BGB-A445, a novel non-ligand-blocking agonistic anti-OX40 antibody, exhibits superior immune activation and antitumor effects in preclinical models
Beibei Jiang, Tong Zhang, Minjuan Deng, Wei Jin, Yuan Hong, Xiaotong Chen, Xin Chen, Jing Wang, Hongjia Hou, Yajuan Gao, Wenfeng Gong, Xing Wang, Haiying Li, Xiaosui Zhou, Yingcai Feng, Bo Zhang, Bin Jiang, Xueping Lu, Lijie Zhang, Yang Li, Weiwei Song, Hanzi Sun, Zuobai Wang, Xiaomin Song, Zhirong Shen, Xuesong Liu, Kang Li, Lai Wang, Ye Liu
BGB-A445, a novel non-ligand-blocking agonistic anti-OX40 antibody, exhibits superior immune activation and antitumor effects in preclinical models
OX40 is a costimulatory receptor that is expressed primarily on activated CD4+, CD8+, and regulatory T cells. The ligation of OX40 to its sole ligand OX40L potentiates T cell expansion, differentiation, and activation and also promotes dendritic cells to mature to enhance their cytokine production. Therefore, the use of agonistic anti-OX40 antibodies for cancer immunotherapy has gained great interest. However, most of the agonistic anti-OX40 antibodies in the clinic are OX40L-competitive and show limited efficacy. Here, we discovered that BGB-A445, a non-ligand-competitive agonistic anti-OX40 antibody currently under clinical investigation, induced optimal T cell activation without impairing dendritic cell function. In addition, BGB-A445 dose-dependently and significantly depleted regulatory T cells in vitro and in vivo via antibody-dependent cellular cytotoxicity. In the MC38 syngeneic model established in humanized OX40 knock-in mice, BGB-A445 demonstrated robust and dose-dependent antitumor efficacy, whereas the ligand-competitive anti-OX40 antibody showed antitumor efficacy characterized by a hook effect. Furthermore, BGB-A445 demonstrated a strong combination antitumor effect with an anti-PD-1 antibody. Taken together, our findings show that BGB-A445, which does not block OX40–OX40L interaction in contrast to clinical-stage anti-OX40 antibodies, shows superior immune-stimulating effects and antitumor efficacy and thus warrants further clinical investigation.
BGB-A445 / OX40 / agonistic antibody / OX40L noncompetitive
[1] |
Liu J, Chen Z, Li Y, Zhao W, Wu J, Zhang Z. PD-1/PD-L1 checkpoint inhibitors in tumor immunotherapy. Front Pharmacol 2021; 12: 731798
CrossRef
Google scholar
|
[2] |
Piconese S, Valzasina B, Colombo MP. OX40 triggering blocks suppression by regulatory T cells and facilitates tumor rejection. J Exp Med 2008; 205(4): 825–839
CrossRef
Google scholar
|
[3] |
Duhen R, Ballesteros-Merino C, Frye AK, Tran E, Rajamanickam V, Chang SC, Koguchi Y, Bifulco CB, Bernard B, Leidner RS, Curti BD, Fox BA, Urba WJ, Bell RB, Weinberg AD. Neoadjuvant anti-OX40 (MEDI6469) therapy in patients with head and neck squamous cell carcinoma activates and expands antigen-specific tumor-infiltrating T cells. Nat Commun 2021; 12(1): 1047
CrossRef
Google scholar
|
[4] |
Marin-Acevedo JA, Dholaria B, Soyano AE, Knutson KL, Chumsri S, Lou Y. Next generation of immune checkpoint therapy in cancer: new developments and challenges. J Hematol Oncol 2018; 11(1): 39
CrossRef
Google scholar
|
[5] |
Wajant H. Principles of antibody-mediated TNF receptor activation. Cell Death Differ 2015; 22(11): 1727–1741
CrossRef
Google scholar
|
[6] |
Stüber E, Neurath M, Calderhead D, Fell HP, Strober W. Cross-linking of OX40 ligand, a member of the TNF/NGF cytokine family, induces proliferation and differentiation in murine splenic B cells. Immunity 1995; 2(5): 507–521
CrossRef
Google scholar
|
[7] |
Ohshima Y, Tanaka Y, Tozawa H, Takahashi Y, Maliszewski C, Delespesse G. Expression and function of OX40 ligand on human dendritic cells. J Immunol 1997; 159(8): 3838–3848
CrossRef
Google scholar
|
[8] |
Weinberg AD, Wegmann KW, Funatake C, Whitham RH. Blocking OX-40/OX-40 ligand interaction in vitro and in vivo leads to decreased T cell function and amelioration of experimental allergic encephalomyelitis. J Immunol 1999; 162(3): 1818–1826
CrossRef
Google scholar
|
[9] |
Ito T, Amakawa R, Inaba M, Hori T, Ota M, Nakamura K, Takebayashi M, Miyaji M, Yoshimura T, Inaba K, Fukuhara S. Plasmacytoid dendritic cells regulate Th cell responses through OX40 ligand and type I IFNs. J Immunol 2004; 172(7): 4253–4259
CrossRef
Google scholar
|
[10] |
Croft M. Control of immunity by the TNFR-related molecule OX40 (CD134). Annu Rev Immunol 2010; 28(1): 57–78
CrossRef
Google scholar
|
[11] |
Song J, So T, Croft M. Activation of NF-κB1 by OX40 contributes to antigen-driven T cell expansion and survival. J Immunol 2008; 180(11): 7240–7248
CrossRef
Google scholar
|
[12] |
Song A, Tang X, Harms KM, Croft M. OX40 and Bcl-xL promote the persistence of CD8 T cells to recall tumor-associated antigen. J Immunol 2005; 175(6): 3534–3541
CrossRef
Google scholar
|
[13] |
Rogers PR, Song J, Gramaglia I, Killeen N, Croft M. OX40 promotes Bcl-xL and Bcl-2 expression and is essential for long-term survival of CD4 T cells. Immunity 2001; 15(3): 445–455
CrossRef
Google scholar
|
[14] |
Song J, So T, Cheng M, Tang X, Croft M. Sustained survivin expression from OX40 costimulatory signals drives T cell clonal expansion. Immunity 2005; 22(5): 621–631
CrossRef
Google scholar
|
[15] |
Huddleston CA, Weinberg AD, Parker DC. OX40 (CD134) engagement drives differentiation of CD4+ T cells to effector cells. Eur J Immunol 2006; 36(5): 1093–1103
CrossRef
Google scholar
|
[16] |
Ruby CE, Weinberg AD. OX40-enhanced tumor rejection and effector T cell differentiation decreases with age. J Immunol 2009; 182(3): 1481–1489
CrossRef
Google scholar
|
[17] |
Gramaglia I, Weinberg AD, Lemon M, Croft M. Ox-40 ligand: a potent costimulatory molecule for sustaining primary CD4 T cell responses. J Immunol 1998; 161(12): 6510–6517
CrossRef
Google scholar
|
[18] |
Ohshima Y, Tanaka Y, Tozawa H, Takahashi Y, Maliszewski C, Delespesse G. Expression and function of OX40 ligand on human dendritic cells. J Immunol 1997; 159(8): 3838–3848
CrossRef
Google scholar
|
[19] |
Piconese S, Valzasina B, Colombo MP. OX40 triggering blocks suppression by regulatory T cells and facilitates tumor rejection. J Exp Med 2008; 205(4): 825–839
CrossRef
Google scholar
|
[20] |
Aspeslagh S, Postel-Vinay S, Rusakiewicz S, Soria JC, Zitvogel L, Marabelle A. Rationale for anti-OX40 cancer immunotherapy. Eur J Cancer 2016; 52: 50–66
CrossRef
Google scholar
|
[21] |
Voo KS, Bover L, Harline ML, Vien LT, Facchinetti V, Arima K, Kwak LW, Liu YJ. Antibodies targeting human OX40 expand effector T cells and block inducible and natural regulatory T cell function. J Immunol 2013; 191(7): 3641–3650
CrossRef
Google scholar
|
[22] |
St Rose MC, Taylor RA, Bandyopadhyay S, Qui HZ, Hagymasi AT, Vella AT, Adler AJ. CD134/CD137 dual costimulation-elicited IFN-γ maximizes effector T-cell function but limits Treg expansion. Immunol Cell Biol 2013; 91(2): 173–183
CrossRef
Google scholar
|
[23] |
Ito T, Wang YH, Duramad O, Hanabuchi S, Perng OA, Gilliet M, Qin FX, Liu YJ. OX40 ligand shuts down IL-10-producing regulatory T cells. Proc Natl Acad Sci USA 2006; 103(35): 13138–13143
CrossRef
Google scholar
|
[24] |
Kitamura N, Murata S, Ueki T, Mekata E, Reilly RT, Jaffee EM, Tani T. OX40 costimulation can abrogate Foxp3+ regulatory T cell-mediated suppression of antitumor immunity. Int J Cancer 2009; 125(3): 630–638
CrossRef
Google scholar
|
[25] |
Burocchi A, Pittoni P, Gorzanelli A, Colombo MP, Piconese S. Intratumor OX40 stimulation inhibits IRF1 expression and IL-10 production by Treg cells while enhancing CD40L expression by effector memory T cells. Eur J Immunol 2011; 41(12): 3615–3626
CrossRef
Google scholar
|
[26] |
Bulliard Y, Jolicoeur R, Zhang J, Dranoff G, Wilson NS, Brogdon JL. OX40 engagement depletes intratumoral Tregs via activating FcγRs, leading to antitumor efficacy. Immunol Cell Biol 2014; 92(6): 475–480
CrossRef
Google scholar
|
[27] |
Weinberg AD, Morris NP, Kovacsovics-Bankowski M, Urba WJ, Curti BD. Science gone translational: the OX40 agonist story. Immunol Rev 2011; 244(1): 218–231
CrossRef
Google scholar
|
[28] |
Linch SN, McNamara MJ, Redmond WL. OX40 agonists and combination immunotherapy: putting the pedal to the metal. Front Oncol 2015; 5: 34
CrossRef
Google scholar
|
[29] |
Zhang P, Tu GH, Wei J, Santiago P, Larrabee LR, Liao-Chan S, Mistry T, Chu ML, Sai T, Lindquist K, Long H, Chaparro-Riggers J, Salek-Ardakani S, Yeung YA. Ligand-blocking and membrane-proximal domain targeting anti-OX40 antibodies mediate potent T cell-stimulatory and anti-tumor activity. Cell Rep 2019; 27(11): 3117–3123.e5
CrossRef
Google scholar
|
[30] |
Chen AI, McAdam AJ, Buhlmann JE, Scott S, Lupher ML Jr, Greenfield EA, Baum PR, Fanslow WC, Calderhead DM, Freeman GJ, Sharpe AH. Ox40-ligand has a critical costimulatory role in dendritic cell:T cell interactions. Immunity 1999; 11(6): 689–698
CrossRef
Google scholar
|
[31] |
Zhang T, Song X, Xu L, Ma J, Zhang Y, Gong W, Zhang Y, Zhou X, Wang Z, Wang Y, Shi Y, Bai H, Liu N, Yang X, Cui X, Cao Y, Liu Q, Song J, Li Y, Tang Z, Guo M, Wang L, Li K. The binding of an anti-PD-1 antibody to FcγRI has a profound impact on its biological functions. Cancer Immunol Immunother 2018; 67(7): 1079–1090
CrossRef
Google scholar
|
[32] |
Kabsch W. XDS. Acta Crystallogr D Biol Crystallogr 2010; 66(2): 125–132
CrossRef
Google scholar
|
[33] |
McCoy AJ, Grosse-Kunstleve RW, Adams PD, Winn MD, Storoni LC, Read RJ. Phaser crystallographic software. J Appl Cryst 2007; 40(4): 658–674
CrossRef
Google scholar
|
[34] |
Compaan DM, Hymowitz SG. The crystal structure of the costimulatory OX40–OX40L complex. Structure 2006; 14(8): 1321–1330
CrossRef
Google scholar
|
[35] |
Bernasconi-Elias P, Hu T, Jenkins D, Firestone B, Gans S, Kurth E, Capodieci P, Deplazes-Lauber J, Petropoulos K, Thiel P, Ponsel D, Hee Choi S, LeMotte P, London A, Goetcshkes M, Nolin E, Jones MD, Slocum K, Kluk MJ, Weinstock DM, Christodoulou A, Weinberg O, Jaehrling J, Ettenberg SA, Buckler A, Blacklow SC, Aster JC, Fryer CJ. Characterization of activating mutations of NOTCH3 in T-cell acute lymphoblastic leukemia and anti-leukemic activity of NOTCH3 inhibitory antibodies. Oncogene 2016; 35(47): 6077–6086
CrossRef
Google scholar
|
[36] |
Emsley P, Lohkamp B, Scott WG, Cowtan K. Features and development of Coot. Acta Crystallogr D Biol Crystallogr 2010; 66(4): 486–501
CrossRef
Google scholar
|
[37] |
Afonine PV, Grosse-Kunstleve RW, Echols N, Headd JJ, Moriarty NW, Mustyakimov M, Terwilliger TC, Urzhumtsev A, Zwart PH, Adams PD. Towards automated crystallographic structure refinement with phenix. refine. Acta Crystallogr D Biol Crystallogr 2012; 68(4): 352–367
CrossRef
Google scholar
|
[38] |
Li F, Vijayasankaran N, Shen AY, Kiss R, Amanullah A. Cell culture processes for monoclonal antibody production. MAbs 2010; 2(5): 466–479
CrossRef
Google scholar
|
[39] |
Tourkova IL, Yurkovetsky ZR, Shurin MR, Shurin GV. Mechanisms of dendritic cell-induced T cell proliferation in the primary MLR assay. Immunol Lett 2001; 78(2): 75–82
CrossRef
Google scholar
|
[40] |
Bodmer JL, Schneider P, Tschopp J. The molecular architecture of the TNF superfamily. Trends Biochem Sci 2002; 27(1): 19–26
CrossRef
Google scholar
|
[41] |
Yang Y, Yeh SH, Madireddi S, Matochko WL, Gu C, Pacheco Sanchez P, Ultsch M, De Leon Boenig G, Harris SF, Leonard B, Scales SJ, Zhu JW, Christensen E, Hang JQ, Brezski RJ, Marsters S, Ashkenazi A, Sukumaran S, Chiu H, Cubas R, Kim JM, Lazar GA. Tetravalent biepitopic targeting enables intrinsic antibody agonism of tumor necrosis factor receptor superfamily members. MAbs 2019; 11(6): 996–1011
CrossRef
Google scholar
|
[42] |
Wang X, Mathieu M, Brezski RJ. IgG Fc engineering to modulate antibody effector functions. Protein Cell 2018; 9(1): 63–73
CrossRef
Google scholar
|
[43] |
Lee A, Keam SJ. Tislelizumab: first approval. Drugs 2020; 80(6): 617–624
CrossRef
Google scholar
|
[44] |
Aspeslagh S, Postel-Vinay S, Rusakiewicz S, Soria JC, Zitvogel L, Marabelle A. Rationale for anti-OX40 cancer immunotherapy. Eur J Cancer 2016; 52: 50–66
CrossRef
Google scholar
|
[45] |
Cella M, Scheidegger D, Palmer-Lehmann K, Lane P, Lanzavecchia A, Alber G. Ligation of CD40 on dendritic cells triggers production of high levels of interleukin-12 and enhances T cell stimulatory capacity: T-T help via APC activation. J Exp Med 1996; 184(2): 747–752
CrossRef
Google scholar
|
[46] |
GaudreauMMilburn CGaoCPritskerAFereshteh MYangZBarnhartBKormanA QuigleyM. Abstract 2782: examining the dynamic regulation of OX40 following receptor agonism and T-cell activation: Implications for antibody-mediated enhancement of T-cell function. Cancer Res. 2018; 78. 2782–2782
|
[47] |
BanielCC
|
[48] |
Montler R, Bell RB, Thalhofer C, Leidner R, Feng Z, Fox BA, Cheng AC, Bui TG, Tucker C, Hoen H, Weinberg A. OX40, PD-1 and CTLA-4 are selectively expressed on tumor-infiltrating T cells in head and neck cancer. Clin Transl Immunology 2016; 5(4): e70
CrossRef
Google scholar
|
[49] |
Li J, Stagg NJ, Johnston J, Harris MJ, Menzies SA, DiCara D, Clark V, Hristopoulos M, Cook R, Slaga D, Nakamura R, McCarty L, Sukumaran S, Luis E, Ye Z, Wu TD, Sumiyoshi T, Danilenko D, Lee GY, Totpal K, Ellerman D, Hötzel I, James JR, Junttila TT. Membrane-proximal epitope facilitates efficient T cell synapse formation by anti-FcRH5/CD3 and is a requirement for myeloma cell killing. Cancer Cell 2017; 31(3): 383–395
CrossRef
Google scholar
|
[50] |
Cleary KLS, Chan HTC, James S, Glennie MJ, Cragg MS. Antibody distance from the cell membrane regulates antibody effector mechanisms. J Immunol 2017; 198(10): 3999–4011
CrossRef
Google scholar
|
/
〈 | 〉 |