G, Ding X, Hu Y, Wang X. Liver xeno-repopulation with human hepatocytes in Fah–/–Rag2–/– mice after pharmacological immunosuppression. Am J Pathol 2010; 177(3): 1311–1319
CrossRef
Google scholar
|
[145] |
Su B, Liu C, Xiang D, Zhang H, Yuan S, Wang M, Chen F, Zhu H, He Z, Wang X, Hu Y. Xeno-repopulation of Fah–/– Nod/Scid mice livers by human hepatocytes. Sci China Life Sci 2011; 54(3): 227–234
CrossRef
Google scholar
|
[146] |
Lu F, Pan X, Zhang W, Su X, Gu Y, Qiu H, Shen S, Liu C, Liu W, Wang X, Zhan Z, Liu Z, He Z. A three-dimensional imaging method for the quantification and localization of dynamic cell tracking posttransplantation. Front Cell Dev Biol 2021; 9: 698795
CrossRef
Google scholar
|
[147] |
Akcora BÖ, Storm G, Bansal R. Inhibition of canonical WNT signaling pathway by β-catenin/CBP inhibitor ICG-001 ameliorates liver fibrosis in vivo through suppression of stromal CXCL12. Biochim Biophys Acta Mol Basis Dis 2018; 1864(3): 804–818
CrossRef
Google scholar
|
[148] |
Moroni F, Dwyer BJ, Graham C, Pass C, Bailey L, Ritchie L, Mitchell D, Glover A, Laurie A, Doig S, Hargreaves E, Fraser AR, Turner ML, Campbell JDM, McGowan NWA, Barry J, Moore JK, Hayes PC, Leeming DJ, Nielsen MJ, Musa K, Fallowfield JA, Forbes SJ. Safety profile of autologous macrophage therapy for liver cirrhosis. Nat Med 2019; 25(10): 1560–1565
CrossRef
Google scholar
|
[149] |
Friedman SL. Hepatic stellate cells: protean, multifunctional, and enigmatic cells of the liver. Physiol Rev 2008; 88(1): 125–172
CrossRef
Google scholar
|
[150] |
Bataller R, Brenner DA. Liver fibrosis. J Clin Invest 2005; 115(2): 209–218
CrossRef
Google scholar
|
[151] |
Kobold D, Grundmann A, Piscaglia F, Eisenbach C, Neubauer K, Steffgen J, Ramadori G, Knittel T. Expression of reelin in hepatic stellate cells and during hepatic tissue repair: a novel marker for the differentiation of HSC from other liver myofibroblasts. J Hepatol 2002; 36(5): 607–613
CrossRef
Google scholar
|
[152] |
Oben JA, Roskams T, Yang S, Lin H, Sinelli N, Torbenson M, Smedh U, Moran TH, Li Z, Huang J, Thomas SA, Diehl AM. Hepatic fibrogenesis requires sympathetic neurotransmitters. Gut 2004; 53(3): 438–445
CrossRef
Google scholar
|
[153] |
LeeYAFriedman S L. Stellate Cells and Fibrosis. In: Arias IM, Alter HJ, Boyer JL, Cohen DE, Shafritz DA, Thorgeirsson SS, Wolkoff AW. The Liver: Biology and Pathobiology. John Wiley & Sons Ltd. 2020. 444–454
|
[154] |
Guilliams M, Dutertre CA, Scott CL, McGovern N, Sichien D, Chakarov S, Van Gassen S, Chen J, Poidinger M, De Prijck S, Tavernier SJ, Low I, Irac SE, Mattar CN, Sumatoh HR, Low GHL, Chung TJK, Chan DKH, Tan KK, Hon TLK, Fossum E, Bogen B, Choolani M, Chan JKY, Larbi A, Luche H, Henri S, Saeys Y, Newell EW, Lambrecht BN, Malissen B, Ginhoux F. Unsupervised high-dimensional analysis aligns dendritic cells across tissues and species. Immunity 2016; 45(3): 669–684
CrossRef
Google scholar
|
[155] |
Lopez BG, Tsai MS, Baratta JL, Longmuir KJ, Robertson RT. Characterization of Kupffer cells in livers of developing mice. Comp Hepatol 2011; 10(1): 2
CrossRef
Google scholar
|
[156] |
Krenkel O, Tacke F. Liver macrophages in tissue homeostasis and disease. Nat Rev Immunol 2017; 17(5): 306–321
CrossRef
Google scholar
|
[157] |
Baratta JL, Ngo A, Lopez B, Kasabwalla N, Longmuir KJ, Robertson RT. Cellular organization of normal mouse liver: a histological, quantitative immunocytochemical, and fine structural analysis. Histochem Cell Biol 2009; 131(6): 713–726
CrossRef
Google scholar
|
[158] |
Scott CL, Zheng F, De Baetselier P, Martens L, Saeys Y, De Prijck S, Lippens S, Abels C, Schoonooghe S, Raes G, Devoogdt N, Lambrecht BN, Beschin A, Guilliams M. Bone marrow-derived monocytes give rise to self-renewing and fully differentiated Kupffer cells. Nat Commun 2016; 7(1): 10321
CrossRef
Google scholar
|
[159] |
Moroni F, Dwyer BJ, Graham C, Pass C, Bailey L, Ritchie L, Mitchell D, Glover A, Laurie A, Doig S, Hargreaves E, Fraser AR, Turner ML, Campbell JDM, McGowan NWA, Barry J, Moore JK, Hayes PC, Leeming DJ, Nielsen MJ, Musa K, Fallowfield JA, Forbes SJ. Safety profile of autologous macrophage therapy for liver cirrhosis. Nat Med 2019; 25(10): 1560–1565
CrossRef
Google scholar
|
[160] |
Heymann F, Peusquens J, Ludwig-Portugall I, Kohlhepp M, Ergen C, Niemietz P, Martin C, van Rooijen N, Ochando JC, Randolph GJ, Luedde T, Ginhoux F, Kurts C, Trautwein C, Tacke F. Liver inflammation abrogates immunological tolerance induced by Kupffer cells. Hepatology 2015; 62(1): 279–291
CrossRef
Google scholar
|
[161] |
Wen Y, Lambrecht J, Ju C, Tacke F. Hepatic macrophages in liver homeostasis and diseases-diversity, plasticity and therapeutic opportunities. Cell Mol Immunol 2021; 18(1): 45–56
CrossRef
Google scholar
|
[162] |
Heymann F, Hammerich L, Storch D, Bartneck M, Huss S, Rüsseler V, Gassler N, Lira SA, Luedde T, Trautwein C, Tacke F. Hepatic macrophage migration and differentiation critical for liver fibrosis is mediated by the chemokine receptor C-C motif chemokine receptor 8 in mice. Hepatology 2012; 55(3): 898–909
CrossRef
Google scholar
|
[163] |
Bernal W, Wendon J. Acute liver failure. N Engl J Med 2013; 369(26): 2525–2534
CrossRef
Google scholar
|
[164] |
Nakamoto N, Ebinuma H, Kanai T, Chu PS, Ono Y, Mikami Y, Ojiro K, Lipp M, Love PE, Saito H, Hibi T. CCR9+ macrophages are required for acute liver inflammation in mouse models of hepatitis. Gastroenterology 2012; 142(2): 366–376
CrossRef
Google scholar
|
[165] |
Karlmark KR, Zimmermann HW, Roderburg C, Gassler N, Wasmuth HE, Luedde T, Trautwein C, Tacke F. The fractalkine receptor CX3CR1 protects against liver fibrosis by controlling differentiation and survival of infiltrating hepatic monocytes. Hepatology 2010; 52(5): 1769–1782
CrossRef
Google scholar
|
[166] |
Saijou E, Enomoto Y, Matsuda M, Yuet-Yin Kok C, Akira S, Tanaka M, Miyajima A. Neutrophils alleviate fibrosis in the CCl4-induced mouse chronic liver injury model. Hepatol Commun 2018; 2(6): 703–717
CrossRef
Google scholar
|
[167] |
Halpern KB, Shenhav R, Matcovitch-Natan O, Toth B, Lemze D, Golan M, Massasa EE, Baydatch S, Landen S, Moor AE, Brandis A, Giladi A, Avihail AS, David E, Amit I, Itzkovitz S. Single-cell spatial reconstruction reveals global division of labour in the mammalian liver. Nature 2017; 542(7641): 352–356
CrossRef
Google scholar
|
[168] |
Chen T, Oh S, Gregory S, Shen X, Diehl AM. Single-cell omics analysis reveals functional diversification of hepatocytes during liver regeneration. JCI Insight 2020; 5(22): e141024
CrossRef
Google scholar
|
[169] |
Chembazhi UV, Bangru S, Hernaez M, Kalsotra A. Cellular plasticity balances the metabolic and proliferation dynamics of a regenerating liver. Genome Res 2021; 31(4): 576–591
CrossRef
Google scholar
|
[170] |
Chen H, Tang S, Liao J, Liu M, Lin Y. Therapeutic effect of human umbilical cord blood mesenchymal stem cells combined with G-CSF on rats with acute liver failure. Biochem Biophys Res Commun 2019; 517(4): 670–676
CrossRef
Google scholar
|
[171] |
Joshi M, B Patil P, He Z, Holgersson J, Olausson M, Sumitran-Holgersson S. Fetal liver-derived mesenchymal stromal cells augment engraftment of transplanted hepatocytes. Cytotherapy 2012; 14(6): 657–669
CrossRef
Google scholar
|
/
〈 | 〉 |