The development and benefits of metformin in various diseases
Ying Dong, Yingbei Qi, Haowen Jiang, Tian Mi, Yunkai Zhang, Chang Peng, Wanchen Li, Yongmei Zhang, Yubo Zhou, Yi Zang, Jia Li
The development and benefits of metformin in various diseases
Metformin has been used for the treatment of type II diabetes mellitus for decades due to its safety, low cost, and outstanding hypoglycemic effect clinically. The mechanisms underlying these benefits are complex and still not fully understood. Inhibition of mitochondrial respiratory-chain complex I is the most described downstream mechanism of metformin, leading to reduced ATP production and activation of AMP-activated protein kinase (AMPK). Meanwhile, many novel targets of metformin have been gradually discovered. In recent years, multiple pre-clinical and clinical studies are committed to extend the indications of metformin in addition to diabetes. Herein, we summarized the benefits of metformin in four types of diseases, including metabolic associated diseases, cancer, aging and age-related diseases, neurological disorders. We comprehensively discussed the pharmacokinetic properties and the mechanisms of action, treatment strategies, the clinical application, the potential risk of metformin in various diseases. This review provides a brief summary of the benefits and concerns of metformin, aiming to interest scientists to consider and explore the common and specific mechanisms and guiding for the further research. Although there have been countless studies of metformin, longitudinal research in each field is still much warranted.
metformin / metabolism / cancer / aging / neurological disorder
[1] |
Viollet B, Guigas B, Sanz Garcia N, Leclerc J, Foretz M, Andreelli F. Cellular and molecular mechanisms of metformin: an overview. Clin Sci (Lond) 2012; 122(6): 253–270
CrossRef
Pubmed
Google scholar
|
[2] |
Salpeter SR, Buckley NS, Kahn JA, Salpeter EE. Meta-analysis: metformin treatment in persons at risk for diabetes mellitus. Am J Med 2008; 121(2): 149–157.e2
CrossRef
Pubmed
Google scholar
|
[3] |
Foretz M, Guigas B, Bertrand L, Pollak M, Viollet B. Metformin: from mechanisms of action to therapies. Cell Metab 2014; 20(6): 953–966
CrossRef
Pubmed
Google scholar
|
[4] |
Carling D. AMPK signalling in health and disease. Curr Opin Cell Biol 2017; 45: 31–37
CrossRef
Pubmed
Google scholar
|
[5] |
Bailey CJ. Metformin: historical overview. Diabetologia 2017; 60(9): 1566–1576
CrossRef
Pubmed
Google scholar
|
[6] |
Bailey CJ, Day C. Metformin: its botanical background. Pract Diabetes Int 2004; 21(3): 115–117
CrossRef
Google scholar
|
[7] |
HillJ. The Vegetable System, or, The Internal Structure and The Life of Plants. London: the author, 1761–1775
|
[8] |
Watanabe CK. Studies in the metabolic changes induced by administration of guanidine bases. J Biol Chem 1918; 34(1): 51–63
CrossRef
Google scholar
|
[9] |
Ríos JL, Francini F, Schinella GR. Natural products for the treatment of type 2 diabetes mellitus. Planta Med 2015; 81(12–13): 975–994
CrossRef
Pubmed
Google scholar
|
[10] |
Pineda CT, Ramanathan S, Fon Tacer K, Weon JL, Potts MB, Ou YH, White MA, Potts PR. Degradation of AMPK by a cancer-specific ubiquitin ligase. Cell 2015; 160(4): 715–728
CrossRef
Pubmed
Google scholar
|
[11] |
Wang GS, Hoyte C. Review of biguanide (metformin) toxicity. J Intensive Care Med 2019; 34(11–12): 863–876
CrossRef
Pubmed
Google scholar
|
[12] |
Rabinowitch IM. Observations on the use of synthalin in the treatment of diabetes mellitus. Can Med Assoc J 1927; 17(8): 901–904
Pubmed
|
[13] |
Slotta KH. Tschesche RJEJoIC. Über Biguanide, II: Die blutzucker-senkende Wirkung der Biguanide. 1929; 62: 1398–1405
|
[14] |
Hesse E. Taubmann GJN-SAfePuP. Die Wirkung des Biguanids und seiner Derivate auf den Zuckerstoffwechsel. 1929; 142: 290–308
|
[15] |
Bailey CJ, Turner RC. Metformin. N Engl J Med 1996; 334(9): 574–579
CrossRef
Pubmed
Google scholar
|
[16] |
Werner EA, Bell J. CCXIV—The preparation of methylguanidine, and of ββ-dimethylguanidine by the interaction of dicyanodiamide, and methylammonium and dimethylammonium chlorides respectively. J Chem Soc Trans 1922; 121(0): 1790–1794
CrossRef
Google scholar
|
[17] |
Sylow L, Kleinert M, Richter EA, Jensen TE. Exercise-stimulated glucose uptake—regulation and implications for glycaemic control. Nat Rev Endocrinol 2017; 13(3): 133–148
CrossRef
Pubmed
Google scholar
|
[18] |
SamsonSLGarberAJ. Metformin and other biguanides: pharmacology and therapeutic usage. International Textbook of Diabetes Mellitus. 2015. 641–656
|
[19] |
MeinertCL. Clinical Trials: Design, Conduct and Analysis. Oxford University Press, 1986
|
[20] |
Schäfer G. Biguanides. A review of history, pharmacodynamics and therapy. Diabete Metab 1983; 9(2): 148–163
Pubmed
|
[21] |
LaMoia TE, Shulman GI. Cellular and molecular mechanisms of metformin action. Endocr Rev 2021; 42(1): 77–96
CrossRef
Pubmed
Google scholar
|
[22] |
GARCIA EY. Flumamine, a new synthetic analgesic and anti-flu drug. J Philipp Med Assoc 1950; 26(7): 287–293
Pubmed
|
[23] |
Curd FHS, Davey DG, Rose FL. Studies on synthetic antimalarial drugs; some biguanide derivatives as new types of antimalarial substances with both therapeutic and causal prophylactic activity. Ann Trop Med Parasitol 1945; 39(3–4): 208–216
CrossRef
Pubmed
Google scholar
|
[24] |
Sterne JJMM. Du nouveau dans les antidiabetiques. La NN dimethylamine guanyl guanide (NNDG). 1957; 36: 1295–1296
|
[25] |
SterneJ. Blood sugar-lowering effect of 1,1-dimethylbiguanide. Therapie 1958; 13(4): 650–659 (in French)
Pubmed
|
[26] |
Beringer A. Treatment of diabetes mellitus with biguanides. Wien Med Wochenschr 1958; 108(43): 880–882
Pubmed
|
[27] |
Woods A, Vertommen D, Neumann D, Turk R, Bayliss J, Schlattner U, Wallimann T, Carling D, Rider MH. Identification of phosphorylation sites in AMP-activated protein kinase (AMPK) for upstream AMPK kinases and study of their roles by site-directed mutagenesis. J Biol Chem 2003; 278(31): 28434–28442
CrossRef
Pubmed
Google scholar
|
[28] |
Mc KENDRY JB, Kuwayti K, Rado PP. Clinical experience with DBI (phenformin) in the management of diabetes. Can Med Assoc J 1959; 80(10): 773–778
Pubmed
|
[29] |
Ungar G, Freedman L, Shapiro SL. Pharmacological studies of a new oral hypoglycemic drug. Proc Soc Exp Biol Med 1957; 95(1): 190–192
CrossRef
Pubmed
Google scholar
|
[30] |
King P, Peacock I, Donnelly R. The UK prospective diabetes study (UKPDS): clinical and therapeutic implications for type 2 diabetes. Br J Clin Pharmacol 1999; 48(5): 643–648
CrossRef
Pubmed
Google scholar
|
[31] |
Turner RC. The U. K. prospective diabetes study. A review. Diabetes Care 1998; 21(Suppl 3): C35–C38
CrossRef
Pubmed
Google scholar
|
[32] |
Holman RR, Paul SK, Bethel MA, Matthews DR, Neil HA. 10-year follow-up of intensive glucose control in type 2 diabetes. N Engl J Med 2008; 359(15): 1577–1589
CrossRef
Pubmed
Google scholar
|
[33] |
Lund SS, Rossing P, Vaag AA. Follow-up of intensive glucose control in type 2 diabetes. N Engl J Med 2009; 360(4): 416–418
CrossRef
Pubmed
Google scholar
|
[34] |
Kumar P, Khan K. Effects of metformin use in pregnant patients with polycystic ovary syndrome. J Hum Reprod Sci 2012; 5(2): 166–169
CrossRef
Pubmed
Google scholar
|
[35] |
Ghazeeri GS, Nassar AH, Younes Z, Awwad JT. Pregnancy outcomes and the effect of metformin treatment in women with polycystic ovary syndrome: an overview. Acta Obstet Gynecol Scand 2012; 91(6): 658–678
CrossRef
Pubmed
Google scholar
|
[36] |
Nicholson W, Bolen S, Witkop CT, Neale D, Wilson L, Bass E. Benefits and risks of oral diabetes agents compared with insulin in women with gestational diabetes: a systematic review. Obstet Gynecol 2009; 113(1): 193–205
CrossRef
Pubmed
Google scholar
|
[37] |
Choi YJ. Efficacy of adjunctive treatments added to olanzapine or clozapine for weight control in patients with schizophrenia: a systematic review and meta-analysis. ScientificWorldJournal 2015; 2015: 970730
CrossRef
Pubmed
Google scholar
|
[38] |
Campbell JM, Stephenson MD, de Courten B, Chapman I, Bellman SM, Aromataris E. Metformin use associated with reduced risk of dementia in patients with diabetes: a systematic review and meta-analysis. J Alzheimers Dis 2018; 65(4): 1225–1236
CrossRef
Pubmed
Google scholar
|
[39] |
Yang Y. Metformin for cancer prevention. Front Med 2011; 5(2): 115–117
CrossRef
Pubmed
Google scholar
|
[40] |
Bailey CJ, Day C. Traditional plant medicines as treatments for diabetes. Diabetes Care 1989; 12(8): 553–564
CrossRef
Pubmed
Google scholar
|
[41] |
Kato T, Kondo T, Mizuno K. Occurrence of guanidino compounds in several plants. Soil Sci Plant Nutr 1986; 32(3): 487–491
CrossRef
Google scholar
|
[42] |
Rathke B. Ueber biguanid. Ber Dtsch Chem Ges 1879; 12(1): 776–784
CrossRef
Google scholar
|
[43] |
Metformin (Glucophage(R)). Mother To Baby | Fact Sheets. Brentwood: Organization of Teratology Information Specialists (OTIS). Copyright by OTIS. January 2022
|
[44] |
DeFronzo RA, Goodman AM. Efficacy of metformin in patients with non-insulin-dependent diabetes mellitus. The Multicenter Metformin Study Group. N Engl J Med 1995; 333(9): 541–549
CrossRef
Pubmed
Google scholar
|
[45] |
Knowler WC, Barrett-Connor E, Fowler SE, Hamman RF, Lachin JM, Walker EA, Nathan DM; Diabetes Prevention Program Research Group. Reduction in the incidence of type 2 diabetes with lifestyle intervention or metformin. N Engl J Med 2002; 346(6): 393–403
CrossRef
Pubmed
Google scholar
|
[46] |
The Selection and Use of Essential Medicines. World Health Organ Tech Rep Ser 2015; vii-xv: 1–546
|
[47] |
Graham GG, Punt J, Arora M, Day RO, Doogue MP, Duong JK, Furlong TJ, Greenfield JR, Greenup LC, Kirkpatrick CM, Ray JE, Timmins P, Williams KM. Clinical pharmacokinetics of metformin. Clin Pharmacokinet 2011; 50(2): 81–98
CrossRef
Pubmed
Google scholar
|
[48] |
Pentikäinen PJ, Neuvonen PJ, Penttilä A. Pharmacokinetics of metformin after intravenous and oral administration to man. Eur J Clin Pharmacol 1979; 16(3): 195–202
CrossRef
Pubmed
Google scholar
|
[49] |
Idkaidek N, Arafat T. Metformin IR versus XR pharmacokinetics in humans. J Bioequiv Availab 2011; 3: 233–235
CrossRef
Google scholar
|
[50] |
Harahap Y, Purnasari S, Hayun H, Dianpratami K, Wulandari M. Bioequivalence Study of Metformin HCl XR Caplet Formulations in Healthy Indonesian Volunteers. J Bioequiv Availab 2011; 3: 16–19
|
[51] |
Oefelein MG, Tong W, Kerr S, Bhasi K, Patel RK, Yu D. Effect of concomitant administration of trospium chloride extended release on the steady-state pharmacokinetics of metformin in healthy adults. Clin Drug Investig 2013; 33(2): 123–131
CrossRef
Pubmed
Google scholar
|
[52] |
Timmins P, Donahue S, Meeker J, Marathe P. Steady-state pharmacokinetics of a novel extended-release metformin formulation. Clin Pharmacokinet 2005; 44(7): 721–729
CrossRef
Pubmed
Google scholar
|
[53] |
Rhee SJ, Lee S, Yoon SH, Cho JY, Jang IJ, Yu KS. Pharmacokinetics of the evogliptin/metformin extended-release (5/1,000 mg) fixed-dose combination formulation compared to the corresponding loose combination, and food effect in healthy subjects. Drug Des Devel Ther 2016; 10: 1411–1418
Pubmed
|
[54] |
Zhou M, Xia L, Wang J. Metformin transport by a newly cloned proton-stimulated organic cation transporter (plasma membrane monoamine transporter) expressed in human intestine. Drug Metab Dispos 2007; 35(10): 1956–1962
CrossRef
Pubmed
Google scholar
|
[55] |
Kawoosa F, Shah ZA, Masoodi SR, Amin A, Rasool R, Fazili KM, Dar AH, Lone A, Ul Bashir S. Role of human organic cation transporter-1 (OCT-1/SLC22A1) in modulating the response to metformin in patients with type 2 diabetes. BMC Endocr Disord 2022; 22(1): 140
CrossRef
Pubmed
Google scholar
|
[56] |
Shu Y, Sheardown SA, Brown C, Owen RP, Zhang S, Castro RA, Ianculescu AG, Yue L, Lo JC, Burchard EG, Brett CM, Giacomini KM. Effect of genetic variation in the organic cation transporter 1 (OCT1) on metformin action. J Clin Invest 2007; 117(5): 1422–1431
CrossRef
Pubmed
Google scholar
|
[57] |
Christensen MMH, Højlund K, Hother-Nielsen O, Stage TB, Damkier P, Beck-Nielsen H, Brøsen K. Steady-state pharmacokinetics of metformin is independent of the OCT1 genotype in healthy volunteers. Eur J Clin Pharmacol 2015; 71(6): 691–697
CrossRef
Pubmed
Google scholar
|
[58] |
Chen EC, Liang X, Yee SW, Geier EG, Stocker SL, Chen L, Giacomini KM. Targeted disruption of organic cation transporter 3 attenuates the pharmacologic response to metformin. Mol Pharmacol 2015; 88(1): 75–83
CrossRef
Pubmed
Google scholar
|
[59] |
Lee N, Hebert MF, Wagner DJ, Easterling TR, Liang CJ, Rice K, Wang J. Organic cation transporter 3 facilitates fetal exposure to metformin during pregnancy. Mol Pharmacol 2018; 94(4): 1125–1131
CrossRef
Pubmed
Google scholar
|
[60] |
Chen L, Shu Y, Liang X, Chen EC, Yee SW, Zur AA, Li S, Xu L, Keshari KR, Lin MJ, Chien HC, Zhang Y, Morrissey KM, Liu J, Ostrem J, Younger NS, Kurhanewicz J, Shokat KM, Ashrafi K, Giacomini KM. OCT1 is a high-capacity thiamine transporter that regulates hepatic steatosis and is a target of metformin. Proc Natl Acad Sci USA 2014; 111(27): 9983–9988
CrossRef
Pubmed
Google scholar
|
[61] |
Müller J, Lips KS, Metzner L, Neubert RH, Koepsell H, Brandsch M. Drug specificity and intestinal membrane localization of human organic cation transporters (OCT). Biochem Pharmacol 2005; 70(12): 1851–1860
CrossRef
Pubmed
Google scholar
|
[62] |
Nakamichi N, Shima H, Asano S, Ishimoto T, Sugiura T, Matsubara K, Kusuhara H, Sugiyama Y, Sai Y, Miyamoto K, Tsuji A, Kato Y. Involvement of carnitine/organic cation transporter OCTN1/SLC22A4 in gastrointestinal absorption of metformin. J Pharm Sci 2013; 102(9): 3407–3417
CrossRef
Pubmed
Google scholar
|
[63] |
Takane H, Shikata E, Otsubo K, Higuchi S, Ieiri I. Polymorphism in human organic cation transporters and metformin action. Pharmacogenomics 2008; 9(4): 415–422
CrossRef
Pubmed
Google scholar
|
[64] |
Yoon H, Cho HY, Yoo HD, Kim SM, Lee YB. Influences of organic cation transporter polymorphisms on the population pharmacokinetics of metformin in healthy subjects. AAPS J 2013; 15(2): 571–580
CrossRef
Pubmed
Google scholar
|
[65] |
Liang X, Chien HC, Yee SW, Giacomini MM, Chen EC, Piao M, Hao J, Twelves J, Lepist EI, Ray AS, Giacomini KM. Metformin is a substrate and inhibitor of the human thiamine transporter, THTR-2 (SLC19A3). Mol Pharm 2015; 12(12): 4301–4310
CrossRef
Pubmed
Google scholar
|
[66] |
Han TK, Proctor WR, Costales CL, Cai H, Everett RS, Thakker DR. Four cation-selective transporters contribute to apical uptake and accumulation of metformin in Caco-2 cell monolayers. J Pharmacol Exp Ther 2015; 352(3): 519–528
CrossRef
Pubmed
Google scholar
|
[67] |
Kurlovics J, Zake DM, Zaharenko L, Berzins K, Klovins J, Stalidzans E. Metformin transport rates between plasma and red blood cells in humans. Clin Pharmacokinet 2022; 61(1): 133–142
CrossRef
Pubmed
Google scholar
|
[68] |
Markowicz-Piasecka M, Huttunen KM, Mateusiak L, Mikiciuk-Olasik E, Sikora J. Is metformin a perfect drug? Updates in pharmacokinetics and pharmacodynamics. Curr Pharm Des 2017; 23(17): 2532–2550
Pubmed
|
[69] |
Scheen AJ. Clinical pharmacokinetics of metformin. Clin Pharmacokinet 1996; 30(5): 359–371
CrossRef
Pubmed
Google scholar
|
[70] |
Song R. Mechanism of metformin: a tale of two sites. Diabetes Care 2016; 39(2): 187–189
CrossRef
Pubmed
Google scholar
|
[71] |
Lee N, Duan H, Hebert MF, Liang CJ, Rice KM, Wang J. Taste of a pill: organic cation transporter-3 (OCT3) mediates metformin accumulation and secretion in salivary glands. J Biol Chem 2014; 289(39): 27055–27064
CrossRef
Pubmed
Google scholar
|
[72] |
Hibma JE, Zur AA, Castro RA, Wittwer MB, Keizer RJ, Yee SW, Goswami S, Stocker SL, Zhang X, Huang Y, Brett CM, Savic RM, Giacomini KM. The effect of famotidine, a MATE1-selective inhibitor, on the pharmacokinetics and pharmacodynamics of metformin. Clin Pharmacokinet 2016; 55(6): 711–721
CrossRef
Pubmed
Google scholar
|
[73] |
Posma RA, Venema LH, Huijink TM, Westerkamp AC, Wessels AMA, De Vries NJ, Doesburg F, Roggeveld J, Ottens PJ, Touw DJ, Nijsten MW, Leuvenink HGD. Increasing metformin concentrations and its excretion in both rat and porcine ex vivo normothermic kidney perfusion model. BMJ Open Diabetes Res Care 2020; 8: e000816
CrossRef
Pubmed
Google scholar
|
[74] |
Ma YR, Zhou Y, Huang J, Qin HY, Wang P, Wu XA. The urinary excretion of metformin, ceftizoxime and ofloxacin in high serum creatinine rats: can creatinine predict renal tubular elimination? Life Sci 2018; 196: 110–117 doi:10.1016/j.lfs.2018.01.017
Pubmed
|
[75] |
Gong L, Goswami S, Giacomini KM, Altman RB, Klein TE. Metformin pathways: pharmacokinetics and pharmacodynamics. Pharmacogenet Genomics 2012; 22(11): 820–827
CrossRef
Pubmed
Google scholar
|
[76] |
McCreight LJ, Bailey CJ, Pearson ER. Metformin and the gastrointestinal tract. Diabetologia 2016; 59(3): 426–435
CrossRef
Pubmed
Google scholar
|
[77] |
Sirtori CR, Franceschini G, Galli-Kienle M, Cighetti G, Galli G, Bondioli A, Conti F. Disposition of metformin (N,N-dimethylbiguanide) in man. Clin Pharmacol Ther 1978; 24(6): 683–693
CrossRef
Pubmed
Google scholar
|
[78] |
Tucker GT, Casey C, Phillips PJ, Connor H, Ward JD, Woods HF. Metformin kinetics in healthy subjects and in patients with diabetes mellitus. Br J Clin Pharmacol 1981; 12(2): 235–246
CrossRef
Pubmed
Google scholar
|
[79] |
Szymczak-Pajor I, Wenclewska S, Śliwińska A. Metabolic action of metformin. Pharmaceuticals (Basel) 2022; 15(7): 810
CrossRef
Pubmed
Google scholar
|
[80] |
He L, Wondisford FE. Metformin action: concentrations matter. Cell Metab 2015; 21(2): 159–162
CrossRef
Pubmed
Google scholar
|
[81] |
Ma T, Tian X, Zhang B, Li M, Wang Y, Yang C, Wu J, Wei X, Qu Q, Yu Y, Long S, Feng JW, Li C, Zhang C, Xie C, Wu Y, Xu Z, Chen J, Yu Y, Huang X, He Y, Yao L, Zhang L, Zhu M, Wang W, Wang ZC, Zhang M, Bao Y, Jia W, Lin SY, Ye Z, Piao HL, Deng X, Zhang CS, Lin SC. Low-dose metformin targets the lysosomal AMPK pathway through PEN2. Nature 2022; 603(7899): 159–165
CrossRef
Pubmed
Google scholar
|
[82] |
Rena G, Hardie DG, Pearson ER. The mechanisms of action of metformin. Diabetologia 2017; 60(9): 1577–1585
CrossRef
Pubmed
Google scholar
|
[83] |
Saely CH, Geiger K, Drexel H. Brown versus white adipose tissue: a mini-review. Gerontology 2012; 58(1): 15–23
CrossRef
Pubmed
Google scholar
|
[84] |
Abdullahi A, Jeschke MG. Taming the flames: targeting white adipose tissue browning in hypermetabolic conditions. Endocr Rev 2017; 38(6): 538–549
CrossRef
Pubmed
Google scholar
|
[85] |
Breining P, Jensen JB, Sundelin EI, Gormsen LC, Jakobsen S, Busk M, Rolighed L, Bross P, Fernandez-Guerra P, Markussen LK, Rasmussen NE, Hansen JB, Pedersen SB, Richelsen B, Jessen N. Metformin targets brown adipose tissue in vivo and reduces oxygen consumption in vitro. Diabetes Obes Metab 2018; 20(9): 2264–2273
CrossRef
Pubmed
Google scholar
|
[86] |
Virtanen KA, Hällsten K, Parkkola R, Janatuinen T, Lönnqvist F, Viljanen T, Rönnemaa T, Knuuti J, Huupponen R, Lönnroth P, Nuutila P. Differential effects of rosiglitazone and metformin on adipose tissue distribution and glucose uptake in type 2 diabetic subjects. Diabetes 2003; 52(2): 283–290
CrossRef
Pubmed
Google scholar
|
[87] |
Karise I, Bargut TC, Del Sol M, Aguila MB, Mandarim-de-Lacerda CA. Metformin enhances mitochondrial biogenesis and thermogenesis in brown adipocytes of mice. Biomed Pharmacother 2019; 111: 1156–1165
CrossRef
Pubmed
Google scholar
|
[88] |
Çakır I, Hadley CK, Pan PL, Bagchi RA, Ghamari-Langroudi M, Porter DT, Wang Q, Litt MJ, Jana S, Hagen S, Lee P, White A, Lin JD, McKinsey TA, Cone RD. Histone deacetylase 6 inhibition restores leptin sensitivity and reduces obesity. Nat Metab 2022; 4(1): 44–59
CrossRef
Pubmed
Google scholar
|
[89] |
Tokubuchi I, Tajiri Y, Iwata S, Hara K, Wada N, Hashinaga T, Nakayama H, Mifune H, Yamada K. Beneficial effects of metformin on energy metabolism and visceral fat volume through a possible mechanism of fatty acid oxidation in human subjects and rats. PLoS One 2017; 12(2): e0171293
CrossRef
Pubmed
Google scholar
|
[90] |
Hu Y, Young AJ, Ehli EA, Nowotny D, Davies PS, Droke EA, Soundy TJ, Davies GE. Metformin and berberine prevent olanzapine-induced weight gain in rats. PLoS One 2014; 9(3): e93310
CrossRef
Pubmed
Google scholar
|
[91] |
Qi T, Chen Y, Li H, Pei Y, Woo SL, Guo X, Zhao J, Qian X, Awika J, Huo Y, Wu C. A role for PFKFB3/iPFK2 in metformin suppression of adipocyte inflammatory responses. J Mol Endocrinol 2017; 59(1): 49–59
CrossRef
Pubmed
Google scholar
|
[92] |
Jing Y, Wu F, Li D, Yang L, Li Q, Li R. Metformin improves obesity-associated inflammation by altering macrophages polarization. Mol Cell Endocrinol 2018; 461: 256–264
CrossRef
Pubmed
Google scholar
|
[93] |
Marcelin G, Gautier EL, Clément K. Adipose tissue fibrosis in obesity: etiology and challenges. Annu Rev Physiol 2022; 84(1): 135–155
CrossRef
Pubmed
Google scholar
|
[94] |
Luo T, Nocon A, Fry J, Sherban A, Rui X, Jiang B, Xu XJ, Han J, Yan Y, Yang Q, Li Q, Zang M. AMPK activation by metformin suppresses abnormal extracellular matrix remodeling in adipose tissue and ameliorates insulin resistance in obesity. Diabetes 2016; 65(8): 2295–2310
CrossRef
Pubmed
Google scholar
|
[95] |
Waki H, Tontonoz P. Endocrine functions of adipose tissue. Annu Rev Pathol 2007; 2(1): 31–56
CrossRef
Pubmed
Google scholar
|
[96] |
Naghiaee Y, Didehdar R, Pourrajab F, Rahmanian M, Heiranizadeh N, Mohiti A, Mohiti-Ardakani J. Metformin downregulates miR223 expression in insulin-resistant 3T3L1 cells and human diabetic adipose tissue. Endocrine 2020; 70(3): 498–508
CrossRef
Pubmed
Google scholar
|
[97] |
Cruciani S, Garroni G, Balzano F, Pala R, Bellu E, Cossu ML, Ginesu GC, Ventura C, Maioli M. Tuning adipogenic differentiation in ADSCs by metformin and vitamin D: involvement of miRNAs. Int J Mol Sci 2020; 21(17): 6181
CrossRef
Pubmed
Google scholar
|
[98] |
Zhou G, Myers R, Li Y, Chen Y, Shen X, Fenyk-Melody J, Wu M, Ventre J, Doebber T, Fujii N, Musi N, Hirshman MF, Goodyear LJ, Moller DE. Role of AMP-activated protein kinase in mechanism of metformin action. J Clin Invest 2001; 108(8): 1167–1174
CrossRef
Pubmed
Google scholar
|
[99] |
Shaw RJ, Lamia KA, Vasquez D, Koo SH, Bardeesy N, Depinho RA, Montminy M, Cantley LC. The kinase LKB1 mediates glucose homeostasis in liver and therapeutic effects of metformin. Science 2005; 310(5754): 1642–1646
CrossRef
Pubmed
Google scholar
|
[100] |
Fullerton MD, Galic S, Marcinko K, Sikkema S, Pulinilkunnil T, Chen ZP, O’Neill HM, Ford RJ, Palanivel R, O’Brien M, Hardie DG, Macaulay SL, Schertzer JD, Dyck JR, van Denderen BJ, Kemp BE, Steinberg GR. Single phosphorylation sites in Acc1 and Acc2 regulate lipid homeostasis and the insulin-sensitizing effects of metformin. Nat Med 2013; 19(12): 1649–1654
CrossRef
Pubmed
Google scholar
|
[101] |
Bonora E, Cigolini M, Bosello O, Zancanaro C, Capretti L, Zavaroni I, Coscelli C, Butturini U. Lack of effect of intravenous metformin on plasma concentrations of glucose, insulin, C-peptide, glucagon and growth hormone in non-diabetic subjects. Curr Med Res Opin 1984; 9(1): 47–51
CrossRef
Pubmed
Google scholar
|
[102] |
Buse JB, DeFronzo RA, Rosenstock J, Kim T, Burns C, Skare S, Baron A, Fineman M. The primary glucose-lowering effect of metformin resides in the gut, not the circulation: results from short-term pharmacokinetic and 12-week dose-ranging studies. Diabetes Care 2016; 39(2): 198–205
CrossRef
Pubmed
Google scholar
|
[103] |
Lee H, Ko G. Effect of metformin on metabolic improvement and gut microbiota. Appl Environ Microbiol 2014; 80(19): 5935–5943
CrossRef
Pubmed
Google scholar
|
[104] |
Shin NR, Lee JC, Lee HY, Kim MS, Whon TW, Lee MS, Bae JW. An increase in the Akkermansia spp. population induced by metformin treatment improves glucose homeostasis in diet-induced obese mice. Gut 2014; 63(5): 727–735
CrossRef
Pubmed
Google scholar
|
[105] |
Fu X, Wang X, Duan Z, Zhang C, Fu X, Yang J, Liu X, He J. Histone H3k9 and H3k27 acetylation regulates IL-4/STAT6-mediated Igε transcription in B lymphocytes. Anat Rec (Hoboken) 2015; 298(8): 1431–1439
CrossRef
Pubmed
Google scholar
|
[106] |
Karlsson FH, Tremaroli V, Nookaew I, Bergström G, Behre CJ, Fagerberg B, Nielsen J, Bäckhed F. Gut metagenome in European women with normal, impaired and diabetic glucose control. Nature 2013; 498(7452): 99–103
CrossRef
Pubmed
Google scholar
|
[107] |
Forslund K, Hildebrand F, Nielsen T, Falony G, Le Chatelier E, Sunagawa S, Prifti E, Vieira-Silva S, Gudmundsdottir V, Pedersen HK, Arumugam M, Kristiansen K, Voigt AY, Vestergaard H, Hercog R, Costea PI, Kultima JR, Li J, Jørgensen T, Levenez F, Dore J; MetaHIT consortium; Nielsen HB, Brunak S, Raes J, Hansen T, Wang J, Ehrlich SD, Bork P, Pedersen O. Disentangling type 2 diabetes and metformin treatment signatures in the human gut microbiota. Nature 2015; 528(7581): 262–266
CrossRef
Pubmed
Google scholar
|
[108] |
Mueller NT, Differding MK, Zhang M, Maruthur NM, Juraschek SP, Miller ER 3rd, Appel LJ, Yeh HC. Metformin affects gut microbiome composition and function and circulating short-chain fatty acids: a randomized trial. Diabetes Care 2021; 44(7): 1462–1471
CrossRef
Pubmed
Google scholar
|
[109] |
Cabreiro F, Au C, Leung KY, Vergara-Irigaray N, Cochemé HM, Noori T, Weinkove D, Schuster E, Greene ND, Gems D. Metformin retards aging in C. elegans by altering microbial folate and methionine metabolism. Cell 2013; 153(1): 228–239
CrossRef
Pubmed
Google scholar
|
[110] |
Bauer PV, Duca FA, Waise TMZ, Rasmussen BA, Abraham MA, Dranse HJ, Puri A, O’Brien CA, Lam TKT. Metformin alters upper small intestinal microbiota that impact a glucose-SGLT1-sensing glucoregulatory pathway. Cell Metab 2018; 27(1): 101–117.e5
CrossRef
Pubmed
Google scholar
|
[111] |
Pryor R, Norvaisas P, Marinos G, Best L, Thingholm LB, Quintaneiro LM, De Haes W, Esser D, Waschina S, Lujan C, Smith RL, Scott TA, Martinez-Martinez D, Woodward O, Bryson K, Laudes M, Lieb W, Houtkooper RH, Franke A, Temmerman L, Bjedov I, Cochemé HM, Kaleta C, Cabreiro F. Host-microbe-drug-nutrient screen identifies bacterial effectors of metformin therapy. Cell 2019; 178(6): 1299–1312.e29
CrossRef
Pubmed
Google scholar
|
[112] |
Kitabchi AE, Temprosa M, Knowler WC, Kahn SE, Fowler SE, Haffner SM, Andres R, Saudek C, Edelstein SL, Arakaki R, Murphy MB, Shamoon H; Diabetes Prevention Program Research Group. Role of insulin secretion and sensitivity in the evolution of type 2 diabetes in the diabetes prevention program: effects of lifestyle intervention and metformin. Diabetes 2005; 54(8): 2404–2414
CrossRef
Pubmed
Google scholar
|
[113] |
Hashemitabar M, Bahramzadeh S, Saremy S, Nejaddehbashi F. Glucose plus metformin compared with glucose alone on β-cell function in mouse pancreatic islets. Biomed Rep 2015; 3(5): 721–725
CrossRef
Pubmed
Google scholar
|
[114] |
Lupi R, Del Guerra S, Tellini C, Giannarelli R, Coppelli A, Lorenzetti M, Carmellini M, Mosca F, Navalesi R, Marchetti P. The biguanide compound metformin prevents desensitization of human pancreatic islets induced by high glucose. Eur J Pharmacol 1999; 364(2–3): 205–209
CrossRef
Pubmed
Google scholar
|
[115] |
Patanè G, Piro S, Rabuazzo AM, Anello M, Vigneri R, Purrello F. Metformin restores insulin secretion altered by chronic exposure to free fatty acids or high glucose: a direct metformin effect on pancreatic beta-cells. Diabetes 2000; 49(5): 735–740
CrossRef
Pubmed
Google scholar
|
[116] |
Cen J, Sargsyan E, Forslund A, Bergsten P. Mechanisms of beneficial effects of metformin on fatty acid-treated human islets. J Mol Endocrinol 2018; 61(3): 91–99
CrossRef
Pubmed
Google scholar
|
[117] |
Moon JS, Karunakaran U, Elumalai S, Lee IK, Lee HW, Kim YW, Won KC. Metformin prevents glucotoxicity by alleviating oxidative and ER stress-induced CD36 expression in pancreatic beta cells. J Diabetes Complications 2017; 31(1): 21–30
CrossRef
Pubmed
Google scholar
|
[118] |
LiuSNLiuQSunSJHouSCWangYShenZF. Metformin ameliorates β-cell dysfunction by regulating inflammation production, ion and hormone homeostasis of pancreas in diabetic KKAy mice. Acta Pharmaceutica Sinica (Yao Xue Xue Bao) 2014; 49(11): 1554–1562 (in Chinese)
Pubmed
|
[119] |
Jiang Y, Huang W, Wang J, Xu Z, He J, Lin X, Zhou Z, Zhang J. Metformin plays a dual role in MIN6 pancreatic β cell function through AMPK-dependent autophagy. Int J Biol Sci 2014; 10(3): 268–277
CrossRef
Pubmed
Google scholar
|
[120] |
Lablanche S, Cottet-Rousselle C, Lamarche F, Benhamou PY, Halimi S, Leverve X, Fontaine E. Protection of pancreatic INS-1 β-cells from glucose- and fructose-induced cell death by inhibiting mitochondrial permeability transition with cyclosporin A or metformin. Cell Death Dis 2011; 2(3): e134
CrossRef
Pubmed
Google scholar
|
[121] |
Jung TW, Lee MW, Lee YJ, Kim SM. Metformin prevents endoplasmic reticulum stress-induced apoptosis through AMPK-PI3K-c-Jun NH2 pathway. Biochem Biophys Res Commun 2012; 417(1): 147–152
CrossRef
Pubmed
Google scholar
|
[122] |
Lee A, Morley JE. Metformin decreases food consumption and induces weight loss in subjects with obesity with type II non-insulin-dependent diabetes. Obes Res 1998; 6(1): 47–53
CrossRef
Pubmed
Google scholar
|
[123] |
Paolisso G, Amato L, Eccellente R, Gambardella A, Tagliamonte MR, Varricchio G, Carella C, Giugliano D, D’Onofrio F. Effect of metformin on food intake in obese subjects. Eur J Clin Invest 1998; 28(6): 441–446
CrossRef
Pubmed
Google scholar
|
[124] |
Glueck CJ, Fontaine RN, Wang P, Subbiah MT, Weber K, Illig E, Streicher P, Sieve-Smith L, Tracy TM, Lang JE, McCullough P. Metformin reduces weight, centripetal obesity, insulin, leptin, and low-density lipoprotein cholesterol in nondiabetic, morbidly obese subjects with body mass index greater than 30. Metabolism 2001; 50(7): 856–861
CrossRef
Pubmed
Google scholar
|
[125] |
Chau-Van C, Gamba M, Salvi R, Gaillard RC, Pralong FP. Metformin inhibits adenosine 5′-monophosphate-activated kinase activation and prevents increases in neuropeptide Y expression in cultured hypothalamic neurons. Endocrinology 2007; 148(2): 507–511
CrossRef
Pubmed
Google scholar
|
[126] |
Stevanovic D, Janjetovic K, Misirkic M, Vucicevic L, Sumarac-Dumanovic M, Micic D, Starcevic V, Trajkovic V. Intracerebroventricular administration of metformin inhibits ghrelin-induced hypothalamic AMP-kinase signalling and food intake. Neuroendocrinology 2012; 96(1): 24–31
CrossRef
Pubmed
Google scholar
|
[127] |
Kim YW, Kim JY, Park YH, Park SY, Won KC, Choi KH, Huh JY, Moon KH. Metformin restores leptin sensitivity in high-fat-fed obese rats with leptin resistance. Diabetes 2006; 55(3): 716–724
CrossRef
Pubmed
Google scholar
|
[128] |
Aubert G, Mansuy V, Voirol MJ, Pellerin L, Pralong FP. The anorexigenic effects of metformin involve increases in hypothalamic leptin receptor expression. Metabolism 2011; 60(3): 327–334
CrossRef
Pubmed
Google scholar
|
[129] |
Mullican SE, Lin-Schmidt X, Chin CN, Chavez JA, Furman JL, Armstrong AA, Beck SC, South VJ, Dinh TQ, Cash-Mason TD, Cavanaugh CR, Nelson S, Huang C, Hunter MJ, Rangwala SM. GFRAL is the receptor for GDF15 and the ligand promotes weight loss in mice and nonhuman primates. Nat Med 2017; 23(10): 1150–1157
CrossRef
Pubmed
Google scholar
|
[130] |
Emmerson PJ, Wang F, Du Y, Liu Q, Pickard RT, Gonciarz MD, Coskun T, Hamang MJ, Sindelar DK, Ballman KK, Foltz LA, Muppidi A, Alsina-Fernandez J, Barnard GC, Tang JX, Liu X, Mao X, Siegel R, Sloan JH, Mitchell PJ, Zhang BB, Gimeno RE, Shan B, Wu X. The metabolic effects of GDF15 are mediated by the orphan receptor GFRAL. Nat Med 2017; 23(10): 1215–1219
CrossRef
Pubmed
Google scholar
|
[131] |
Borner T, Shaulson ED, Ghidewon MY, Barnett AB, Horn CC, Doyle RP, Grill HJ, Hayes MR, De Jonghe BC. GDF15 induces anorexia through nausea and emesis. Cell Metab 2020; 31(2): 351–362.e5
CrossRef
Pubmed
Google scholar
|
[132] |
Coll AP, Chen M, Taskar P, Rimmington D, Patel S, Tadross JA, Cimino I, Yang M, Welsh P, Virtue S, Goldspink DA, Miedzybrodzka EL, Konopka AR, Esponda RR, Huang JT, Tung YCL, Rodriguez-Cuenca S, Tomaz RA, Harding HP, Melvin A, Yeo GSH, Preiss D, Vidal-Puig A, Vallier L, Nair KS, Wareham NJ, Ron D, Gribble FM, Reimann F, Sattar N, Savage DB, Allan BB, O’Rahilly S. GDF15 mediates the effects of metformin on body weight and energy balance. Nature 2020; 578(7795): 444–448
CrossRef
Pubmed
Google scholar
|
[133] |
Klein AB, Nicolaisen TS, Johann K, Fritzen AM, Mathiesen CV, Gil C, Pilmark NS, Karstoft K, Blond MB, Quist JS, Seeley RJ, Færch K, Lund J, Kleinert M, Clemmensen C. The GDF15-GFRAL pathway is dispensable for the effects of metformin on energy balance. Cell Rep 2022; 40(8): 111258
CrossRef
Pubmed
Google scholar
|
[134] |
Day EA, Ford RJ, Smith BK, Mohammadi-Shemirani P, Morrow MR, Gutgesell RM, Lu R, Raphenya AR, Kabiri M, McArthur AG, McInnes N, Hess S, Paré G, Gerstein HC, Steinberg GR. Metformin-induced increases in GDF15 are important for suppressing appetite and promoting weight loss. Nat Metab 2019; 1(12): 1202–1208
CrossRef
Pubmed
Google scholar
|
[135] |
American Diabetes Association Professional Practice Committee. 9. Pharmacologic Approaches to Glycemic Treatment: Standards of Medical Care in Diabetes-2022. Diabetes Care 2022; 45(Suppl 1): S125–S143
CrossRef
Pubmed
Google scholar
|
[136] |
Stumvoll M, Häring HU, Matthaei S. Metformin. Endocr Res 2007; 32(1–2): 39–57
CrossRef
Pubmed
Google scholar
|
[137] |
Wang C, Liu F, Yuan Y, Wu J, Wang H, Zhang L, Hu P, Li Z, Li Q, Ye J. Metformin suppresses lipid accumulation in skeletal muscle by promoting fatty acid oxidation. Clin Lab 2014; 60(6): 887–896
CrossRef
Pubmed
Google scholar
|
[138] |
Zabielski P, Chacinska M, Charkiewicz K, Baranowski M, Gorski J, Blachnio-Zabielska AU. Effect of metformin on bioactive lipid metabolism in insulin-resistant muscle. J Endocrinol 2017; 233(3): 329–340
CrossRef
Pubmed
Google scholar
|
[139] |
Pavlovic K, Krako Jakovljevic N, Isakovic AM, Ivanovic T, Markovic I, Lalic NM. Therapeutic vs. suprapharmacological metformin concentrations: different effects on energy metabolism and mitochondrial function in skeletal muscle cells in vitro. Front Pharmacol 2022; 13: 930308
CrossRef
Pubmed
Google scholar
|
[140] |
Malin SK, Stewart NR. Metformin may contribute to inter-individual variability for glycemic responses to exercise. Front Endocrinol (Lausanne) 2020; 11: 519
CrossRef
Pubmed
Google scholar
|
[141] |
Natali A, Ferrannini E. Effects of metformin and thiazolidinediones on suppression of hepatic glucose production and stimulation of glucose uptake in type 2 diabetes: a systematic review. Diabetologia 2006; 49(3): 434–441
CrossRef
Pubmed
Google scholar
|
[142] |
Zhou Z, Tang Y, Jin X, Chen C, Lu Y, Liu L, Shen C. Metformin inhibits advanced glycation end products-induced inflammatory response in murine macrophages partly through AMPK activation and RAGE/NFκB pathway suppression. J Diabetes Res 2016; 2016: 4847812
CrossRef
Pubmed
Google scholar
|
[143] |
He L, Sabet A, Djedjos S, Miller R, Sun X, Hussain MA, Radovick S, Wondisford FE. Metformin and insulin suppress hepatic gluconeogenesis through phosphorylation of CREB binding protein. Cell 2009; 137(4): 635–646
CrossRef
Pubmed
Google scholar
|
[144] |
Lee JM, Seo WY, Song KH, Chanda D, Kim YD, Kim DK, Lee MW, Ryu D, Kim YH, Noh JR, Lee CH, Chiang JY, Koo SH, Choi HS. AMPK-dependent repression of hepatic gluconeogenesis via disruption of CREB. CRTC2 complex by orphan nuclear receptor small heterodimer partner. J Biol Chem 2010; 285(42): 32182–32191
CrossRef
Pubmed
Google scholar
|
[145] |
Caton PW, Nayuni NK, Kieswich J, Khan NQ, Yaqoob MM, Corder R. Metformin suppresses hepatic gluconeogenesis through induction of SIRT1 and GCN5. J Endocrinol 2010; 205(1): 97–106
CrossRef
Pubmed
Google scholar
|
[146] |
Madiraju AK, Erion DM, Rahimi Y, Zhang XM, Braddock DT, Albright RA, Prigaro BJ, Wood JL, Bhanot S, MacDonald MJ, Jurczak MJ, Camporez JP, Lee HY, Cline GW, Samuel VT, Kibbey RG, Shulman GI. Metformin suppresses gluconeogenesis by inhibiting mitochondrial glycerophosphate dehydrogenase. Nature 2014; 510(7506): 542–546
CrossRef
Pubmed
Google scholar
|
[147] |
Lin HZ, Yang SQ, Chuckaree C, Kuhajda F, Ronnet G, Diehl AM. Metformin reverses fatty liver disease in obese, leptin-deficient mice. Nat Med 2000; 6(9): 998–1003
CrossRef
Pubmed
Google scholar
|
[148] |
Woo SL, Xu H, Li H, Zhao Y, Hu X, Zhao J, Guo X, Guo T, Botchlett R, Qi T, Pei Y, Zheng J, Xu Y, An X, Chen L, Chen L, Li Q, Xiao X, Huo Y, Wu C. Metformin ameliorates hepatic steatosis and inflammation without altering adipose phenotype in diet-induced obesity. PLoS One 2014; 9(3): e91111
CrossRef
Pubmed
Google scholar
|
[149] |
El-Mir MY, Nogueira V, Fontaine E, Avéret N, Rigoulet M, Leverve X. Dimethylbiguanide inhibits cell respiration via an indirect effect targeted on the respiratory chain complex I. J Biol Chem 2000; 275(1): 223–228
CrossRef
Pubmed
Google scholar
|
[150] |
Owen MR, Doran E, Halestrap AP. Evidence that metformin exerts its anti-diabetic effects through inhibition of complex 1 of the mitochondrial respiratory chain. Biochem J 2000; 348(3): 607–614
CrossRef
Pubmed
Google scholar
|
[151] |
Stephenne X, Foretz M, Taleux N, van der Zon GC, Sokal E, Hue L, Viollet B, Guigas B. Metformin activates AMP-activated protein kinase in primary human hepatocytes by decreasing cellular energy status. Diabetologia 2011; 54(12): 3101–3110
CrossRef
Pubmed
Google scholar
|
[152] |
Batandier C, Guigas B, Detaille D, El-Mir MY, Fontaine E, Rigoulet M, Leverve XM. The ROS production induced by a reverse-electron flux at respiratory-chain complex 1 is hampered by metformin. J Bioenerg Biomembr 2006; 38(1): 33–42
CrossRef
Pubmed
Google scholar
|
[153] |
Fontaine E. Metformin-induced mitochondrial complex I inhibition: facts, uncertainties, and consequences. Front Endocrinol (Lausanne) 2018; 9: 753
CrossRef
Pubmed
Google scholar
|
[154] |
Pernicova I, Korbonits M. Metformin—mode of action and clinical implications for diabetes and cancer. Nat Rev Endocrinol 2014; 10(3): 143–156
CrossRef
Pubmed
Google scholar
|
[155] |
Vancura A, Bu P, Bhagwat M, Zeng J, Vancurova I. Metformin as an anticancer agent. Trends Pharmacol Sci 2018; 39(10): 867–878
CrossRef
Pubmed
Google scholar
|
[156] |
Evans JM, Donnelly LA, Emslie-Smith AM, Alessi DR, Morris AD. Metformin and reduced risk of cancer in diabetic patients. BMJ 2005; 330(7503): 1304–1305
CrossRef
Pubmed
Google scholar
|
[157] |
Monami M, Colombi C, Balzi D, Dicembrini I, Giannini S, Melani C, Vitale V, Romano D, Barchielli A, Marchionni N, Rotella CM, Mannucci E. Metformin and cancer occurrence in insulin-treated type 2 diabetic patients. Diabetes Care 2011; 34(1): 129–131
CrossRef
Pubmed
Google scholar
|
[158] |
Kasznicki J, Sliwinska A, Drzewoski J. Metformin in cancer prevention and therapy. Ann Transl Med 2014; 2(6): 57
Pubmed
|
[159] |
Peng M, Darko KO, Tao T, Huang Y, Su Q, He C, Yin T, Liu Z, Yang X. Combination of metformin with chemotherapeutic drugs via different molecular mechanisms. Cancer Treat Rev 2017; 54: 24–33
CrossRef
Pubmed
Google scholar
|
[160] |
Wen KC, Sung PL, Wu ATH, Chou PC, Lin JH, Huang CF, Yeung SJ, Lee MH. Neoadjuvant metformin added to conventional chemotherapy synergizes anti-proliferative effects in ovarian cancer. J Ovarian Res 2020; 13(1): 95
CrossRef
Pubmed
Google scholar
|
[161] |
Zhang HH, Guo XL. Combinational strategies of metformin and chemotherapy in cancers. Cancer Chemother Pharmacol 2016; 78(1): 13–26
CrossRef
Pubmed
Google scholar
|
[162] |
Mallik R, Chowdhury TA. Metformin in cancer. Diabetes Res Clin Pract 2018; 143: 409–419
CrossRef
Pubmed
Google scholar
|
[163] |
Skuli SJ, Alomari S, Gaitsch H, Bakayoko A, Skuli N, Tyler BM. Metformin and cancer, an ambiguanidous relationship. Pharmaceuticals (Basel) 2022; 15(5): 626
CrossRef
Pubmed
Google scholar
|
[164] |
Heckman-Stoddard BM, DeCensi A, Sahasrabuddhe VV, Ford LG. Repurposing metformin for the prevention of cancer and cancer recurrence. Diabetologia 2017; 60(9): 1639–1647
CrossRef
Pubmed
Google scholar
|
[165] |
Long YC, Zierath JR. AMP-activated protein kinase signaling in metabolic regulation. J Clin Invest 2006; 116(7): 1776–1783
CrossRef
Pubmed
Google scholar
|
[166] |
Huang X, Wullschleger S, Shpiro N, McGuire VA, Sakamoto K, Woods YL, McBurnie W, Fleming S, Alessi DR. Important role of the LKB1-AMPK pathway in suppressing tumorigenesis in PTEN-deficient mice. Biochem J 2008; 412(2): 211–221
CrossRef
Pubmed
Google scholar
|
[167] |
Zakikhani M, Dowling R, Fantus IG, Sonenberg N, Pollak M. Metformin is an AMP kinase-dependent growth inhibitor for breast cancer cells. Cancer Res 2006; 66(21): 10269–10273
CrossRef
Pubmed
Google scholar
|
[168] |
Gao C, Fang L, Zhang H, Zhang WS, Li XO, Du SY. Metformin induces autophagy via the AMPK-mTOR signaling pathway in human hepatocellular carcinoma cells. Cancer Manag Res 2020; 12: 5803–5811
CrossRef
Pubmed
Google scholar
|
[169] |
Dowling RJ, Zakikhani M, Fantus IG, Pollak M, Sonenberg N. Metformin inhibits mammalian target of rapamycin-dependent translation initiation in breast cancer cells. Cancer Res 2007; 67(22): 10804–10812
CrossRef
Pubmed
Google scholar
|
[170] |
Shen P, Reineke LC, Knutsen E, Chen M, Pichler M, Ling H, Calin GA. Metformin blocks MYC protein synthesis in colorectal cancer via mTOR-4EBP-eIF4E and MNK1-eIF4G-eIF4E signaling. Mol Oncol 2018; 12(11): 1856–1870
CrossRef
Pubmed
Google scholar
|
[171] |
Wang Y, Xu W, Yan Z, Zhao W, Mi J, Li J, Yan H. Metformin induces autophagy and G0/G1 phase cell cycle arrest in myeloma by targeting the AMPK/mTORC1 and mTORC2 pathways. J Exp Clin Cancer Res 2018; 37(1): 63
CrossRef
Pubmed
Google scholar
|
[172] |
Lu CC, Chiang JH, Tsai FJ, Hsu YM, Juan YN, Yang JS, Chiu HY. Metformin triggers the intrinsic apoptotic response in human AGS gastric adenocarcinoma cells by activating AMPK and suppressing mTOR/AKT signaling. Int J Oncol 2019; 54(4): 1271–1281
CrossRef
Pubmed
Google scholar
|
[173] |
Chen YH, Yang SF, Yang CK, Tsai HD, Chen TH, Chou MC, Hsiao YH. Metformin induces apoptosis and inhibits migration by activating the AMPK/p53 axis and suppressing PI3K/AKT signaling in human cervical cancer cells. Mol Med Rep 2021; 23(1): 88
Pubmed
|
[174] |
Sun Y, Tao C, Huang X, He H, Shi H, Zhang Q, Wu H. Metformin induces apoptosis of human hepatocellular carcinoma HepG2 cells by activating an AMPK/p53/miR-23a/FOXA1 pathway. Onco Targets Ther 2016; 9: 2845–2853
Pubmed
|
[175] |
Kim HG, Hien TT, Han EH, Hwang YP, Choi JH, Kang KW, Kwon KI, Kim BH, Kim SK, Song GY, Jeong TC, Jeong HG. Metformin inhibits P-glycoprotein expression via the NF-κB pathway and CRE transcriptional activity through AMPK activation. Br J Pharmacol 2011; 162(5): 1096–1108
CrossRef
Pubmed
Google scholar
|
[176] |
Zheng L, Yang W, Wu F, Wang C, Yu L, Tang L, Qiu B, Li Y, Guo L, Wu M, Feng G, Zou D, Wang H. Prognostic significance of AMPK activation and therapeutic effects of metformin in hepatocellular carcinoma. Clin Cancer Res 2013; 19(19): 5372–5380
CrossRef
Pubmed
Google scholar
|
[177] |
Zheng Z, Bian Y, Zhang Y, Ren G, Li G. Metformin activates AMPK/SIRT1/NF-κB pathway and induces mitochondrial dysfunction to drive caspase3/GSDME-mediated cancer cell pyroptosis. Cell Cycle 2020; 19(10): 1089–1104
CrossRef
Pubmed
Google scholar
|
[178] |
Dong Y, Hu H, Zhang X, Zhang Y, Sun X, Wang H, Kan W, Tan MJ, Shi H, Zang Y, Li J. Phosphorylation of PHF2 by AMPK releases the repressive H3K9me2 and inhibits cancer metastasis. Signal Transduct Target Ther 2023; 8(1): 95
CrossRef
Pubmed
Google scholar
|
[179] |
Lynch TJ, Bell DW, Sordella R, Gurubhagavatula S, Okimoto RA, Brannigan BW, Harris PL, Haserlat SM, Supko JG, Haluska FG, Louis DN, Christiani DC, Settleman J, Haber DA. Activating mutations in the epidermal growth factor receptor underlying responsiveness of non-small-cell lung cancer to gefitinib. N Engl J Med 2004; 350(21): 2129–2139
CrossRef
Pubmed
Google scholar
|
[180] |
Isoda K, Young JL, Zirlik A, MacFarlane LA, Tsuboi N, Gerdes N, Schönbeck U, Libby P. Metformin inhibits proinflammatory responses and nuclear factor-kappaB in human vascular wall cells. Arterioscler Thromb Vasc Biol 2006; 26(3): 611–617
CrossRef
Pubmed
Google scholar
|
[181] |
Hattori Y, Suzuki K, Hattori S, Kasai K. Metformin inhibits cytokine-induced nuclear factor kappaB activation via AMP-activated protein kinase activation in vascular endothelial cells. Hypertension 2006; 47(6): 1183–1188
CrossRef
Pubmed
Google scholar
|
[182] |
Guo Q, Liu Z, Jiang L, Liu M, Ma J, Yang C, Han L, Nan K, Liang X. Metformin inhibits growth of human non-small cell lung cancer cells via liver kinase B-1-independent activation of adenosine monophosphate-activated protein kinase. Mol Med Rep 2016; 13(3): 2590–2596
CrossRef
Pubmed
Google scholar
|
[183] |
Faubert B, Boily G, Izreig S, Griss T, Samborska B, Dong Z, Dupuy F, Chambers C, Fuerth BJ, Viollet B, Mamer OA, Avizonis D, DeBerardinis RJ, Siegel PM, Jones RG. AMPK is a negative regulator of the Warburg effect and suppresses tumor growth in vivo. Cell Metab 2013; 17(1): 113–124
CrossRef
Pubmed
Google scholar
|
[184] |
Algire C, Amrein L, Zakikhani M, Panasci L, Pollak M. Metformin blocks the stimulative effect of a high-energy diet on colon carcinoma growth in vivo and is associated with reduced expression of fatty acid synthase. Endocr Relat Cancer 2010; 17(2): 351–360
CrossRef
Pubmed
Google scholar
|
[185] |
Buzzai M, Jones RG, Amaravadi RK, Lum JJ, DeBerardinis RJ, Zhao F, Viollet B, Thompson CB. Systemic treatment with the antidiabetic drug metformin selectively impairs p53-deficient tumor cell growth. Cancer Res 2007; 67(14): 6745–6752
CrossRef
Pubmed
Google scholar
|
[186] |
Xie Y, Wang JL, Ji M, Yuan ZF, Peng Z, Zhang Y, Wen JG, Shi HR. Regulation of insulin-like growth factor signaling by metformin in endometrial cancer cells. Oncol Lett 2014; 8(5): 1993–1999
CrossRef
Pubmed
Google scholar
|
[187] |
Lee J, Hong EM, Kim JH, Jung JH, Park SW, Koh DH, Choi MH, Jang HJ, Kae SH. Metformin induces apoptosis and inhibits proliferation through the AMP-activated protein kinase and insulin-like growth factor 1 receptor pathways in the bile duct cancer cells. J Cancer 2019; 10(7): 1734–1744
CrossRef
Pubmed
Google scholar
|
[188] |
Karnevi E, Said K, Andersson R, Rosendahl AH. Metformin-mediated growth inhibition involves suppression of the IGF-I receptor signalling pathway in human pancreatic cancer cells. BMC Cancer 2013; 13(1): 235
CrossRef
Pubmed
Google scholar
|
[189] |
Birzniece V, Lam T, McLean M, Reddy N, Shahidipour H, Hayden A, Gurney H, Stone G, Hjortebjerg R, Frystyk J. Insulin-like growth factor role in determining the anti-cancer effect of metformin: RCT in prostate cancer patients. Endocr Connect 2022; 11(4): e210375
CrossRef
Pubmed
Google scholar
|
[190] |
Zakikhani M, Blouin MJ, Piura E, Pollak MN. Metformin and rapamycin have distinct effects on the AKT pathway and proliferation in breast cancer cells. Breast Cancer Res Treat 2010; 123(1): 271–279
CrossRef
Pubmed
Google scholar
|
[191] |
Chaudhary SC, Kurundkar D, Elmets CA, Kopelovich L, Athar M. Metformin, an antidiabetic agent reduces growth of cutaneous squamous cell carcinoma by targeting mTOR signaling pathway. Photochem Photobiol 2012; 88(5): 1149–1156
CrossRef
Pubmed
Google scholar
|
[192] |
Würth R, Pattarozzi A, Gatti M, Bajetto A, Corsaro A, Parodi A, Sirito R, Massollo M, Marini C, Zona G, Fenoglio D, Sambuceti G, Filaci G, Daga A, Barbieri F, Florio T. Metformin selectively affects human glioblastoma tumor-initiating cell viability: a role for metformin-induced inhibition of Akt. Cell Cycle 2013; 12(1): 145–156
CrossRef
Pubmed
Google scholar
|
[193] |
Ben Sahra I, Regazzetti C, Robert G, Laurent K, Le Marchand-Brustel Y, Auberger P, Tanti JF, Giorgetti-Peraldi S, Bost F. Metformin, independent of AMPK, induces mTOR inhibition and cell-cycle arrest through REDD1. Cancer Res 2011; 71(13): 4366–4372
CrossRef
Pubmed
Google scholar
|
[194] |
Jang SK, Hong SE, Lee DH, Kim JY, Kim JY, Ye SK, Hong J, Park IC, Jin HO. Inhibition of mTORC1 through ATF4-induced REDD1 and Sestrin2 expression by metformin. BMC Cancer 2021; 21(1): 803
CrossRef
Pubmed
Google scholar
|
[195] |
Pierotti MA, Berrino F, Gariboldi M, Melani C, Mogavero A, Negri T, Pasanisi P, Pilotti S. Targeting metabolism for cancer treatment and prevention: metformin, an old drug with multi-faceted effects. Oncogene 2013; 32(12): 1475–1487
CrossRef
Pubmed
Google scholar
|
[196] |
Yenmis G, Yaprak Sarac E, Besli N, Soydas T, Tastan C, Dilek Kancagi D, Yilanci M, Senol K, Karagulle OO, Ekmekci CG, Ovali E, Tuncdemir M, Ulutin T, Kanigur Sultuybek G. Anti-cancer effect of metformin on the metastasis and invasion of primary breast cancer cells through mediating NF-kB activity. Acta Histochem 2021; 123(4): 151709
CrossRef
Pubmed
Google scholar
|
[197] |
Wheaton WW, Weinberg SE, Hamanaka RB, Soberanes S, Sullivan LB, Anso E, Glasauer A, Dufour E, Mutlu GM, Budigner GS, Chandel NS. Metformin inhibits mitochondrial complex I of cancer cells to reduce tumorigenesis. eLife 2014; 3: e02242
CrossRef
Pubmed
Google scholar
|
[198] |
Soranna D, Scotti L, Zambon A, Bosetti C, Grassi G, Catapano A, La Vecchia C, Mancia G, Corrao G. Cancer risk associated with use of metformin and sulfonylurea in type 2 diabetes: a meta-analysis. Oncologist 2012; 17(6): 813–822
CrossRef
Pubmed
Google scholar
|
[199] |
Sui X, Xu Y, Yang J, Fang Y, Lou H, Han W, Zhang M, Chen W, Wang K, Li D, Jin W, Lou F, Zheng Y, Hu H, Gong L, Zhou X, Pan Q, Pan H, Wang X, He C. Use of metformin alone is not associated with survival outcomes of colorectal cancer cell but AMPK activator AICAR sensitizes anticancer effect of 5-fluorouracil through AMPK activation. PLoS One 2014; 9(5): e97781
CrossRef
Pubmed
Google scholar
|
[200] |
Guo L, Cui J, Wang H, Medina R, Zhang S, Zhang X, Zhuang Z, Lin Y. Metformin enhances anti-cancer effects of cisplatin in meningioma through AMPK-mTOR signaling pathways. Mol Ther Oncolytics 2021; 20: 119–131
CrossRef
Pubmed
Google scholar
|
[201] |
Deng J, Peng M, Wang Z, Zhou S, Xiao D, Deng J, Yang X, Peng J, Yang X. Novel application of metformin combined with targeted drugs on anticancer treatment. Cancer Sci 2019; 110(1): 23–30
CrossRef
Pubmed
Google scholar
|
[202] |
Saengboonmee C, Sanlung T, Wongkham S. Repurposing metformin for cancer treatment: a great challenge of a promising drug. Anticancer Res 2021; 41(12): 5913–5918
CrossRef
Pubmed
Google scholar
|
[203] |
Morale MG, Tamura RE, Rubio IGS. Metformin and cancer hallmarks: molecular mechanisms in thyroid, prostate and head and neck cancer models. Biomolecules 2022; 12(3): 357
CrossRef
Pubmed
Google scholar
|
[204] |
Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell 2011; 144(5): 646–674
CrossRef
Pubmed
Google scholar
|
[205] |
Luengo A, Gui DY, Vander Heiden MG. Targeting metabolism for cancer therapy. Cell Chem Biol 2017; 24(9): 1161–1180
CrossRef
Pubmed
Google scholar
|
[206] |
Ranganathan P, McLeod HL. Methotrexate pharmacogenetics: the first step toward individualized therapy in rheumatoid arthritis. Arthritis Rheum 2006; 54(5): 1366–1377
CrossRef
Pubmed
Google scholar
|
[207] |
Pålsson-McDermott EM, O’Neill LAJ. Targeting immunometabolism as an anti-inflammatory strategy. Cell Res 2020; 30(4): 300–314
CrossRef
Pubmed
Google scholar
|
[208] |
Di Martino L, Tosello V, Peroni E, Piovan E. Insights on metabolic reprogramming and its therapeutic potential in acute leukemia. Int J Mol Sci 2021; 22(16): 8738
CrossRef
Pubmed
Google scholar
|
[209] |
Ogawa M, Matsuda T, Ogata A, Hamasaki T, Kumanogoh A, Toyofuku T, Tanaka T. DNA damage in rheumatoid arthritis: an age-dependent increase in the lipid peroxidation-derived DNA adduct, heptanone-etheno-2′-deoxycytidine. Autoimmune Dis 2013; 2013: 183487
CrossRef
Pubmed
Google scholar
|
[210] |
El-Sheikh AA, Morsy MA, Abdalla AM, Hamouda AH, Alhaider IA. Mechanisms of thymoquinone hepatorenal protection in methotrexate-induced toxicity in rats. Mediators Inflamm 2015; 2015: 859383
CrossRef
Pubmed
Google scholar
|
[211] |
Rizk FH, Saadany AAE, Dawood L, Elkaliny HH, Sarhan NI, Badawi R, Abd-Elsalam S. Metformin ameliorated methotrexate-induced hepatorenal toxicity in rats in addition to its antitumor activity: two birds with one stone. J Inflamm Res 2018; 11: 421–429
CrossRef
Pubmed
Google scholar
|
[212] |
Owumi SE, Ajijola IJ, Agbeti OM. Hepatorenal protective effects of protocatechuic acid in rats administered with anticancer drug methotrexate. Hum Exp Toxicol 2019; 38(11): 1254–1265
CrossRef
Pubmed
Google scholar
|
[213] |
Wang Y, Lu H, Sun L, Chen X, Wei H, Suo C, Feng J, Yuan M, Shen S, Jia W, Wang Y, Zhang H, Li Z, Zhong X, Gao P. Metformin sensitises hepatocarcinoma cells to methotrexate by targeting dihydrofolate reductase. Cell Death Dis 2021; 12(10): 902
CrossRef
Pubmed
Google scholar
|
[214] |
Poulsen KL, Olivero-Verbel J, Beggs KM, Ganey PE, Roth RA. Trovafloxacin enhances lipopolysaccharide-stimulated production of tumor necrosis factor-α by macrophages: role of the DNA damage response. J Pharmacol Exp Ther 2014; 350(1): 164–170
CrossRef
Pubmed
Google scholar
|
[215] |
Harada K, Ferdous T, Harada T, Ueyama Y. Metformin in combination with 5-fluorouracil suppresses tumor growth by inhibiting the Warburg effect in human oral squamous cell carcinoma. Int J Oncol 2016; 49(1): 276–284
CrossRef
Pubmed
Google scholar
|
[216] |
Honjo S, Ajani JA, Scott AW, Chen Q, Skinner HD, Stroehlein J, Johnson RL, Song S. Metformin sensitizes chemotherapy by targeting cancer stem cells and the mTOR pathway in esophageal cancer. Int J Oncol 2014; 45(2): 567–574
CrossRef
Pubmed
Google scholar
|
[217] |
Tian Y, Tang B, Wang C, Sun D, Zhang R, Luo N, Han Z, Liang R, Gao Z, Wang L. Metformin mediates resensitivity to 5-fluorouracil in hepatocellular carcinoma via the suppression of YAP. Oncotarget 2016; 7(29): 46230–46241
CrossRef
Pubmed
Google scholar
|
[218] |
Miranda VC, Braghiroli MI, Faria LD, Bariani G, Alex A, Bezerra Neto JE, Capareli FC, Sabbaga J, Lobo Dos Santos JF, Hoff PM, Riechelmann RP. Phase 2 trial of metformin combined with 5-fluorouracil in patients with refractory metastatic colorectal cancer. Clin Colorectal Cancer 2016; 15(4): 321–328.e1
CrossRef
Pubmed
Google scholar
|
[219] |
You R, Wang B, Chen P, Zheng X, Hou D, Wang X, Zhang B, Chen L, Li D, Lin X, Huang H. Metformin sensitizes AML cells to chemotherapy through blocking mitochondrial transfer from stromal cells to AML cells. Cancer Lett 2022; 532: 215582
CrossRef
Pubmed
Google scholar
|
[220] |
Zhang Y, Paikari A, Sumazin P, Ginter Summarell CC, Crosby JR, Boerwinkle E, Weiss MJ, Sheehan VA. Metformin induces FOXO3-dependent fetal hemoglobin production in human primary erythroid cells. Blood 2018; 132(3): 321–333
CrossRef
Pubmed
Google scholar
|
[221] |
Taba K, Kuramitsu Y, Ryozawa S, Yoshida K, Tanaka T, Maehara S, Maehara Y, Sakaida I, Nakamura K. Heat-shock protein 27 is phosphorylated in gemcitabine-resistant pancreatic cancer cells. Anticancer Res 2010; 30(7): 2539–2543
Pubmed
|
[222] |
Baron B, Wang Y, Maehara S, Maehara Y, Kuramitsu Y, Nakamura K. Resistance to gemcitabine in the pancreatic cancer cell line KLM1-R reversed by metformin action. Anticancer Res 2015; 35(4): 1941–1949
Pubmed
|
[223] |
Chai X, Chu H, Yang X, Meng Y, Shi P, Gou S. Metformin increases sensitivity of pancreatic cancer cells to gemcitabine by reducing CD133+ cell populations and suppressing ERK/P70S6K signaling. Sci Rep 2015; 5(1): 14404
CrossRef
Pubmed
Google scholar
|
[224] |
Yi Y, Gao L, Wu M, Ao J, Zhang C, Wang X, Lin M, Bergholz J, Zhang Y, Xiao ZJ. Metformin sensitizes leukemia cells to vincristine via activation of AMP-activated protein kinase. J Cancer 2017; 8(13): 2636–2642
CrossRef
Pubmed
Google scholar
|
[225] |
Trucco M, Barredo JC, Goldberg J, Leclerc GM, Hale GA, Gill J, Setty B, Smith T, Lush R, Lee JK, Reed DR. A phase I window, dose escalating and safety trial of metformin in combination with induction chemotherapy in relapsed refractory acute lymphoblastic leukemia: Metformin with induction chemotherapy of vincristine, dexamethasone, PEG-asparaginase, and doxorubicin. Pediatr Blood Cancer 2018; 65(9): e27224
CrossRef
Pubmed
Google scholar
|
[226] |
Fan X, Zhong HJ, Zhao BB, Ou Yang BS, Zhao Y, Ye J, Lu YM, Wang CF, Xiong H, Chen SJ, Janin A, Wang L, Zhao WL. Metformin prolonged the survival of diffuse large B-cell lymphoma and grade 3b follicular lymphoma patients responding to first-line treatment with rituximab plus cyclophosphamide, doxorubicin, vincristine, and prednisone: a prospective phase II clinical trial. Transl Cancer Res 2018; 7(4): 1044–1053
CrossRef
Google scholar
|
[227] |
Hanna RK, Zhou C, Malloy KM, Sun L, Zhong Y, Gehrig PA, Bae-Jump VL. Metformin potentiates the effects of paclitaxel in endometrial cancer cells through inhibition of cell proliferation and modulation of the mTOR pathway. Gynecol Oncol 2012; 125(2): 458–469
CrossRef
Pubmed
Google scholar
|
[228] |
Rocha GZ, Dias MM, Ropelle ER, Osório-Costa F, Rossato FA, Vercesi AE, Saad MJ, Carvalheira JB. Metformin amplifies chemotherapy-induced AMPK activation and antitumoral growth. Clin Cancer Res 2011; 17(12): 3993–4005
CrossRef
Pubmed
Google scholar
|
[229] |
Zhao Y, Zeng X, Tang H, Ye D, Liu J. Combination of metformin and paclitaxel suppresses proliferation and induces apoptosis of human prostate cancer cells via oxidative stress and targeting the mitochondria-dependent pathway. Oncol Lett 2019; 17(5): 4277–4284
CrossRef
Pubmed
Google scholar
|
[230] |
Tseng SC, Huang YC, Chen HJ, Chiu HC, Huang YJ, Wo TY, Weng SH, Lin YW. Metformin-mediated downregulation of p38 mitogen-activated protein kinase-dependent excision repair cross-complementing 1 decreases DNA repair capacity and sensitizes human lung cancer cells to paclitaxel. Biochem Pharmacol 2013; 85(4): 583–594
CrossRef
Pubmed
Google scholar
|
[231] |
Lengyel E, Litchfield LM, Mitra AK, Nieman KM, Mukherjee A, Zhang Y, Johnson A, Bradaric M, Lee W, Romero IL. Metformin inhibits ovarian cancer growth and increases sensitivity to paclitaxel in mouse models. Am J Obstet Gynecol. 2015; 212(4): 479.e1–479.e10
CrossRef
Pubmed
Google scholar
|
[232] |
Mayer MJ, Klotz LH, Venkateswaran V. The effect of metformin use during docetaxel chemotherapy on prostate cancer specific and overall survival of diabetic patients with castration resistant prostate cancer. J Urol 2017; 197(4): 1068–1075
CrossRef
Pubmed
Google scholar
|
[233] |
Mayer MJ, Klotz LH, Venkateswaran V. Evaluating metformin as a potential chemosensitizing agent when combined with docetaxel chemotherapy in castration-resistant prostate cancer cells. Anticancer Res 2017; 37(12): 6601–6607
Pubmed
|
[234] |
Babcook MA, Shukla S, Fu P, Vazquez EJ, Puchowicz MA, Molter JP, Oak CZ, MacLennan GT, Flask CA, Lindner DJ, Parker Y, Daneshgari F, Gupta S. Synergistic simvastatin and metformin combination chemotherapy for osseous metastatic castration-resistant prostate cancer. Mol Cancer Ther 2014; 13(10): 2288–2302
CrossRef
Pubmed
Google scholar
|
[235] |
Fontebasso AM, Schwartzentruber J, Khuong-Quang DA, Liu XY, Sturm D, Korshunov A, Jones DT, Witt H, Kool M, Albrecht S, Fleming A, Hadjadj D, Busche S, Lepage P, Montpetit A, Staffa A, Gerges N, Zakrzewska M, Zakrzewski K, Liberski PP, Hauser P, Garami M, Klekner A, Bognar L, Zadeh G, Faury D, Pfister SM, Jabado N, Majewski J. Mutations in SETD2 and genes affecting histone H3K36 methylation target hemispheric high-grade gliomas. Acta Neuropathol 2013; 125(5): 659–669
CrossRef
Pubmed
Google scholar
|
[236] |
Li Y, Luo J, Lin MT, Zhi P, Guo WW, Han M, You J, Gao JQ. Co-delivery of metformin enhances the antimultidrug resistant tumor effect of doxorubicin by improving hypoxic tumor microenvironment. Mol Pharm 2019; 16(7): 2966–2979
CrossRef
Pubmed
Google scholar
|
[237] |
Ashour AE, Sayed-Ahmed MM, Abd-Allah AR, Korashy HM, Maayah ZH, Alkhalidi H, Mubarak M, Alhaider A. Metformin rescues the myocardium from doxorubicin-induced energy starvation and mitochondrial damage in rats. Oxid Med Cell Longev 2012; 2012: 434195
CrossRef
Pubmed
Google scholar
|
[238] |
Ajzashokouhi AH, Bostan HB, Jomezadeh V, Hayes AW, Karimi G. A review on the cardioprotective mechanisms of metformin against doxorubicin. Hum Exp Toxicol 2020; 39(3): 237–248
CrossRef
Pubmed
Google scholar
|
[239] |
Kobashigawa LC, Xu YC, Padbury JF, Tseng YT, Yano N. Metformin protects cardiomyocyte from doxorubicin induced cytotoxicity through an AMP-activated protein kinase dependent signaling pathway: an in vitro study. PLoS One 2014; 9(8): e104888
CrossRef
Pubmed
Google scholar
|
[240] |
Shafiei-Irannejad V, Samadi N, Yousefi B, Salehi R, Velaei K, Zarghami N. Metformin enhances doxorubicin sensitivity via inhibition of doxorubicin efflux in P-gp-overexpressing MCF-7 cells. Chem Biol Drug Des 2018; 91(1): 269–276
CrossRef
Pubmed
Google scholar
|
[241] |
Chen G, Xu S, Renko K, Derwahl M. Metformin inhibits growth of thyroid carcinoma cells, suppresses self-renewal of derived cancer stem cells, and potentiates the effect of chemotherapeutic agents. J Clin Endocrinol Metab 2012; 97(4): E510–E520
CrossRef
Pubmed
Google scholar
|
[242] |
Hirsch HA, Iliopoulos D, Struhl K. Metformin inhibits the inflammatory response associated with cellular transformation and cancer stem cell growth. Proc Natl Acad Sci USA 2013; 110(3): 972–977
CrossRef
Pubmed
Google scholar
|
[243] |
Iliopoulos D, Hirsch HA, Struhl K. Metformin decreases the dose of chemotherapy for prolonging tumor remission in mouse xenografts involving multiple cancer cell types. Cancer Res 2011; 71(9): 3196–3201
CrossRef
Pubmed
Google scholar
|
[244] |
Lee JO, Kang MJ, Byun WS, Kim SA, Seo IH, Han JA, Moon JW, Kim JH, Kim SJ, Lee EJ, In Park S, Park SH, Kim HS. Metformin overcomes resistance to cisplatin in triple-negative breast cancer (TNBC) cells by targeting RAD51. Breast Cancer Res 2019; 21(1): 115
CrossRef
Pubmed
Google scholar
|
[245] |
Lin CC, Yeh HH, Huang WL, Yan JJ, Lai WW, Su WP, Chen HH, Su WC. Metformin enhances cisplatin cytotoxicity by suppressing signal transducer and activator of transcription-3 activity independently of the liver kinase B1-AMP-activated protein kinase pathway. Am J Respir Cell Mol Biol 2013; 49(2): 241–250
CrossRef
Pubmed
Google scholar
|
[246] |
Tortelli TC Jr, Tamura RE, de Souza Junqueira M, da Silva Mororó J, Bustos SO, Natalino RJM, Russell S, Désaubry L, Strauss BE, Chammas R. Metformin-induced chemosensitization to cisplatin depends on P53 status and is inhibited by Jarid1b overexpression in non-small cell lung cancer cells. Aging (Albany NY) 2021; 13(18): 21914–21940
CrossRef
Pubmed
Google scholar
|
[247] |
Shi L, Mei Y, Duan X, Wang B. Effects of cisplatin combined with metformin on proliferation and apoptosis of nasopharyngeal carcinoma cells. Comput Math Methods Med 2022; 2022: 2056247
CrossRef
Pubmed
Google scholar
|
[248] |
Yasmeen A, Beauchamp MC, Piura E, Segal E, Pollak M, Gotlieb WH. Induction of apoptosis by metformin in epithelial ovarian cancer: involvement of the Bcl-2 family proteins. Gynecol Oncol 2011; 121(3): 492–498
CrossRef
Pubmed
Google scholar
|
[249] |
He K, Li Z, Ye K, Zhou Y, Yan M, Qi H, Hu H, Dai Y, Tang Y. Novel sequential therapy with metformin enhances the effects of cisplatin in testicular germ cell tumours via YAP1 signalling. Cancer Cell Int 2022; 22(1): 113
CrossRef
Pubmed
Google scholar
|
[250] |
Liang Z, Zhang T, Zhan T, Cheng G, Zhang W, Jia H, Yang H. Metformin alleviates cisplatin-induced ototoxicity by autophagy induction possibly via the AMPK/FOXO3a pathway. J Neurophysiol 2021; 125(4): 1202–1212
CrossRef
Pubmed
Google scholar
|
[251] |
Zhou W, Kavelaars A, Heijnen CJ. Metformin prevents cisplatin-induced cognitive impairment and brain damage in mice. PLoS One 2016; 11(3): e0151890
CrossRef
Pubmed
Google scholar
|
[252] |
Haas CS, Creighton CJ, Pi X, Maine I, Koch AE, Haines GK, Ling S, Chinnaiyan AM, Holoshitz J. Identification of genes modulated in rheumatoid arthritis using complementary DNA microarray analysis of lymphoblastoid B cell lines from disease-discordant monozygotic twins. Arthritis Rheum 2006; 54(7): 2047–2060
CrossRef
Pubmed
Google scholar
|
[253] |
Tohamy AF, Hussein S, Moussa IM, Rizk H, Daghash S, Alsubki RA, Mubarak AS, Alshammari HO, Al-Maary KS, Hemeg HA. Lucrative antioxidant effect of metformin against cyclophosphamide induced nephrotoxicity. Saudi J Biol Sci 2021; 28(5): 2755–2761
CrossRef
Pubmed
Google scholar
|
[254] |
Ling S, Shan Q, Liu P, Feng T, Zhang X, Xiang P, Chen K, Xie H, Song P, Zhou L, Liu J, Zheng S, Xu X. Metformin ameliorates arsenic trioxide hepatotoxicity via inhibiting mitochondrial complex I. Cell Death Dis 2017; 8(11): e3159
CrossRef
Pubmed
Google scholar
|
[255] |
Yang X, Sun D, Tian Y, Ling S, Wang L. Metformin sensitizes hepatocellular carcinoma to arsenic trioxide-induced apoptosis by downregulating Bcl2 expression. Tumour Biol 2015; 36(4): 2957–2964
CrossRef
Pubmed
Google scholar
|
[256] |
Ling S, Xie H, Yang F, Shan Q, Dai H, Zhuo J, Wei X, Song P, Zhou L, Xu X, Zheng S. Metformin potentiates the effect of arsenic trioxide suppressing intrahepatic cholangiocarcinoma: roles of p38 MAPK, ERK3, and mTORC1. J Hematol Oncol 2017; 10(1): 59
CrossRef
Pubmed
Google scholar
|
[257] |
Wheeler DL, Dunn EF, Harari PM. Understanding resistance to EGFR inhibitors-impact on future treatment strategies. Nat Rev Clin Oncol 2010; 7(9): 493–507
CrossRef
Pubmed
Google scholar
|
[258] |
Chen H, Wang Y, Lin C, Lu C, Han R, Jiao L, Li L, He Y. Vorinostat and metformin sensitize EGFR-TKI resistant NSCLC cells via BIM-dependent apoptosis induction. Oncotarget 2017; 8(55): 93825–93838
CrossRef
Pubmed
Google scholar
|
[259] |
Li L, Han R, Xiao H, Lin C, Wang Y, Liu H, Li K, Chen H, Sun F, Yang Z, Jiang J, He Y. Metformin sensitizes EGFR-TKI-resistant human lung cancer cells in vitro and in vivo through inhibition of IL-6 signaling and EMT reversal. Clin Cancer Res 2014; 20(10): 2714–2726
CrossRef
Pubmed
Google scholar
|
[260] |
Pan YH, Jiao L, Lin CY, Lu CH, Li L, Chen HY, Wang YB, He Y. Combined treatment with metformin and gefitinib overcomes primary resistance to EGFR-TKIs with EGFR mutation via targeting IGF-1R signaling pathway. Biologics 2018; 12: 75–86
Pubmed
|
[261] |
Saif MW. Pancreatic neoplasm in 2011: an update. JOP 2011; 12(4): 316–321
Pubmed
|
[262] |
Ariaans G, Jalving M, Vries EG, Jong S. Anti-tumor effects of everolimus and metformin are complementary and glucose-dependent in breast cancer cells. BMC Cancer 2017; 17(1): 232
CrossRef
Pubmed
Google scholar
|
[263] |
Fuentes-Mattei E, Velazquez-Torres G, Phan L, Zhang F, Chou PC, Shin JH, Choi HH, Chen JS, Zhao R, Chen J, Gully C, Carlock C, Qi Y, Zhang Y, Wu Y, Esteva FJ, Luo Y, McKeehan WL, Ensor J, Hortobagyi GN, Pusztai L, Fraser Symmans W, Lee MH, Yeung SC. Effects of obesity on transcriptomic changes and cancer hallmarks in estrogen receptor-positive breast cancer. J Natl Cancer Inst 2014; 106(7): dju158
CrossRef
Pubmed
Google scholar
|
[264] |
Pusceddu S, Vernieri C, Di Maio M, Marconcini R, Spada F, Massironi S, Ibrahim T, Brizzi MP, Campana D, Faggiano A, Giuffrida D, Rinzivillo M, Cingarlini S, Aroldi F, Antonuzzo L, Berardi R, Catena L, De Divitiis C, Ermacora P, Perfetti V, Fontana A, Razzore P, Carnaghi C, Davì MV, Cauchi C, Duro M, Ricci S, Fazio N, Cavalcoli F, Bongiovanni A, La Salvia A, Brighi N, Colao A, Puliafito I, Panzuto F, Ortolani S, Zaniboni A, Di Costanzo F, Torniai M, Bajetta E, Tafuto S, Garattini SK, Femia D, Prinzi N, Concas L, Lo Russo G, Milione M, Giacomelli L, Buzzoni R, Delle Fave G, Mazzaferro V, de Braud F. Metformin use is associated with longer progression-free survival of patients with diabetes and pancreatic neuroendocrine tumors receiving everolimus and/or somatostatin analogues. Gastroenterology 2018; 155(2): 479–489.e7
CrossRef
Pubmed
Google scholar
|
[265] |
Gerber HP, Ferrara N. Pharmacology and pharmacodynamics of bevacizumab as monotherapy or in combination with cytotoxic therapy in preclinical studies. Cancer Res 2005; 65(3): 671–680
CrossRef
Pubmed
Google scholar
|
[266] |
Ferrara N, Hillan KJ, Gerber HP, Novotny W. Discovery and development of bevacizumab, an anti-VEGF antibody for treating cancer. Nat Rev Drug Discov 2004; 3(5): 391–400
CrossRef
Pubmed
Google scholar
|
[267] |
Indraccolo S, Randon G, Zulato E, Nardin M, Aliberti C, Pomerri F, Casarin A, Nicoletto MO. Metformin: a modulator of bevacizumab activity in cancer? A case report. Cancer Biol Ther 2015; 16(2): 210–214
CrossRef
Pubmed
Google scholar
|
[268] |
Markowska A, Sajdak S, Markowska J, Huczyński A. Angiogenesis and cancer stem cells: new perspectives on therapy of ovarian cancer. Eur J Med Chem 2017; 142: 87–94
CrossRef
Pubmed
Google scholar
|
[269] |
Klapper LN, Waterman H, Sela M, Yarden Y. Tumor-inhibitory antibodies to HER-2/ErbB-2 may act by recruiting c-Cbl and enhancing ubiquitination of HER-2. Cancer Res 2000; 60(13): 3384–3388
Pubmed
|
[270] |
Zeglinski M, Ludke A, Jassal DS, Singal PK. Trastuzumab-induced cardiac dysfunction: a ‘dual-hit’. Exp Clin Cardiol 2011; 16(3): 70–74
Pubmed
|
[271] |
Hirsch HA, Iliopoulos D, Tsichlis PN, Struhl K. Metformin selectively targets cancer stem cells, and acts together with chemotherapy to block tumor growth and prolong remission. Cancer Res 2009; 69(19): 7507–7511
CrossRef
Pubmed
Google scholar
|
[272] |
Liu B, Fan Z, Edgerton SM, Yang X, Lind SE, Thor AD. Potent anti-proliferative effects of metformin on trastuzumab-resistant breast cancer cells via inhibition of erbB2/IGF-1 receptor interactions. Cell Cycle 2011; 10(17): 2959–2966
CrossRef
Pubmed
Google scholar
|
[273] |
Groenendijk FH, Mellema WW, van der Burg E, Schut E, Hauptmann M, Horlings HM, Willems SM, van den Heuvel MM, Jonkers J, Smit EF, Bernards R. Sorafenib synergizes with metformin in NSCLC through AMPK pathway activation. Int J Cancer 2015; 136(6): 1434–1444
CrossRef
Pubmed
Google scholar
|
[274] |
Chen G, Nicula D, Renko K, Derwahl M. Synergistic anti-proliferative effect of metformin and sorafenib on growth of anaplastic thyroid cancer cells and their stem cells. Oncol Rep 2015; 33(4): 1994–2000
CrossRef
Pubmed
Google scholar
|
[275] |
Hsieh SC, Tsai JP, Yang SF, Tang MJ, Hsieh YH. Metformin inhibits the invasion of human hepatocellular carcinoma cells and enhances the chemosensitivity to sorafenib through a downregulation of the ERK/JNK-mediated NF-κB-dependent pathway that reduces uPA and MMP-9 expression. Amino Acids 2014; 46(12): 2809–2822
CrossRef
Pubmed
Google scholar
|
[276] |
Lai HY, Tsai HH, Yen CJ, Hung LY, Yang CC, Ho CH, Liang HY, Chen FW, Li CF, Wang JM. Metformin resensitizes sorafenib-resistant HCC cells through AMPK-dependent autophagy activation. Front Cell Dev Biol 2021; 8: 596655
CrossRef
Pubmed
Google scholar
|
[277] |
Mitchell R, Hopcroft LEM, Baquero P, Allan EK, Hewit K, James D, Hamilton G, Mukhopadhyay A, O’Prey J, Hair A, Melo JV, Chan E, Ryan KM, Maguer-Satta V, Druker BJ, Clark RE, Mitra S, Herzyk P, Nicolini FE, Salomoni P, Shanks E, Calabretta B, Holyoake TL, Helgason GV. Targeting BCR-ABL-independent TKI resistance in chronic myeloid leukemia by mTOR and autophagy inhibition. J Natl Cancer Inst 2018; 110(5): 467–478
CrossRef
Pubmed
Google scholar
|
[278] |
Vakana E, Altman JK, Glaser H, Donato NJ, Platanias LC. Antileukemic effects of AMPK activators on BCR-ABL-expressing cells. Blood 2011; 118(24): 6399–6402
CrossRef
Pubmed
Google scholar
|
[279] |
Bagchi S, Yuan R, Engleman EG. Immune checkpoint inhibitors for the treatment of cancer: clinical impact and mechanisms of response and resistance. Annu Rev Pathol 2021; 16(1): 223–249
CrossRef
Pubmed
Google scholar
|
[280] |
Cha JH, Yang WH, Xia W, Wei Y, Chan LC, Lim SO, Li CW, Kim T, Chang SS, Lee HH, Hsu JL, Wang HL, Kuo CW, Chang WC, Hadad S, Purdie CA, McCoy AM, Cai S, Tu Y, Litton JK, Mittendorf EA, Moulder SL, Symmans WF, Thompson AM, Piwnica-Worms H, Chen CH, Khoo KH, Hung MC. Metformin promotes antitumor immunity via endoplasmic-reticulum-associated degradation of PD-L1. Mol Cell 2018; 71(4): 606–620.e7
CrossRef
Pubmed
Google scholar
|
[281] |
Darvin P, Toor SM, Sasidharan Nair V, Elkord E. Immune checkpoint inhibitors: recent progress and potential biomarkers. Exp Mol Med 2018; 50(12): 1–11
CrossRef
Pubmed
Google scholar
|
[282] |
Philip M, Schietinger A. CD8+ T cell differentiation and dysfunction in cancer. Nat Rev Immunol 2022; 22(4): 209–223
CrossRef
Pubmed
Google scholar
|
[283] |
Yi JS, Cox MA, Zajac AJ. T-cell exhaustion: characteristics, causes and conversion. Immunology 2010; 129(4): 474–481
CrossRef
Pubmed
Google scholar
|
[284] |
Eikawa S, Nishida M, Mizukami S, Yamazaki C, Nakayama E, Udono H. Immune-mediated antitumor effect by type 2 diabetes drug, metformin. Proc Natl Acad Sci USA 2015; 112(6): 1809–1814
CrossRef
Pubmed
Google scholar
|
[285] |
Zhang Z, Li F, Tian Y, Cao L, Gao Q, Zhang C, Zhang K, Shen C, Ping Y, Maimela NR, Wang L, Zhang B, Zhang Y. Metformin enhances the antitumor activity of CD8+ T lymphocytes via the AMPK-miR-107-Eomes-PD-1 Pathway. J Immunol 2020; 204(9): 2575–2588
CrossRef
Pubmed
Google scholar
|
[286] |
Afzal MZ, Mercado RR, Shirai K. Efficacy of metformin in combination with immune checkpoint inhibitors (anti-PD-1/anti-CTLA-4) in metastatic malignant melanoma. J Immunother Cancer 2018; 6(1): 64
CrossRef
Pubmed
Google scholar
|
[287] |
Chung YM, Khan PP, Wang H, Tsai WB, Qiao Y, Yu B, Larrick JW, Hu MC. Sensitizing tumors to anti-PD-1 therapy by promoting NK and CD8+ T cells via pharmacological activation of FOXO3. J Immunother Cancer 2021; 9(12): e002772
CrossRef
Pubmed
Google scholar
|
[288] |
Munoz LE, Huang L, Bommireddy R, Sharma R, Monterroza L, Guin RN, Samaranayake SG, Pack CD, Ramachandiran S, Reddy SJC, Shanmugam M, Selvaraj P. Metformin reduces PD-L1 on tumor cells and enhances the anti-tumor immune response generated by vaccine immunotherapy. J Immunother Cancer 2021; 9(11): e002614
CrossRef
Pubmed
Google scholar
|
[289] |
Scharping NE, Menk AV, Whetstone RD, Zeng X, Delgoffe GM. Efficacy of PD-1 blockade is potentiated by metformin-induced reduction of tumor hypoxia. Cancer Immunol Res 2017; 5(1): 9–16
CrossRef
Pubmed
Google scholar
|
[290] |
Wu SY, Fu T, Jiang YZ, Shao ZM. Natural killer cells in cancer biology and therapy. Mol Cancer 2020; 19(1): 120
CrossRef
Pubmed
Google scholar
|
[291] |
Xia C, Liu C, He Z, Cai Y, Chen J. Metformin inhibits cervical cancer cell proliferation by modulating PI3K/Akt-induced major histocompatibility complex class I-related chain A gene expression. J Exp Clin Cancer Res 2020; 39(1): 127
CrossRef
Pubmed
Google scholar
|
[292] |
Xia W, Qi X, Li M, Wu Y, Sun L, Fan X, Yuan Y, Li J. Metformin promotes anticancer activity of NK cells in a p38 MAPK dependent manner. OncoImmunology 2021; 10(1): 1995999
CrossRef
Pubmed
Google scholar
|
[293] |
Tesi RJ. MDSC; the most important cell you have never heard of. Trends Pharmacol Sci 2019; 40(1): 4–7
CrossRef
Pubmed
Google scholar
|
[294] |
Xu P, Yin K, Tang X, Tian J, Zhang Y, Ma J, Xu H, Xu Q, Wang S. Metformin inhibits the function of granulocytic myeloid-derived suppressor cells in tumor-bearing mice. Biomed Pharmacother 2019; 120: 109458
CrossRef
Pubmed
Google scholar
|
[295] |
Qin G, Lian J, Huang L, Zhao Q, Liu S, Zhang Z, Chen X, Yue D, Li L, Li F, Wang L, Umansky V, Zhang B, Yang S, Zhang Y. Metformin blocks myeloid-derived suppressor cell accumulation through AMPK-DACH1-CXCL1 axis. OncoImmunology 2018; 7(7): e1442167
CrossRef
Pubmed
Google scholar
|
[296] |
Li L, Wang L, Li J, Fan Z, Yang L, Zhang Z, Zhang C, Yue D, Qin G, Zhang T, Li F, Chen X, Ping Y, Wang D, Gao Q, He Q, Huang L, Li H, Huang J, Zhao X, Xue W, Sun Z, Lu J, Yu JJ, Zhao J, Zhang B, Zhang Y. Metformin-induced reduction of CD39 and CD73 blocks myeloid-derived suppressor cell activity in patients with ovarian cancer. Cancer Res 2018; 78(7): 1779–1791
CrossRef
Pubmed
Google scholar
|
[297] |
Ding L, Liang G, Yao Z, Zhang J, Liu R, Chen H, Zhou Y, Wu H, Yang B, He Q. Metformin prevents cancer metastasis by inhibiting M2-like polarization of tumor associated macrophages. Oncotarget 2015; 6(34): 36441–36455
CrossRef
Pubmed
Google scholar
|
[298] |
Chiang CF, Chao TT, Su YF, Hsu CC, Chien CY, Chiu KC, Shiah SG, Lee CH, Liu SY, Shieh YS. Metformin-treated cancer cells modulate macrophage polarization through AMPK-NF-κB signaling. Oncotarget 2017; 8(13): 20706–20718
CrossRef
Pubmed
Google scholar
|
[299] |
Wang JC, Sun X, Ma Q, Fu GF, Cong LL, Zhang H, Fan DF, Feng J, Lu SY, Liu JL, Li GY, Liu PJ. Metformin’s antitumour and anti-angiogenic activities are mediated by skewing macrophage polarization. J Cell Mol Med 2018; 22(8): 3825–3836
CrossRef
Pubmed
Google scholar
|
[300] |
Wang S, Lin Y, Xiong X, Wang L, Guo Y, Chen Y, Chen S, Wang G, Lin P, Chen H, Yeung SJ, Bremer E, Zhang H. Low-dose metformin reprograms the tumor immune microenvironment in human esophageal cancer: results of a phase II clinical trial. Clin Cancer Res 2020; 26(18): 4921–4932
CrossRef
Pubmed
Google scholar
|
[301] |
Saito A, Kitayama J, Horie H, Koinuma K, Ohzawa H, Yamaguchi H, Kawahira H, Mimura T, Lefor AK, Sata N. Metformin changes the immune microenvironment of colorectal cancer in patients with type 2 diabetes mellitus. Cancer Sci 2020; 111(11): 4012–4020
CrossRef
Pubmed
Google scholar
|
[302] |
Kunisada Y, Eikawa S, Tomonobu N, Domae S, Uehara T, Hori S, Furusawa Y, Hase K, Sasaki A, Udono H. Attenuation of CD4+CD25+ regulatory T cells in the tumor microenvironment by metformin, a type 2 diabetes drug. EBioMedicine 2017; 25: 154–164
CrossRef
Pubmed
Google scholar
|
[303] |
Veeramachaneni R, Yu W, Newton JM, Kemnade JO, Skinner HD, Sikora AG, Sandulache VC. Metformin generates profound alterations in systemic and tumor immunity with associated antitumor effects. J Immunother Cancer 2021; 9(7): e002773
CrossRef
Pubmed
Google scholar
|
[304] |
da Costa JP, Vitorino R, Silva GM, Vogel C, Duarte AC, Rocha-Santos T. A synopsis on aging—theories, mechanisms and future prospects. Ageing Res Rev 2016; 29: 90–112
CrossRef
Pubmed
Google scholar
|
[305] |
Childs BG, Durik M, Baker DJ, van Deursen JM. Cellular senescence in aging and age-related disease: from mechanisms to therapy. Nat Med 2015; 21(12): 1424–1435
CrossRef
Pubmed
Google scholar
|
[306] |
Rudnicka E, Napierała P, Podfigurna A, Męczekalski B, Smolarczyk R, Grymowicz M. The World Health Organization (WHO) approach to healthy ageing. Maturitas 2020; 139: 6–11
CrossRef
Pubmed
Google scholar
|
[307] |
Bannister CA, Holden SE, Jenkins-Jones S, Morgan CL, Halcox JP, Schernthaner G, Mukherjee J, Currie CJ. Can people with type 2 diabetes live longer than those without? A comparison of mortality in people initiated with metformin or sulphonylurea monotherapy and matched, non-diabetic controls. Diabetes Obes Metab 2014; 16(11): 1165–1173
CrossRef
Pubmed
Google scholar
|
[308] |
Chen J, Ou Y, Li Y, Hu S, Shao LW, Liu Y. Metformin extends C. elegans lifespan through lysosomal pathway. eLife 2017; 6: e31268
CrossRef
Pubmed
Google scholar
|
[309] |
Martin-Montalvo A, Mercken EM, Mitchell SJ, Palacios HH, Mote PL, Scheibye-Knudsen M, Gomes AP, Ward TM, Minor RK, Blouin MJ, Schwab M, Pollak M, Zhang Y, Yu Y, Becker KG, Bohr VA, Ingram DK, Sinclair DA, Wolf NS, Spindler SR, Bernier M, de Cabo R. Metformin improves healthspan and lifespan in mice. Nat Commun 2013; 4(1): 2192
CrossRef
Pubmed
Google scholar
|
[310] |
Kulkarni AS, Brutsaert EF, Anghel V, Zhang K, Bloomgarden N, Pollak M, Mar JC, Hawkins M, Crandall JP, Barzilai N. Metformin regulates metabolic and nonmetabolic pathways in skeletal muscle and subcutaneous adipose tissues of older adults. Aging Cell 2018; 17(2): e12723
CrossRef
Pubmed
Google scholar
|
[311] |
Justice JN, Niedernhofer L, Robbins PD, Aroda VR, Espeland MA, Kritchevsky SB, Kuchel GA, Barzilai N. Development of clinical trials to extend healthy lifespan. Cardiovasc Endocrinol Metab 2018; 7(4): 80–83
CrossRef
Pubmed
Google scholar
|
[312] |
Barzilai N, Crandall JP, Kritchevsky SB, Espeland MA. Metformin as a tool to target aging. Cell Metab 2016; 23(6): 1060–1065
CrossRef
Pubmed
Google scholar
|
[313] |
Blitzer AL, Ham SA, Colby KA, Skondra D. Association of metformin use with age-related macular degeneration: a case-control study. JAMA Ophthalmol 2021; 139(3): 302–309
CrossRef
Pubmed
Google scholar
|
[314] |
Goldberg RB, Aroda VR, Bluemke DA, Barrett-Connor E, Budoff M, Crandall JP, Dabelea D, Horton ES, Mather KJ, Orchard TJ, Schade D, Watson K, Temprosa M; Diabetes Prevention Program Research Group. Effect of long-term metformin and lifestyle in the diabetes prevention program and its outcome study on coronary artery calcium. Circulation 2017; 136(1): 52–64
CrossRef
Pubmed
Google scholar
|
[315] |
Zilov AV, Abdelaziz SI, AlShammary A, Al Zahrani A, Amir A, Assaad Khalil SH, Brand K, Elkafrawy N, Hassoun AAK, Jahed A, Jarrah N, Mrabeti S, Paruk I. Mechanisms of action of metformin with special reference to cardiovascular protection. Diabetes Metab Res Rev 2019; 35(7): e3173
CrossRef
Pubmed
Google scholar
|
[316] |
Han Y, Xie H, Liu Y, Gao P, Yang X, Shen Z. Effect of metformin on all-cause and cardiovascular mortality in patients with coronary artery diseases: a systematic review and an updated meta-analysis. Cardiovasc Diabetol 2019; 18(1): 96
CrossRef
Pubmed
Google scholar
|
[317] |
Havas A, Yin S, Adams PD. The role of aging in cancer. Mol Oncol 2022; 16(18): 3213–3219
CrossRef
Pubmed
Google scholar
|
[318] |
Morales DR, Morris AD. Metformin in cancer treatment and prevention. Annu Rev Med 2015; 66(1): 17–29
CrossRef
Pubmed
Google scholar
|
[319] |
Coyle C, Cafferty FH, Vale C, Langley RE. Metformin as an adjuvant treatment for cancer: a systematic review and meta-analysis. Ann Oncol 2016; 27(12): 2184–2195
CrossRef
Pubmed
Google scholar
|
[320] |
Farr SA, Roesler E, Niehoff ML, Roby DA, McKee A, Morley JE. Metformin improves learning and memory in the SAMP8 mouse model of Alzheimer’s disease. J Alzheimers Dis 2019; 68(4): 1699–1710
CrossRef
Pubmed
Google scholar
|
[321] |
Samaras K, Makkar S, Crawford JD, Kochan NA, Wen W, Draper B, Trollor JN, Brodaty H, Sachdev PS. Metformin use is associated with slowed cognitive decline and reduced incident dementia in older adults with type 2 diabetes: the Sydney Memory and Ageing Study. Diabetes Care 2020; 43(11): 2691–2701
CrossRef
Pubmed
Google scholar
|
[322] |
Zhou JB, Tang X, Han M, Yang J, Simó R. Impact of antidiabetic agents on dementia risk: a Bayesian network meta-analysis. Metabolism 2020; 109: 154265
CrossRef
Pubmed
Google scholar
|
[323] |
Bettedi L, Foukas LC. Growth factor, energy and nutrient sensing signalling pathways in metabolic ageing. Biogerontology 2017; 18(6): 913–929
CrossRef
Pubmed
Google scholar
|
[324] |
Admasu TD, Chaithanya Batchu K, Barardo D, Ng LF, Lam VYM, Xiao L, Cazenave-Gassiot A, Wenk MR, Tolwinski NS, Gruber J. Drug synergy slows aging and improves healthspan through IGF and SREBP lipid signaling. Dev Cell 2018; 47(1): 67–79.e5
CrossRef
Pubmed
Google scholar
|
[325] |
Anisimov VN, Berstein LM, Egormin PA, Piskunova TS, Popovich IG, Zabezhinski MA, Tyndyk ML, Yurova MV, Kovalenko IG, Poroshina TE, Semenchenko AV. Metformin slows down aging and extends life span of female SHR mice. Cell Cycle 2008; 7(17): 2769–2773
CrossRef
Pubmed
Google scholar
|
[326] |
Sunjaya AP, Sunjaya AF. Targeting ageing and preventing organ degeneration with metformin. Diabetes Metab 2021; 47(1): 101203
CrossRef
Pubmed
Google scholar
|
[327] |
Kubben N, Misteli T. Shared molecular and cellular mechanisms of premature ageing and ageing-associated diseases. Nat Rev Mol Cell Biol 2017; 18(10): 595–609
CrossRef
Pubmed
Google scholar
|
[328] |
Foo MXR, Ong PF, Dreesen O. Premature aging syndromes: from patients to mechanism. J Dermatol Sci 2019; 96(2): 58–65
CrossRef
Pubmed
Google scholar
|
[329] |
Kauppila TES, Bratic A, Jensen MB, Baggio F, Partridge L, Jasper H, Grönke S, Larsson NG. Mutations of mitochondrial DNA are not major contributors to aging of fruit flies. Proc Natl Acad Sci USA 2018; 115(41): E9620–E9629
CrossRef
Pubmed
Google scholar
|
[330] |
Kulkarni AS, Gubbi S, Barzilai N. Benefits of metformin in attenuating the hallmarks of aging. Cell Metab 2020; 32(1): 15–30
CrossRef
Pubmed
Google scholar
|
[331] |
Jiang Y, Dong Y, Luo Y, Jiang S, Meng FL, Tan M, Li J, Zang Y. AMPK-mediated phosphorylation on 53BP1 promotes c-NHEJ. Cell Rep 2021; 34(7): 108713
CrossRef
Pubmed
Google scholar
|
[332] |
Kudabayeva K, Kosmuratova R, Bazargaliyev Y, Sartayeva A, Kereyeva N. Effects of metformin on lymphocyte DNA damage in obese individuals among Kazakh population. Diabetes Metab Syndr 2022; 16(8): 102569
CrossRef
Pubmed
Google scholar
|
[333] |
Chukwunonso Obi B, Chinwuba Okoye T, Okpashi VE, Nonye Igwe C, Olisah Alumanah E. Comparative study of the antioxidant effects of metformin, glibenclamide, and repaglinide in alloxan-induced diabetic rats. J Diabetes Res 2016; 2016: 1635361
CrossRef
Pubmed
Google scholar
|
[334] |
Allard JS, Perez EJ, Fukui K, Carpenter P, Ingram DK, de Cabo R. Prolonged metformin treatment leads to reduced transcription of Nrf2 and neurotrophic factors without cognitive impairment in older C57BL/6J mice. Behav Brain Res 2016; 301: 1–9
CrossRef
Pubmed
Google scholar
|
[335] |
Anisimov VN, Berstein LM, Popovich IG, Zabezhinski MA, Egormin PA, Piskunova TS, Semenchenko AV, Tyndyk ML, Yurova MN, Kovalenko IG, Poroshina TE. If started early in life, metformin treatment increases life span and postpones tumors in female SHR mice. Aging (Albany NY) 2011; 3(2): 148–157
CrossRef
Pubmed
Google scholar
|
[336] |
Fang J, Yang J, Wu X, Zhang G, Li T, Wang X, Zhang H, Wang CC, Liu GH, Wang L. Metformin alleviates human cellular aging by upregulating the endoplasmic reticulum glutathione peroxidase 7. Aging Cell 2018; 17(4): e12765
CrossRef
Pubmed
Google scholar
|
[337] |
Moiseeva O, Deschênes-Simard X, St-Germain E, Igelmann S, Huot G, Cadar AE, Bourdeau V, Pollak MN, Ferbeyre G. Metformin inhibits the senescence-associated secretory phenotype by interfering with IKK/NF-κB activation. Aging Cell 2013; 12(3): 489–498
CrossRef
Pubmed
Google scholar
|
[338] |
Noren Hooten N, Martin-Montalvo A, Dluzen DF, Zhang Y, Bernier M, Zonderman AB, Becker KG, Gorospe M, de Cabo R, Evans MK. Metformin-mediated increase in DICER1 regulates microRNA expression and cellular senescence. Aging Cell 2016; 15(3): 572–581
CrossRef
Pubmed
Google scholar
|
[339] |
Bektas A, Schurman SH, Sen R, Ferrucci L. Aging, inflammation and the environment. Exp Gerontol 2018; 105: 10–18
CrossRef
Pubmed
Google scholar
|
[340] |
Piber D, Olmstead R, Cho JH, Witarama T, Perez C, Dietz N, Seeman TE, Breen EC, Cole SW, Irwin MR. Inflammaging: age and systemic, cellular, and nuclear inflammatory biology in older adults. J Gerontol A Biol Sci Med Sci 2019; 74(11): 1716–1724
CrossRef
Pubmed
Google scholar
|
[341] |
Rea IM, Gibson DS, McGilligan V, McNerlan SE, Alexander HD, Ross OA. Age and age-related diseases: role of inflammation triggers and cytokines. Front Immunol 2018; 9: 586
CrossRef
Pubmed
Google scholar
|
[342] |
Franceschi C, Campisi J. Chronic inflammation (inflammaging) and its potential contribution to age-associated diseases. J Gerontol A Biol Sci Med Sci 2014; 69(Suppl 1): S4–S9
CrossRef
Pubmed
Google scholar
|
[343] |
Tizazu AM, Nyunt MSZ, Cexus O, Suku K, Mok E, Xian CH, Chong J, Tan C, How W, Hubert S, Combet E, Fulop T, Ng TP, Larbi A. Metformin monotherapy downregulates diabetes-associated inflammatory status and impacts on mortality. Front Physiol 2019; 10: 572
CrossRef
Pubmed
Google scholar
|
[344] |
Chen W, Liu X, Ye S. Effects of metformin on blood and urine pro-inflammatory mediators in patients with type 2 diabetes. J Inflamm (Lond) 2016; 13(1): 34
CrossRef
Pubmed
Google scholar
|
[345] |
Xu X, Lin S, Chen Y, Li X, Ma S, Fu Y, Wei C, Wang C, Xu W. The effect of metformin on the expression of GPR109A, NF-κB and IL-1β in peripheral blood leukocytes from patients with type 2 diabetes mellitus. Ann Clin Lab Sci 2017; 47(5): 556–562
Pubmed
|
[346] |
Xu W, Deng YY, Yang L, Zhao S, Liu J, Zhao Z, Wang L, Maharjan P, Gao S, Tian Y, Zhuo X, Zhao Y, Zhou J, Yuan Z, Wu Y. Metformin ameliorates the proinflammatory state in patients with carotid artery atherosclerosis through sirtuin 1 induction. Transl Res 2015; 166(5): 451–458
CrossRef
Pubmed
Google scholar
|
[347] |
Saisho Y. Metformin and inflammation: its potential beyond glucose-lowering effect. Endocr Metab Immune Disord Drug Targets 2015; 15(3): 196–205
CrossRef
Pubmed
Google scholar
|
[348] |
Kristófi R, Eriksson JW. Metformin as an anti-inflammatory agent: a short review. J Endocrinol 2021; 251(2): R11–R22
CrossRef
Pubmed
Google scholar
|
[349] |
Gou L, Liu G, Ma R, Regmi A, Zeng T, Zheng J, Zhong X, Chen L. High fat-induced inflammation in vascular endothelium can be improved by Abelmoschus esculentus and metformin via increasing the expressions of miR-146a and miR-155. Nutr Metab (Lond) 2020; 17(1): 35
CrossRef
Pubmed
Google scholar
|
[350] |
Luo X, Hu R, Zheng Y, Liu S, Zhou Z. Metformin shows anti-inflammatory effects in murine macrophages through Dicer/microribonucleic acid-34a-5p and microribonucleic acid-125b-5p. J Diabetes Investig 2020; 11(1): 101–109
CrossRef
Pubmed
Google scholar
|
[351] |
Hipp MS, Kasturi P, Hartl FU. The proteostasis network and its decline in ageing. Nat Rev Mol Cell Biol 2019; 20(7): 421–435
CrossRef
Pubmed
Google scholar
|
[352] |
Kitada M, Koya D. Autophagy in metabolic disease and ageing. Nat Rev Endocrinol 2021; 17(11): 647–661
CrossRef
Pubmed
Google scholar
|
[353] |
Leidal AM, Levine B, Debnath J. Autophagy and the cell biology of age-related disease. Nat Cell Biol 2018; 20(12): 1338–1348
CrossRef
Pubmed
Google scholar
|
[354] |
Meléndez A, Tallóczy Z, Seaman M, Eskelinen EL, Hall DH, Levine B. Autophagy genes are essential for dauer development and life-span extension in C. elegans. Science 2003; 301(5638): 1387–1391
CrossRef
Pubmed
Google scholar
|
[355] |
Fernández ÁF, Sebti S, Wei Y, Zou Z, Shi M, McMillan KL, He C, Ting T, Liu Y, Chiang WC, Marciano DK, Schiattarella GG, Bhagat G, Moe OW, Hu MC, Levine B. Disruption of the beclin 1-BCL2 autophagy regulatory complex promotes longevity in mice. Nature 2018; 558(7708): 136–140
CrossRef
Pubmed
Google scholar
|
[356] |
Bhansali S, Bhansali A, Dutta P, Walia R, Dhawan V. Metformin upregulates mitophagy in patients with T2DM: a randomized placebo-controlled study. J Cell Mol Med 2020; 24(5): 2832–2846
CrossRef
Pubmed
Google scholar
|
[357] |
Bharath LP, Agrawal M, McCambridge G, Nicholas DA, Hasturk H, Liu J, Jiang K, Liu R, Guo Z, Deeney J, Apovian CM, Snyder-Cappione J, Hawk GS, Fleeman RM, Pihl RMF, Thompson K, Belkina AC, Cui L, Proctor EA, Kern PA, Nikolajczyk BS. Metformin enhances autophagy and normalizes mitochondrial function to alleviate aging-associated inflammation. Cell Metab 2020; 32(1): 44–55.e6
CrossRef
Pubmed
Google scholar
|
[358] |
Xu B, Dai W, Liu L, Han H, Zhang J, Du X, Pei X, Fu X. Metformin ameliorates polycystic ovary syndrome in a rat model by decreasing excessive autophagy in ovarian granulosa cells via the PI3K/AKT/mTOR pathway. Endocr J 2022; 69(7): 863–875
CrossRef
Pubmed
Google scholar
|
[359] |
Li M, Sharma A, Yin C, Tan X, Xiao Y. Metformin ameliorates hepatic steatosis and improves the induction of autophagy in HFD-induced obese mice. Mol Med Rep 2017; 16(1): 680–686
CrossRef
Pubmed
Google scholar
|
[360] |
You G, Long X, Song F, Huang J, Tian M, Xiao Y, Deng S, Wu Q. Metformin activates the AMPK-mTOR pathway by modulating lncRNA TUG1 to induce autophagy and inhibit atherosclerosis. Drug Des Devel Ther 2020; 14: 457–468
CrossRef
Pubmed
Google scholar
|
[361] |
Kodali M, Attaluri S, Madhu LN, Shuai B, Upadhya R, Gonzalez JJ, Rao X, Shetty AK. Metformin treatment in late middle age improves cognitive function with alleviation of microglial activation and enhancement of autophagy in the hippocampus. Aging Cell 2021; 20(2): e13277
CrossRef
Pubmed
Google scholar
|
[362] |
Whittemore K, Vera E, Martínez-Nevado E, Sanpera C, Blasco MA. Telomere shortening rate predicts species life span. Proc Natl Acad Sci USA 2019; 116(30): 15122–15127
CrossRef
Pubmed
Google scholar
|
[363] |
Huang J, Peng X, Dong K, Tao J, Yang Y. The association between antidiabetic agents and leukocyte telomere length in the novel classification of type 2 diabetes mellitus. Gerontology 2021; 67(1): 60–68
CrossRef
Pubmed
Google scholar
|
[364] |
Liu J, Ge Y, Wu S, Ma D, Xu W, Zhang Y, Yang Y. Association between antidiabetic agents use and leukocyte telomere shortening rates in patients with type 2 diabetes. Aging (Albany NY) 2019; 11(2): 741–755
CrossRef
Pubmed
Google scholar
|
[365] |
Rosa ECCC, Dos Santos RRC, Fernandes LFA, Neves FAR, Coelho MS, Amato AA. Leukocyte telomere length correlates with glucose control in adults with recently diagnosed type 2 diabetes. Diabetes Res Clin Pract 2018; 135: 30–36
CrossRef
Pubmed
Google scholar
|
[366] |
Sun N, Youle RJ, Finkel T. The mitochondrial basis of aging. Mol Cell 2016; 61(5): 654–666
CrossRef
Pubmed
Google scholar
|
[367] |
Konopka AR, Laurin JL, Schoenberg HM, Reid JJ, Castor WM, Wolff CA, Musci RV, Safairad OD, Linden MA, Biela LM, Bailey SM, Hamilton KL, Miller BF. Metformin inhibits mitochondrial adaptations to aerobic exercise training in older adults. Aging Cell 2019; 18(1): e12880
CrossRef
Pubmed
Google scholar
|
[368] |
Jang JY, Blum A, Liu J, Finkel T. The role of mitochondria in aging. J Clin Invest 2018; 128(9): 3662–3670
CrossRef
Pubmed
Google scholar
|
[369] |
Starling S. Metformin reduces ageing adipose senescence. Nat Rev Endocrinol 2021; 17(12): 708
Pubmed
|
[370] |
Karnewar S, Neeli PK, Panuganti D, Kotagiri S, Mallappa S, Jain N, Jerald MK, Kotamraju S. Metformin regulates mitochondrial biogenesis and senescence through AMPK mediated H3K79 methylation: relevance in age-associated vascular dysfunction. Biochim Biophys Acta Mol Basis Dis 2018; 186(4 Pt A): 1115–1128
CrossRef
Pubmed
Google scholar
|
[371] |
Vial G, Detaille D, Guigas B. Role of mitochondria in the mechanism(s) of action of metformin. Front Endocrinol (Lausanne) 2019; 10: 294
CrossRef
Pubmed
Google scholar
|
[372] |
López-Otín C, Blasco MA, Partridge L, Serrano M, Kroemer G. The hallmarks of aging. Cell 2013; 153(6): 1194–1217
CrossRef
Pubmed
Google scholar
|
[373] |
Neumann B, Baror R, Zhao C, Segel M, Dietmann S, Rawji KS, Foerster S, McClain CR, Chalut K, van Wijngaarden P, Franklin RJM. Metformin restores CNS remyelination capacity by rejuvenating aged stem cells. Cell Stem Cell 2019; 25(4): 473–485.e8
CrossRef
Pubmed
Google scholar
|
[374] |
Na HJ, Park JS, Pyo JH, Jeon HJ, Kim YS, Arking R, Yoo MA. Metformin inhibits age-related centrosome amplification in Drosophila midgut stem cells through AKT/TOR pathway. Mech Ageing Dev 2015; 149: 8–18
CrossRef
Pubmed
Google scholar
|
[375] |
Calabrese EJ, Agathokleous E, Kapoor R, Dhawan G, Kozumbo WJ, Calabrese V. Metformin-enhances resilience via hormesis. Ageing Res Rev 2021; 71: 101418
CrossRef
Pubmed
Google scholar
|
[376] |
Schmidt TSB, Raes J, Bork P. The human gut microbiome: from association to modulation. Cell 2018; 172(6): 1198–1215
CrossRef
Pubmed
Google scholar
|
[377] |
Antal B, McMahon LP, Sultan SF, Lithen A, Wexler DJ, Dickerson B, Ratai EM, Mujica-Parodi LR. Type 2 diabetes mellitus accelerates brain aging and cognitive decline: complementary findings from UK Biobank and meta-analyses. eLife 2022; 11: e73138
CrossRef
Pubmed
Google scholar
|
[378] |
Smith DL Jr, Elam CF Jr, Mattison JA, Lane MA, Roth GS, Ingram DK, Allison DB. Metformin supplementation and life span in Fischer-344 rats. J Gerontol A Biol Sci Med Sci 2010; 65(5): 468–474
CrossRef
Pubmed
Google scholar
|
[379] |
Espada L, Dakhovnik A, Chaudhari P, Martirosyan A, Miek L, Poliezhaieva T, Schaub Y, Nair A, Döring N, Rahnis N, Werz O, Koeberle A, Kirkpatrick J, Ori A, Ermolaeva MA. Loss of metabolic plasticity underlies metformin toxicity in aged Caenorhabditis elegans. Nat Metab 2020; 2(11): 1316–1331
CrossRef
Pubmed
Google scholar
|
[380] |
Walton RG, Dungan CM, Long DE, Tuggle SC, Kosmac K, Peck BD, Bush HM, Villasante Tezanos AG, McGwin G, Windham ST, Ovalle F, Bamman MM, Kern PA, Peterson CA. Metformin blunts muscle hypertrophy in response to progressive resistance exercise training in older adults: a randomized, double-blind, placebo-controlled, multicenter trial: the MASTERS trial. Aging Cell 2019; 18(6): e13039
CrossRef
Pubmed
Google scholar
|
[381] |
Xenos D, Mecocci P, Boccardi V. A blast from the past: to tame time with metformin. Mech Ageing Dev 2022; 208: 111743
CrossRef
Pubmed
Google scholar
|
[382] |
Hardie DG, Ross FA, Hawley SA. AMPK: a nutrient and energy sensor that maintains energy homeostasis. Nat Rev Mol Cell Biol 2012; 13(4): 251–262
CrossRef
Pubmed
Google scholar
|
[383] |
Cantó C, Auwerx J. AMP-activated protein kinase and its downstream transcriptional pathways. Cell Mol Life Sci 2010; 67(20): 3407–3423
CrossRef
Pubmed
Google scholar
|
[384] |
Feige JN, Auwerx J. Transcriptional coregulators in the control of energy homeostasis. Trends Cell Biol 2007; 17(6): 292–301
CrossRef
Pubmed
Google scholar
|
[385] |
Garcia D, Shaw RJ. AMPK: mechanisms of cellular energy sensing and restoration of metabolic balance. Mol Cell 2017; 66(6): 789–800
CrossRef
Pubmed
Google scholar
|
[386] |
Chung MM, Nicol CJ, Cheng YC, Lin KH, Chen YL, Pei D, Lin CH, Shih YN, Yen CH, Chen SJ, Huang RN, Chiang MC. Metformin activation of AMPK suppresses AGE-induced inflammatory response in hNSCs. Exp Cell Res 2017; 352(1): 75–83
CrossRef
Pubmed
Google scholar
|
[387] |
Wang S, Kobayashi K, Kogure Y, Yamanaka H, Yamamoto S, Yagi H, Noguchi K, Dai Y. Negative regulation of TRPA1 by AMPK in primary sensory neurons as a potential mechanism of painful diabetic neuropathy. Diabetes 2018; 67(1): 98–109
CrossRef
Pubmed
Google scholar
|
[388] |
Yuan R, Wang Y, Li Q, Zhen F, Li X, Lai Q, Hu P, Wang X, Zhu Y, Fan H, Yao R. Metformin reduces neuronal damage and promotes neuroblast proliferation and differentiation in a cerebral ischemia/reperfusion rat model. Neuroreport 2019; 30(3): 232–240
CrossRef
Pubmed
Google scholar
|
[389] |
Mertens J, Paquola ACM, Ku M, Hatch E, Böhnke L, Ladjevardi S, McGrath S, Campbell B, Lee H, Herdy JR, Gonçalves JT, Toda T, Kim Y, Winkler J, Yao J, Hetzer MW, Gage FH. Directly reprogrammed human neurons retain aging-associated transcriptomic signatures and reveal age-related nucleocytoplasmic defects. Cell Stem Cell 2015; 17(6): 705–718
CrossRef
Pubmed
Google scholar
|
[390] |
Kim Y, Zheng X, Ansari Z, Bunnell MC, Herdy JR, Traxler L, Lee H, Paquola ACM, Blithikioti C, Ku M, Schlachetzki JCM, Winkler J, Edenhofer F, Glass CK, Paucar AA, Jaeger BN, Pham S, Boyer L, Campbell BC, Hunter T, Mertens J, Gage FH. Mitochondrial aging defects emerge in directly reprogrammed human neurons due to their metabolic profile. Cell Rep 2018; 23(9): 2550–2558
CrossRef
Pubmed
Google scholar
|
[391] |
Rotermund C, Machetanz G, Fitzgerald JC. The therapeutic potential of metformin in neurodegenerative diseases. Front Endocrinol (Lausanne) 2018; 9: 400
CrossRef
Pubmed
Google scholar
|
[392] |
Craft S, Watson GS. Insulin and neurodegenerative disease: shared and specific mechanisms. Lancet Neurol 2004; 3(3): 169–178
CrossRef
Pubmed
Google scholar
|
[393] |
Ninomiya T. Diabetes mellitus and dementia. Curr Diab Rep 2014; 14(5): 487
CrossRef
Pubmed
Google scholar
|
[394] |
Neumann KF, Rojo L, Navarrete LP, Farías G, Reyes P, Maccioni RB. Insulin resistance and Alzheimer’s disease: molecular links & clinical implications. Curr Alzheimer Res 2008; 5(5): 438–447
CrossRef
Pubmed
Google scholar
|
[395] |
Verdile G, Fuller SJ, Martins RN. The role of type 2 diabetes in neurodegeneration. Neurobiol Dis 2015; 84: 22–38
CrossRef
Pubmed
Google scholar
|
[396] |
Arvanitakis Z, Shah RC, Bennett DA. Diagnosis and management of dementia: review. JAMA 2019; 322(16): 1589–1599
CrossRef
Pubmed
Google scholar
|
[397] |
Arriagada PV, Growdon JH, Hedley-Whyte ET, Hyman BT. Neurofibrillary tangles but not senile plaques parallel duration and severity of Alzheimer’s disease. Neurology 1992; 42(3): 631–639
CrossRef
Pubmed
Google scholar
|
[398] |
Johnson GV, Stoothoff WH. Tau phosphorylation in neuronal cell function and dysfunction. J Cell Sci 2004; 117(24): 5721–5729
CrossRef
Pubmed
Google scholar
|
[399] |
Gu JL, Liu F. Tau in Alzheimer’s disease: pathological alterations and an attractive therapeutic target. Curr Med Sci 2020; 40(6): 1009–1021
CrossRef
Pubmed
Google scholar
|
[400] |
Sun X, Bromley-Brits K, Song W. Regulation of β-site APP-cleaving enzyme 1 gene expression and its role in Alzheimer’s disease. J Neurochem 2012; 120(Suppl 1): 62–70
CrossRef
Pubmed
Google scholar
|
[401] |
Oliveira WH, Braga CF, Lós DB, Araújo SMR, França MR, Duarte-Silva E, Rodrigues GB, Rocha SWS, Peixoto CA. Metformin prevents p-tau and amyloid plaque deposition and memory impairment in diabetic mice. Exp Brain Res 2021; 239(9): 2821–2839
CrossRef
Pubmed
Google scholar
|
[402] |
Chen Y, Zhou K, Wang R, Liu Y, Kwak YD, Ma T, Thompson RC, Zhao Y, Smith L, Gasparini L, Luo Z, Xu H, Liao FF. Antidiabetic drug metformin (GlucophageR) increases biogenesis of Alzheimer’s amyloid peptides via up-regulating BACE1 transcription. Proc Natl Acad Sci USA 2009; 106(10): 3907–3912
CrossRef
Pubmed
Google scholar
|
[403] |
Won JS, Im YB, Kim J, Singh AK, Singh I. Involvement of AMP-activated-protein-kinase (AMPK) in neuronal amyloidogenesis. Biochem Biophys Res Commun 2010; 399(4): 487–491
CrossRef
Pubmed
Google scholar
|
[404] |
Ng TP, Feng L, Yap KB, Lee TS, Tan CH, Winblad B. Long-term metformin usage and cognitive function among older adults with diabetes. J Alzheimers Dis 2014; 41(1): 61–68
CrossRef
Pubmed
Google scholar
|
[405] |
Yokoyama H, Ogawa M, Honjo J, Okizaki S, Yamada D, Shudo R, Shimizu H, Sone H, Haneda M. Risk factors associated with abnormal cognition in Japanese outpatients with diabetes, hypertension or dyslipidemia. Diabetol Int 2015; 6(4): 268–274
CrossRef
Google scholar
|
[406] |
Hsu CC, Wahlqvist ML, Lee MS, Tsai HN. Incidence of dementia is increased in type 2 diabetes and reduced by the use of sulfonylureas and metformin. J Alzheimers Dis 2011; 24(3): 485–493
CrossRef
Pubmed
Google scholar
|
[407] |
Cheng C, Lin CH, Tsai YW, Tsai CJ, Chou PH, Lan TH. Type 2 diabetes and antidiabetic medications in relation to dementia diagnosis. J Gerontol A Biol Sci Med Sci 2014; 69(10): 1299–1305
CrossRef
Pubmed
Google scholar
|
[408] |
Orkaby AR, Cho K, Cormack J, Gagnon DR, Driver JA. Metformin vs sulfonylurea use and risk of dementia in US veterans aged ≥65 years with diabetes. Neurology 2017; 89(18): 1877–1885
CrossRef
Pubmed
Google scholar
|
[409] |
Imfeld P, Bodmer M, Jick SS, Meier CR. Metformin, other antidiabetic drugs, and risk of Alzheimer’s disease: a population-based case-control study. J Am Geriatr Soc 2012; 60(5): 916–921
CrossRef
Pubmed
Google scholar
|
[410] |
Wang CP, Lorenzo C, Habib SL, Jo B, Espinoza SE. Differential effects of metformin on age related comorbidities in older men with type 2 diabetes. J Diabetes Complications 2017; 31(4): 679–686
CrossRef
Pubmed
Google scholar
|
[411] |
Arvanitakis Z, Tatavarthy M, Bennett DA. The relation of diabetes to memory function. Curr Neurol Neurosci Rep 2020; 20(12): 64
CrossRef
Pubmed
Google scholar
|
[412] |
Emamzadeh FN, Surguchov A. Parkinson’s disease: biomarkers, treatment, and risk factors. Front Neurosci 2018; 12: 612
CrossRef
Pubmed
Google scholar
|
[413] |
Marino BLB, de Souza LR, Sousa KPA, Ferreira JV, Padilha EC, da Silva CHTP, Taft CA, Hage-Melim LIS. Parkinson’s disease: a review from pathophysiology to treatment. Mini Rev Med Chem 2020; 20(9): 754–767
CrossRef
Pubmed
Google scholar
|
[414] |
Damier P, Hirsch EC, Agid Y, Graybiel AM. The substantia nigra of the human brain. II. Patterns of loss of dopamine-containing neurons in Parkinson’s disease. Brain 1999; 122(8): 1437–1448
CrossRef
Pubmed
Google scholar
|
[415] |
Zhao X, He H, Xiong X, Ye Q, Feng F, Zhou S, Chen W, Xia K, Qian S, Yang Y, Xie C. Lewy body-associated proteins A-synuclein (a-syn) as a plasma-based biomarker for Parkinson’s disease. Front Aging Neurosci 2022; 14: 869797
CrossRef
Pubmed
Google scholar
|
[416] |
Tan JM, Wong ES, Lim KL. Protein misfolding and aggregation in Parkinson’s disease. Antioxid Redox Signal 2009; 11(9): 2119–2134
CrossRef
Pubmed
Google scholar
|
[417] |
BraakHDelTredici KBratzkeHHamm-ClementJSandmann-KeilDRübU. Staging of the intracerebral inclusion body pathology associated with idiopathic Parkinson’s disease (preclinical and clinical stages). J Neurol 2002; 249 Suppl 3: III/1–5 doi: 10.1007/s00415-002-1301-4
Pubmed
|
[418] |
Beach TG, Adler CH, Lue L, Sue LI, Bachalakuri J, Henry-Watson J, Sasse J, Boyer S, Shirohi S, Brooks R, Eschbacher J, White CL 3rd, Akiyama H, Caviness J, Shill HA, Connor DJ, Sabbagh MN, Walker DG; Arizona Parkinson’s Disease Consortium. Unified staging system for Lewy body disorders: correlation with nigrostriatal degeneration, cognitive impairment and motor dysfunction. Acta Neuropathol 2009; 117(6): 613–634
CrossRef
Pubmed
Google scholar
|
[419] |
Dolasık I, Sener SY, Celebı K, Aydın ZM, Korkmaz U, Canturk Z. The effect of metformin on mean platelet volume in dıabetıc patients. Platelets 2013; 24(2): 118–121
CrossRef
Pubmed
Google scholar
|
[420] |
Koçer A, Yaman A, Niftaliyev E, Dürüyen H, Eryılmaz M, Koçer E. Assessment of platelet indices in patients with neurodegenerative diseases: mean platelet volume was increased in patients with Parkinson’s disease. Curr Gerontol Geriatr Res 2013; 2013: 986254
CrossRef
Pubmed
Google scholar
|
[421] |
Lu M, Su C, Qiao C, Bian Y, Ding J, Hu G. Metformin prevents dopaminergic neuron death in MPTP/P-induced mouse model of Parkinson’s disease via autophagy and mitochondrial ROS clearance. Int J Neuropsychopharmacol 2016; 19(9): pyw047
CrossRef
Pubmed
Google scholar
|
[422] |
Patil SP, Jain PD, Ghumatkar PJ, Tambe R, Sathaye S. Neuroprotective effect of metformin in MPTP-induced Parkinson’s disease in mice. Neuroscience 2014; 277: 747–754
CrossRef
Pubmed
Google scholar
|
[423] |
Bayliss JA, Lemus MB, Santos VV, Deo M, Davies JS, Kemp BE, Elsworth JD, Andrews ZB. Metformin prevents nigrostriatal dopamine degeneration independent of AMPK activation in dopamine neurons. PLoS One 2016; 11(7): e0159381
CrossRef
Pubmed
Google scholar
|
[424] |
Katila N, Bhurtel S, Shadfar S, Srivastav S, Neupane S, Ojha U, Jeong GS, Choi DY. Metformin lowers α-synuclein phosphorylation and upregulates neurotrophic factor in the MPTP mouse model of Parkinson’s disease. Neuropharmacology 2017; 125: 396–407
CrossRef
Pubmed
Google scholar
|
[425] |
Ismaiel AA, Espinosa-Oliva AM, Santiago M, García-Quintanilla A, Oliva-Martín MJ, Herrera AJ, Venero JL, de Pablos RM. Metformin, besides exhibiting strong in vivo anti-inflammatory properties, increases mptp-induced damage to the nigrostriatal dopaminergic system. Toxicol Appl Pharmacol 2016; 298: 19–30
CrossRef
Pubmed
Google scholar
|
[426] |
Wahlqvist ML, Lee MS, Hsu CC, Chuang SY, Lee JT, Tsai HN. Metformin-inclusive sulfonylurea therapy reduces the risk of Parkinson’s disease occurring with type 2 diabetes in a Taiwanese population cohort. Parkinsonism Relat Disord 2012; 18(6): 753–758
CrossRef
Pubmed
Google scholar
|
[427] |
McColgan P, Tabrizi SJ. Huntington’s disease: a clinical review. Eur J Neurol 2018; 25(1): 24–34
CrossRef
Pubmed
Google scholar
|
[428] |
Montojo MT, Aganzo M, González N. Huntington’s disease and diabetes: chronological sequence of its association. J Huntingtons Dis 2017; 6(3): 179–188
CrossRef
Pubmed
Google scholar
|
[429] |
Lalić NM, Marić J, Svetel M, Jotić A, Stefanova E, Lalić K, Dragasević N, Milicić T, Lukić L, Kostić VS. Glucose homeostasis in Huntington disease: abnormalities in insulin sensitivity and early-phase insulin secretion. Arch Neurol 2008; 65(4): 476–480
CrossRef
Pubmed
Google scholar
|
[430] |
Boesgaard TW, Nielsen TT, Josefsen K, Hansen T, Jørgensen T, Pedersen O, Nørremølle A, Nielsen JE, Hasholt L. Huntington’s disease does not appear to increase the risk of diabetes mellitus. J Neuroendocrinol 2009; 21(9): 770–776
CrossRef
Pubmed
Google scholar
|
[431] |
Russo CV, Salvatore E, Saccà F, Tucci T, Rinaldi C, Sorrentino P, Massarelli M, Rossi F, Savastano S, Di Maio L, Filla A, Colao A, De Michele G. Insulin sensitivity and early-phase insulin secretion in normoglycemic Huntington’s disease patients. J Huntingtons Dis 2013; 2(4): 501–507
CrossRef
Pubmed
Google scholar
|
[432] |
Hervás D, Fornés-Ferrer V, Gómez-Escribano AP, Sequedo MD, Peiró C, Millán JM, Vázquez-Manrique RP. Metformin intake associates with better cognitive function in patients with Huntington’s disease. PLoS One 2017; 12(6): e0179283
CrossRef
Pubmed
Google scholar
|
[433] |
Ju TC, Chen HM, Chen YC, Chang CP, Chang C, Chern Y. AMPK-α1 functions downstream of oxidative stress to mediate neuronal atrophy in Huntington’s disease. Biochim Biophys Acta 2014; 1842(9): 1668–1680
CrossRef
Pubmed
Google scholar
|
[434] |
Dziedzic A, Saluk-Bijak J, Miller E, Bijak M. Metformin as a potential agent in the treatment of multiple sclerosis. Int J Mol Sci 2020; 21(17): 5957
CrossRef
Pubmed
Google scholar
|
[435] |
Dos Passos GR, Sato DK, Becker J, Fujihara K. Th17 cells pathways in multiple sclerosis and neuromyelitis optica spectrum disorders: pathophysiological and therapeutic implications. Mediators Inflamm 2016; 2016: 5314541
CrossRef
Pubmed
Google scholar
|
[436] |
Kalra S, Lowndes C, Durant L, Strange RC, Al-Araji A, Hawkins CP, Curnow SJ. Th17 cells increase in RRMS as well as in SPMS, whereas various other phenotypes of Th17 increase in RRMS only. Mult Scler J Exp Transl Clin 2020; 6(1): 2055217319899695
CrossRef
Pubmed
Google scholar
|
[437] |
Álvarez-Sánchez N, Cruz-Chamorro I, Díaz-Sánchez M, Lardone PJ, Guerrero JM, Carrillo-Vico A. Peripheral CD39-expressing T regulatory cells are increased and associated with relapsing-remitting multiple sclerosis in relapsing patients. Sci Rep 2019; 9(1): 2302
CrossRef
Pubmed
Google scholar
|
[438] |
Li YF, Zhang SX, Ma XW, Xue YL, Gao C, Li XY, Xu AD. The proportion of peripheral regulatory T cells in patients with multiple sclerosis: a meta-analysis. Mult Scler Relat Disord 2019; 28: 75–80
CrossRef
Pubmed
Google scholar
|
[439] |
Hofstetter H, Gold R, Hartung HP. Th17 cells in MS and experimental autoimmune encephalomyelitis. Int MS J 2009; 16(1): 12–18
Pubmed
|
[440] |
Wei L, Laurence A, Elias KM, O’Shea JJ. IL-21 is produced by Th17 cells and drives IL-17 production in a STAT3-dependent manner. J Biol Chem 2007; 282(48): 34605–34610
CrossRef
Pubmed
Google scholar
|
[441] |
Kebir H, Kreymborg K, Ifergan I, Dodelet-Devillers A, Cayrol R, Bernard M, Giuliani F, Arbour N, Becher B, Prat A. Human TH17 lymphocytes promote blood-brain barrier disruption and central nervous system inflammation. Nat Med 2007; 13(10): 1173–1175
CrossRef
Pubmed
Google scholar
|
[442] |
Mehta MM, Chandel NS. Targeting metabolism for lupus therapy. Sci Transl Med 2015; 7(274): 274fs5
CrossRef
Pubmed
Google scholar
|
[443] |
Krysiak R, Okopien B. Haemostatic effects of metformin in simvastatin-treated volunteers with impaired fasting glucose. Basic Clin Pharmacol Toxicol 2012; 111(6): 380–384
CrossRef
Pubmed
Google scholar
|
[444] |
Krysiak R, Gdula-Dymek A, Okopień B. Effect of metformin on selected parameters of hemostasis in fenofibrate-treated patients with impaired glucose tolerance. Pharmacol Rep 2013; 65(1): 208–213
CrossRef
Google scholar
|
[445] |
Serdyńska-Szuster M, Banaszewska B, Spaczyński R, Pawelczyk L. Effects of metformin therapy on markers of coagulation disorders in hyperinsulinemic women with polycystic ovary syndrome. Ginekol Pol 2011; 82(4): 259–264
Pubmed
|
[446] |
Markowicz-Piasecka M, Huttunen KM, Sadkowska A, Sikora J. Pleiotropic activity of metformin and its sulfonamide derivatives on vascular and platelet haemostasis. Molecules 2019; 25(1): 125
CrossRef
Pubmed
Google scholar
|
[447] |
Negrotto L, Farez MF, Correale J. Immunologic effects of metformin and pioglitazone treatment on metabolic syndrome and multiple sclerosis. JAMA Neurol 2016; 73(5): 520–528
CrossRef
Pubmed
Google scholar
|
[448] |
Jang S, Kim H, Jeong J, Lee SK, Kim EW, Park M, Kim CH, Lee JE, Namkoong K, Kim E. Blunted response of hippocampal AMPK associated with reduced neurogenesis in older versus younger mice. Prog Neuropsychopharmacol Biol Psychiatry 2016; 71: 57–65
CrossRef
Pubmed
Google scholar
|
[449] |
Dulamea AO. The contribution of oligodendrocytes and oligodendrocyte progenitor cells to central nervous system repair in multiple sclerosis: perspectives for remyelination therapeutic strategies. Neural Regen Res 2017; 12(12): 1939–1944
CrossRef
Pubmed
Google scholar
|
[450] |
Qi Y, Cheng H, Lou Q, Wang X, Lai N, Gao C, Wu S, Xu C, Ruan Y, Chen Z, Wang Y. Paradoxical effects of posterior intralaminar thalamic calretinin neurons on hippocampal seizure via distinct downstream circuits. iScience 2022; 25(5): 104218
CrossRef
Pubmed
Google scholar
|
[451] |
Tóth K, Eross L, Vajda J, Halász P, Freund TF, Maglóczky Z. Loss and reorganization of calretinin-containing interneurons in the epileptic human hippocampus. Brain 2010; 133(9): 2763–2777
CrossRef
Pubmed
Google scholar
|
[452] |
Meldrum BS. Excitotoxicity and selective neuronal loss in epilepsy. Brain Pathol 1993; 3(4): 405–412
CrossRef
Pubmed
Google scholar
|
[453] |
Qi Y, Cheng H, Wang Y, Chen Z. Revealing the precise role of calretinin neurons in epilepsy: we are on the way. Neurosci Bull 2022; 38(2): 209–222
CrossRef
Pubmed
Google scholar
|
[454] |
Hussein AM, Eldosoky M, El-Shafey M, El-Mesery M, Ali AN, Abbas KM, Abulseoud OA. Effects of metformin on apoptosis and α-synuclein in a rat model of pentylenetetrazole-induced epilepsy. Can J Physiol Pharmacol 2019; 97(1): 37–46
CrossRef
Pubmed
Google scholar
|
[455] |
Zhao RR, Xu XC, Xu F, Zhang WL, Zhang WL, Liu LM, Wang WP. Metformin protects against seizures, learning and memory impairments and oxidative damage induced by pentylenetetrazole-induced kindling in mice. Biochem Biophys Res Commun 2014; 448(4): 414–417
CrossRef
Pubmed
Google scholar
|
[456] |
Yang Y, Zhu B, Zheng F, Li Y, Zhang Y, Hu Y, Wang X. Chronic metformin treatment facilitates seizure termination. Biochem Biophys Res Commun 2017; 484(2): 450–455
CrossRef
Pubmed
Google scholar
|
[457] |
Moran C, Sanz-Rodriguez A, Jimenez-Pacheco A, Martinez-Villareal J, McKiernan RC, Jimenez-Mateos EM, Mooney C, Woods I, Prehn JH, Henshall DC, Engel T. Bmf upregulation through the AMP-activated protein kinase pathway may protect the brain from seizure-induced cell death. Cell Death Dis 2013; 4(4): e606
CrossRef
Pubmed
Google scholar
|
[458] |
Mehrabi S, Sanadgol N, Barati M, Shahbazi A, Vahabzadeh G, Barzroudi M, Seifi M, Gholipourmalekabadi M, Golab F. Evaluation of metformin effects in the chronic phase of spontaneous seizures in pilocarpine model of temporal lobe epilepsy. Metab Brain Dis 2018; 33(1): 107–114
CrossRef
Pubmed
Google scholar
|
[459] |
Heinrich C, Lähteinen S, Suzuki F, Anne-Marie L, Huber S, Häussler U, Haas C, Larmet Y, Castren E, Depaulis A. Increase in BDNF-mediated TrkB signaling promotes epileptogenesis in a mouse model of mesial temporal lobe epilepsy. Neurobiol Dis 2011; 42(1): 35–47
CrossRef
Pubmed
Google scholar
|
[460] |
Amin S, Mallick AA, Edwards H, Cortina-Borja M, Laugharne M, Likeman M, O’Callaghan FJK. The metformin in tuberous sclerosis (MiTS) study: a randomised double-blind placebo-controlled trial. EClinicalMedicine 2021; 32: 100715
CrossRef
Pubmed
Google scholar
|
[461] |
Bisulli F, Muccioli L, d’Orsi G, Canafoglia L, Freri E, Licchetta L, Mostacci B, Riguzzi P, Pondrelli F, Avolio C, Martino T, Michelucci R, Tinuper P. Treatment with metformin in twelve patients with Lafora disease. Orphanet J Rare Dis 2019; 14(1): 149
CrossRef
Pubmed
Google scholar
|
[462] |
Zhang YM, Ye LY, Li TY, Guo F, Guo F, Li Y, Li YF. New monoamine antidepressant, hypidone hydrochloride (YL-0919), enhances the excitability of medial prefrontal cortex in mice via a neural disinhibition mechanism. Acta Pharmacol Sin 2022; 43(7): 1699–1709
CrossRef
Pubmed
Google scholar
|
[463] |
Otte C, Gold SM, Penninx BW, Pariante CM, Etkin A, Fava M, Mohr DC, Schatzberg AF. Major depressive disorder. Nat Rev Dis Primers 2016; 2(1): 16065
CrossRef
Pubmed
Google scholar
|
[464] |
Fogaça MV, Duman RS. Cortical GABAergic dysfunction in stress and depression: new insights for therapeutic interventions. Front Cell Neurosci 2019; 13: 87
CrossRef
Pubmed
Google scholar
|
[465] |
Duman RS, Sanacora G, Krystal JH. Altered connectivity in depression: GABA and glutamate neurotransmitter deficits and reversal by novel treatments. Neuron 2019; 102(1): 75–90
CrossRef
Pubmed
Google scholar
|
[466] |
Fee C, Banasr M, Sibille E. Somatostatin-positive gamma-aminobutyric acid interneuron deficits in depression: cortical microcircuit and therapeutic perspectives. Biol Psychiatry 2017; 82(8): 549–559
CrossRef
Pubmed
Google scholar
|
[467] |
Ghosal S, Hare B, Duman RS. Prefrontal cortex GABAergic deficits and circuit dysfunction in the pathophysiology and treatment of chronic stress and depression. Curr Opin Behav Sci 2017; 14: 1–8
CrossRef
Pubmed
Google scholar
|
[468] |
Krystal JH, Sanacora G, Blumberg H, Anand A, Charney DS, Marek G, Epperson CN, Goddard A, Mason GF. Glutamate and GABA systems as targets for novel antidepressant and mood-stabilizing treatments. Mol Psychiatry 2002; 7(S1 Suppl 1): S71–S80
CrossRef
Pubmed
Google scholar
|
[469] |
Luscher B, Shen Q, Sahir N. The GABAergic deficit hypothesis of major depressive disorder. Mol Psychiatry 2011; 16(4): 383–406
CrossRef
Pubmed
Google scholar
|
[470] |
Vahid-Ansari F, Albert PR. Rewiring of the serotonin system in major depression. Front Psychiatry 2021; 12: 802581
CrossRef
Pubmed
Google scholar
|
[471] |
Chen WB, Chen J, Liu ZY, Luo B, Zhou T, Fei EK. Metformin enhances excitatory synaptic transmission onto hippocampal CA1 pyramidal neurons. Brain Sci 2020; 10(10): 706
CrossRef
Pubmed
Google scholar
|
[472] |
Zemdegs J, Martin H, Pintana H, Bullich S, Manta S, Marqués MA, Moro C, Layé S, Ducrocq F, Chattipakorn N, Chattipakorn SC, Rampon C, Pénicaud L, Fioramonti X, Guiard BP. Metformin promotes anxiolytic and antidepressant-like responses in insulin-resistant mice by decreasing circulating branched-chain amino acids. J Neurosci 2019; 39(30): 5935–5948
CrossRef
Pubmed
Google scholar
|
[473] |
Duval F, Mokrani MC, Bailey P, Corrêa H, Crocq MA, Son Diep T, Macher JP. Serotonergic and noradrenergic function in depression: clinical correlates. Dialogues Clin Neurosci 2000; 2(3): 299–308
CrossRef
Pubmed
Google scholar
|
[474] |
Shivavedi N, Kumar M, Tej GNVC, Nayak PK. Metformin and ascorbic acid combination therapy ameliorates type 2 diabetes mellitus and comorbid depression in rats. Brain Res 2017; 1674: 1–9
CrossRef
Pubmed
Google scholar
|
[475] |
Wang J, Gallagher D, DeVito LM, Cancino GI, Tsui D, He L, Keller GM, Frankland PW, Kaplan DR, Miller FD. Metformin activates an atypical PKC-CBP pathway to promote neurogenesis and enhance spatial memory formation. Cell Stem Cell 2012; 11(1): 23–35
CrossRef
Pubmed
Google scholar
|
[476] |
Guo M, Mi J, Jiang QM, Xu JM, Tang YY, Tian G, Wang B. Metformin may produce antidepressant effects through improvement of cognitive function among depressed patients with diabetes mellitus. Clin Exp Pharmacol Physiol 2014; 41(9): 650–656
CrossRef
Pubmed
Google scholar
|
[477] |
Odaira T, Nakagawasai O, Takahashi K, Nemoto W, Sakuma W, Lin JR, Tan-No K. Mechanisms underpinning AMP-activated protein kinase-related effects on behavior and hippocampal neurogenesis in an animal model of depression. Neuropharmacology 2019; 150: 121–133
CrossRef
Pubmed
Google scholar
|
[478] |
Wium-Andersen IK, Osler M, Jørgensen MB, Rungby J, Wium-Andersen MK. Diabetes, antidiabetic medications and risk of depression — a population-based cohort and nested case-control study. Psychoneuroendocrinology 2022; 140: 105715
CrossRef
Pubmed
Google scholar
|
[479] |
Leech T, Chattipakorn N, Chattipakorn SC. The beneficial roles of metformin on the brain with cerebral ischaemia/reperfusion injury. Pharmacol Res 2019; 146: 104261
CrossRef
Pubmed
Google scholar
|
[480] |
Paintlia AS, Paintlia MK, Mohan S, Singh AK, Singh I. AMP-activated protein kinase signaling protects oligodendrocytes that restore central nervous system functions in an experimental autoimmune encephalomyelitis model. Am J Pathol 2013; 183(2): 526–541
CrossRef
Pubmed
Google scholar
|
[481] |
Xia CY, Zhang S, Gao Y, Wang ZZ, Chen NH. Selective modulation of microglia polarization to M2 phenotype for stroke treatment. Int Immunopharmacol 2015; 25(2): 377–382
CrossRef
Pubmed
Google scholar
|
[482] |
Jin Q, Cheng J, Liu Y, Wu J, Wang X, Wei S, Zhou X, Qin Z, Jia J, Zhen X. Improvement of functional recovery by chronic metformin treatment is associated with enhanced alternative activation of microglia/macrophages and increased angiogenesis and neurogenesis following experimental stroke. Brain Behav Immun 2014; 40: 131–142
CrossRef
Pubmed
Google scholar
|
[483] |
Zhu J, Liu K, Huang K, Gu Y, Hu Y, Pan S, Ji Z. Metformin improves neurologic outcome via AMP-activated protein kinase-mediated autophagy activation in a rat model of cardiac arrest and resuscitation. J Am Heart Assoc 2018; 7(12): e008389
CrossRef
Pubmed
Google scholar
|
[484] |
Demaré S, Kothari A, Calcutt NA, Fernyhough P. Metformin as a potential therapeutic for neurological disease: mobilizing AMPK to repair the nervous system. Expert Rev Neurother 2021; 21(1): 45–63
CrossRef
Pubmed
Google scholar
|
[485] |
Cheng YY, Leu HB, Chen TJ, Chen CL, Kuo CH, Lee SD, Kao CL. Metformin-inclusive therapy reduces the risk of stroke in patients with diabetes: a 4-year follow-up study. J Stroke Cerebrovasc Dis 2014; 23(2): e99–e105
CrossRef
Pubmed
Google scholar
|
[486] |
Kirpichnikov D, McFarlane SI, Sowers JR. Metformin: an update. Ann Intern Med 2002; 137(1): 25–33
CrossRef
Pubmed
Google scholar
|
[487] |
Badrick E, Renehan AG. Diabetes and cancer: 5 years into the recent controversy. Eur J Cancer 2014; 50(12): 2119–2125
CrossRef
Pubmed
Google scholar
|
/
〈 | 〉 |