Analysis of the genomic landscape of primary central nervous system lymphoma using whole-genome sequencing in Chinese patients

Xianggui Yuan, Teng Yu, Jianzhi Zhao, Huawei Jiang, Yuanyuan Hao, Wen Lei, Yun Liang, Baizhou Li, Wenbin Qian

PDF(8853 KB)
PDF(8853 KB)
Front. Med. ›› 2023, Vol. 17 ›› Issue (5) : 889-906. DOI: 10.1007/s11684-023-0994-x
RESEARCH ARTICLE
RESEARCH ARTICLE

Analysis of the genomic landscape of primary central nervous system lymphoma using whole-genome sequencing in Chinese patients

Author information +
History +

Abstract

Primary central nervous system lymphoma (PCNSL) is an uncommon non-Hodgkin’s lymphoma with poor prognosis. This study aimed to depict the genetic landscape of Chinese PCNSLs. Whole-genome sequencing was performed on 68 newly diagnosed Chinese PCNSL samples, whose genomic characteristics and clinicopathologic features were also analyzed. Structural variations were identified in all patients with a mean of 349, which did not significantly influence prognosis. Copy loss occurred in all samples, while gains were detected in 77.9% of the samples. The high level of copy number variations was significantly associated with poor progression-free survival (PFS) and overall survival (OS). A total of 263 genes mutated in coding regions were identified, including 6 newly discovered genes (ROBO2, KMT2C, CXCR4, MYOM2, BCLAF1, and NRXN3) detected in ≥ 10% of the cases. CD79B mutation was significantly associated with lower PFS, TMSB4X mutation and high expression of TMSB4X protein was associated with lower OS. A prognostic risk scoring system was also established for PCNSL, which included Karnofsky performance status and six mutated genes (BRD4, EBF1, BTG1, CCND3, STAG2, and TMSB4X). Collectively, this study comprehensively reveals the genomic landscape of newly diagnosed Chinese PCNSLs, thereby enriching the present understanding of the genetic mechanisms of PCNSL.

Keywords

primary central nervous system lymphoma / whole-genome sequencing / TMSB4X / copy number variation / gene mutation

Cite this article

Download citation ▾
Xianggui Yuan, Teng Yu, Jianzhi Zhao, Huawei Jiang, Yuanyuan Hao, Wen Lei, Yun Liang, Baizhou Li, Wenbin Qian. Analysis of the genomic landscape of primary central nervous system lymphoma using whole-genome sequencing in Chinese patients. Front. Med., 2023, 17(5): 889‒906 https://doi.org/10.1007/s11684-023-0994-x

References

[1]
Grommes C, DeAngelis LM. Primary CNS lymphoma. J Clin Oncol 2017; 35(21): 2410–2418
CrossRef Google scholar
[2]
Baraniskin A, Schroers R. Liquid biopsy and other non-invasive diagnostic measures in PCNSL. Cancers (Basel) 2021; 13(11): 2665
CrossRef Google scholar
[3]
van der Meulen M, Dinmohamed AG, Visser O, Doorduijn JK, Bromberg JEC. Improved survival in primary central nervous system lymphoma up to age 70 only: a population-based study on incidence, primary treatment and survival in the Netherlands, 1989–2015. Leukemia 2017; 31(8): 1822–1825
CrossRef Google scholar
[4]
Kim P, Omuro A. Consolidation therapy in primary central nervous system lymphoma. Curr Treat Options Oncol 2020; 21(9): 74
CrossRef Google scholar
[5]
Courts C, Montesinos-Rongen M, Brunn A, Bug S, Siemer D, Hans V, Blümcke I, Klapper W, Schaller C, Wiestler OD, Küppers R, Siebert R, Deckert M. Recurrent inactivation of the PRDM1 gene in primary central nervous system lymphoma. J Neuropathol Exp Neurol 2008; 67(7): 720–727
CrossRef Google scholar
[6]
Montesinos-Rongen M, Schmitz R, Brunn A, Gesk S, Richter J, Hong K, Wiestler OD, Siebert R, Küppers R, Deckert M. Mutations of CARD11 but not TNFAIP3 may activate the NF-kB pathway in primary CNS lymphoma. Acta Neuropathol 2010; 120(4): 529–535
CrossRef Google scholar
[7]
Montesinos-Rongen M, Zühlke-Jenisch R, Gesk S, Martín-Subero JI, Schaller C, Van Roost D, Wiestler OD, Deckert M, Siebert R. Interphase cytogenetic analysis of lymphoma-associated chromosomal breakpoints in primary diffuse large B-cell lymphomas of the central nervous system. J Neuropathol Exp Neurol 2002; 61(10): 926–933
CrossRef Google scholar
[8]
Braggio E, Van Wier S, Ojha J, McPhail E, Asmann YW, Egan J, da Silva JA, Schiff D, Lopes MB, Decker PA, Valdez R, Tibes R, Eckloff B, Witzig TE, Stewart AK, Fonseca R, O’Neill BP. Genome-wide analysis uncovers novel recurrent alterations in primary central nervous system lymphomas. Clin Cancer Res 2015; 21(17): 3986–3994
CrossRef Google scholar
[9]
Fukumura K, Kawazu M, Kojima S, Ueno T, Sai E, Soda M, Ueda H, Yasuda T, Yamaguchi H, Lee J, Shishido-Hara Y, Sasaki A, Shirahata M, Mishima K, Ichimura K, Mukasa A, Narita Y, Saito N, Aburatani H, Nishikawa R, Nagane M, Mano H. Genomic characterization of primary central nervous system lymphoma. Acta Neuropathol 2016; 131(6): 865–875
CrossRef Google scholar
[10]
Zhou Y, Liu W, Xu Z, Zhu H, Xiao D, Su W, Zeng R, Feng Y, Duan Y, Zhou J, Zhong M. Analysis of genomic alteration in primary central nervous system lymphoma and the expression of some related genes. Neoplasia 2018; 20(10): 1059–1069
CrossRef Google scholar
[11]
Wang PP, Liu SH, Chen CT, Lv L, Li D, Liu QY, Liu GL, Wu Y. Circulating tumor cells as a new predictive and prognostic factor in patients with small cell lung cancer. J Cancer 2020; 11(8): 2113–2122
CrossRef Google scholar
[12]
Yang L, Luquette LJ, Gehlenborg N, Xi R, Haseley PS, Hsieh CH, Zhang C, Ren X, Protopopov A, Chin L, Kucherlapati R, Lee C, Park PJ. Diverse mechanisms of somatic structural variations in human cancer genomes. Cell 2013; 153(4): 919–929
CrossRef Google scholar
[13]
Waddell N, Pajic M, Patch AM, Chang DK, Kassahn KS, Bailey P, Johns AL, Miller D, Nones K, Quek K, Quinn MC, Robertson AJ, Fadlullah MZ, Bruxner TJ, Christ AN, Harliwong I, Idrisoglu S, Manning S, Nourse C, Nourbakhsh E, Wani S, Wilson PJ, Markham E, Cloonan N, Anderson MJ, Fink JL, Holmes O, Kazakoff SH, Leonard C, Newell F, Poudel B, Song S, Taylor D, Waddell N, Wood S, Xu Q, Wu J, Pinese M, Cowley MJ, Lee HC, Jones MD, Nagrial AM, Humphris J, Chantrill LA, Chin V, Steinmann AM, Mawson A, Humphrey ES, Colvin EK, Chou A, Scarlett CJ, Pinho AV, Giry-Laterriere M, Rooman I, Samra JS, Kench JG, Pettitt JA, Merrett ND, Toon C, Epari K, Nguyen NQ, Barbour A, Zeps N, Jamieson NB, Graham JS, Niclou SP, Bjerkvig R, Grützmann R, Aust D, Hruban RH, Maitra A, Iacobuzio-Donahue CA, Wolfgang CL, Morgan RA, Lawlor RT, Corbo V, Bassi C, Falconi M, Zamboni G, Tortora G, Tempero MA; Australian Pancreatic Cancer Genome Initiative; Gill AJ, Eshleman JR, Pilarsky C, Scarpa A, Musgrove EA, Pearson JV, Biankin AV, Grimmond SM. Whole genomes redefine the mutational landscape of pancreatic cancer. Nature 2015; 518(7540): 495–501
CrossRef Google scholar
[14]
Wu S, Ou T, Xing N, Lu J, Wan S, Wang C, Zhang X, Yang F, Huang Y, Cai Z. Whole-genome sequencing identifies ADGRG6 enhancer mutations and FRS2 duplications as angiogenesis-related drivers in bladder cancer. Nat Commun 2019; 10(1): 720
CrossRef Google scholar
[15]
Chapuy B, Roemer MGM, Stewart C, Tan Y, Abo RP, Zhang L, Dunford AJ, Meredith DM, Thorner AR, Jordanova ES, Liu G, Feuerhake F, Ducar MD, Illerhaus G, Gusenleitner D, Linden EA, Sun HH, Homer H, Aono M, Pinkus GS, Ligon AH, Ligon KL, Ferry JA, Freeman GJ, van Hummelen P, Golub TR, Getz G, Rodig SJ, de Jong D, Monti S, Shipp MA. Targetable genetic features of primary testicular and primary central nervous system lymphomas. Blood 2016; 127(7): 869–881
CrossRef Google scholar
[16]
Braggio E, McPhail ER, Macon W, Lopes MB, Schiff D, Law M, Fink S, Sprau D, Giannini C, Dogan A, Fonseca R, O’Neill BP. Primary central nervous system lymphomas: a validation study of array-based comparative genomic hybridization in formalin-fixed paraffin-embedded tumor specimens. Clin Cancer Res 2011; 17(13): 4245–4253
CrossRef Google scholar
[17]
Booman M, Szuhai K, Rosenwald A, Hartmann E, Kluin-Nelemans H, de Jong D, Schuuring E, Kluin P. Genomic alterations and gene expression in primary diffuse large B-cell lymphomas of immune-privileged sites: the importance of apoptosis and immunomodulatory pathways. J Pathol 2008; 216(2): 209–217
CrossRef Google scholar
[18]
Krysiak K, Gomez F, White BS, Matlock M, Miller CA, Trani L, Fronick CC, Fulton RS, Kreisel F, Cashen AF, Carson KR, Berrien-Elliott MM, Bartlett NL, Griffith M, Griffith OL, Fehniger TA. Recurrent somatic mutations affecting B-cell receptor signaling pathway genes in follicular lymphoma. Blood 2017; 129(4): 473–483
CrossRef Google scholar
[19]
Vater I, Montesinos-Rongen M, Schlesner M, Haake A, Purschke F, Sprute R, Mettenmeyer N, Nazzal I, Nagel I, Gutwein J, Richter J, Buchhalter I, Russell RB, Wiestler OD, Eils R, Deckert M, Siebert R. The mutational pattern of primary lymphoma of the central nervous system determined by whole-exome sequencing. Leukemia 2015; 29(3): 677–685
CrossRef Google scholar
[20]
Bruno A, Boisselier B, Labreche K, Marie Y, Polivka M, Jouvet A, Adam C, Figarella-Branger D, Miquel C, Eimer S, Houillier C, Soussain C, Mokhtari K, Daveau R, Hoang-Xuan K. Mutational analysis of primary central nervous system lymphoma. Oncotarget 2014; 5(13): 5065–5075
CrossRef Google scholar
[21]
Takashima Y, Sasaki Y, Hayano A, Homma J, Fukai J, Iwadate Y, Kajiwara K, Ishizawa S, Hondoh H, Tokino T, Yamanaka R. Target amplicon exome-sequencing identifies promising diagnosis and prognostic markers involved in RTK-RAS and PI3K-AKT signaling as central oncopathways in primary central nervous system lymphoma. Oncotarget 2018; 9(44): 27471–27486
CrossRef Google scholar
[22]
Zhu Q, Wang J, Zhang W, Zhu W, Wu Z, Chen Y, Chen M, Zheng L, Tang J, Zhang S, Wang D, Wang X, Chen G. Whole-genome/exome sequencing uncovers mutations and copy number variations in primary diffuse large B-cell lymphoma of the central nervous system. Front Genet 2022; 13: 878618
CrossRef Google scholar
[23]
Morin RD, Mungall K, Pleasance E, Mungall AJ, Goya R, Huff RD, Scott DW, Ding J, Roth A, Chiu R, Corbett RD, Chan FC, Mendez-Lago M, Trinh DL, Bolger-Munro M, Taylor G, Hadj Khodabakhshi A, Ben-Neriah S, Pon J, Meissner B, Woolcock B, Farnoud N, Rogic S, Lim EL, Johnson NA, Shah S, Jones S, Steidl C, Holt R, Birol I, Moore R, Connors JM, Gascoyne RD, Marra MA. Mutational and structural analysis of diffuse large B-cell lymphoma using whole-genome sequencing. Blood 2013; 122(7): 1256–1265
CrossRef Google scholar
[24]
Ren W, Ye X, Su H, Li W, Liu D, Pirmoradian M, Wang X, Zhang B, Zhang Q, Chen L, Nie M, Liu Y, Meng B, Huang H, Jiang W, Zeng Y, Li W, Wu K, Hou Y, Wiman KG, Li Z, Zhang H, Peng R, Zhu S, Pan-Hammarström Q. Genetic landscape of hepatitis B virus-associated diffuse large B-cell lymphoma. Blood 2018; 131(24): 2670–2681
CrossRef Google scholar
[25]
Schmitz R, Wright GW, Huang DW, Johnson CA, Phelan JD, Wang JQ, Roulland S, Kasbekar M, Young RM, Shaffer AL, Hodson DJ, Xiao W, Yu X, Yang Y, Zhao H, Xu W, Liu X, Zhou B, Du W, Chan WC, Jaffe ES, Gascoyne RD, Connors JM, Campo E, Lopez-Guillermo A, Rosenwald A, Ott G, Delabie J, Rimsza LM, Tay Kuang Wei K, Zelenetz AD, Leonard JP, Bartlett NL, Tran B, Shetty J, Zhao Y, Soppet DR, Pittaluga S, Wilson WH, Staudt LM. Genetics and pathogenesis of diffuse large B-cell lymphoma. N Engl J Med 2018; 378(15): 1396–1407
CrossRef Google scholar
[26]
Xu PF, Li C, Xi SY, Chen FR, Wang J, Zhang ZQ, Liu Y, Li X, Chen ZP. Whole exome sequencing reveals the genetic heterogeneity and evolutionary history of primary gliomas and matched recurrences. Comput Struct Biotechnol J 2022; 20: 2235–2246
CrossRef Google scholar
[27]
Brastianos PK, Horowitz PM, Santagata S, Jones RT, McKenna A, Getz G, Ligon KL, Palescandolo E, Van Hummelen P, Ducar MD, Raza A, Sunkavalli A, Macconaill LE, Stemmer-Rachamimov AO, Louis DN, Hahn WC, Dunn IF, Beroukhim R. Genomic sequencing of meningiomas identifies oncogenic SMO and AKT1 mutations. Nat Genet 2013; 45(3): 285–289
CrossRef Google scholar
[28]
Kim J, Hwang K, Kwon HJ, Lee JE, Lee KS, Choe G, Han JH, Kim CY. Clinicopathologic characteristics of grade 2/3 meningiomas: a perspective on the role of next-generation sequencing. Front Oncol 2022; 12: 885155
CrossRef Google scholar
[29]
Ferreri AJM, Blay JY, Reni M, Pasini F, Spina M, Ambrosetti A, Calderoni A, Rossi A, Vavassori V, Conconi A, Devizzi L, Berger F, Ponzoni M, Borisch B, Tinguely M, Cerati M, Milani M, Orvieto E, Sanchez J, Chevreau C, Dell’Oro S, Zucca E, Cavalli F. Prognostic scoring system for primary CNS lymphomas: the International Extranodal Lymphoma Study Group experience. J Clin Oncol 2003; 21(2): 266–272
CrossRef Google scholar
[30]
Abrey LE, Ben-Porat L, Panageas KS, Yahalom J, Berkey B, Curran W, Schultz C, Leibel S, Nelson D, Mehta M, DeAngelis LM. Primary central nervous system lymphoma: the Memorial Sloan-Kettering Cancer Center prognostic model. J Clin Oncol 2006; 24(36): 5711–5715
CrossRef Google scholar
[31]
Radke J, Ishaque N, Koll R, Gu Z, Schumann E, Sieverling L, Uhrig S, Hübschmann D, Toprak UH, López C, Hostench XP, Borgoni S, Juraeva D, Pritsch F, Paramasivam N, Balasubramanian GP, Schlesner M, Sahay S, Weniger M, Pehl D, Radbruch H, Osterloh A, Korfel A, Misch M, Onken J, Faust K, Vajkoczy P, Moskopp D, Wang Y, Jödicke A, Trümper L, Anagnostopoulos I, Lenze D, Küppers R, Hummel M, Schmitt CA, Wiestler OD, Wolf S, Unterberg A, Eils R, Herold-Mende C, Brors B; ICGC MMML-Seq Consortium; Siebert R, Wiemann S, Heppner FL. The genomic and transcriptional landscape of primary central nervous system lymphoma. Nat Commun 2022; 13(1): 2558
CrossRef Google scholar
[32]
Gonzalez-Aguilar A, Idbaih A, Boisselier B, Habbita N, Rossetto M, Laurenge A, Bruno A, Jouvet A, Polivka M, Adam C, Figarella-Branger D, Miquel C, Vital A, Ghesquières H, Gressin R, Delwail V, Taillandier L, Chinot O, Soubeyran P, Gyan E, Choquet S, Houillier C, Soussain C, Tanguy ML, Marie Y, Mokhtari K, Hoang-Xuan K. Recurrent mutations of MYD88 and TBL1XR1 in primary central nervous system lymphomas. Clin Cancer Res 2012; 18(19): 5203–5211
CrossRef Google scholar
[33]
Pecqueux C, Arslan A, Heller M, Falkenstein M, Kaczorowski A, Tolstov Y, Sultmann H, Grullich C, Herpel E, Duensing A, Kristiansen G, Hohenfellner M, Navone NM, Duensing S. FGF-2 is a driving force for chromosomal instability and a stromal factor associated with adverse clinico-pathological features in prostate cancer. Urol Oncol 2018; 36(8): 365 e315–365 e326
CrossRef Google scholar
[34]
Guo K, Ma Z, Zhang Y, Han L, Shao C, Feng Y, Gao F, Di S, Zhang Z, Zhang J, Tabbò F, Ekman S, Suda K, Cappuzzo F, Han J, Li X, Yan X. HDAC7 promotes NSCLC proliferation and metastasis via stabilization by deubiquitinase USP10 and activation of β-catenin-FGF18 pathway. J Exp Clin Cancer Res 2022; 41(1): 91
CrossRef Google scholar
[35]
Xu Z, Cai Y, Liu W, Kang F, He Q, Hong Q, Zhang W, Li J, Yan Y, Peng J. Downregulated exosome-associated gene FGF9 as a novel diagnostic and prognostic target for ovarian cancer and its underlying roles in immune regulation. Aging (Albany NY) 2022; 14(4): 1822–1835
CrossRef Google scholar
[36]
Chen YX, Liu XJ, Yang L, He JJ, Jiang YM, Mai J. Systematic analysis of expression profiles and prognostic significance of the FGF gene family in pancreatic adenocarcinoma. Oncol Lett 2022; 24(6): 435
CrossRef Google scholar
[37]
Wu Y, Yi Z, Li J, Wei Y, Feng R, Liu J, Huang J, Chen Y, Wang X, Sun J, Yin X, Li Y, Wan J, Zhang L, Huang J, Du H, Wang X, Li Q, Ren G, Li H. FGFR blockade boosts T cell infiltration into triple-negative breast cancer by regulating cancer-associated fibroblasts. Theranostics 2022; 12(10): 4564–4580
CrossRef Google scholar
[38]
Peng J, Sridhar S, Siefker-Radtke AO, Selvarajah S, Jiang DM. Targeting the FGFR pathway in urothelial carcinoma: the future is now. Curr Treat Options Oncol 2022; 23(9): 1269–1287
CrossRef Google scholar
[39]
Krull JE, Wenzl K, Hartert KT, Manske MK, Sarangi V, Maurer MJ, Larson MC, Nowakowski GS, Ansell SM, McPhail E, Habermann TM, Link BK, King RL, Cerhan JR, Novak AJ. Somatic copy number gains in MYC, BCL2, and BCL6 identifies a subset of aggressive alternative-DH/TH DLBCL patients. Blood Cancer J 2020; 10(11): 117
CrossRef Google scholar
[40]
Walker BA, Mavrommatis K, Wardell CP, Ashby TC, Bauer M, Davies FE, Rosenthal A, Wang H, Qu P, Hoering A, Samur M, Towfic F, Ortiz M, Flynt E, Yu Z, Yang Z, Rozelle D, Obenauer J, Trotter M, Auclair D, Keats J, Bolli N, Fulciniti M, Szalat R, Moreau P, Durie B, Stewart AK, Goldschmidt H, Raab MS, Einsele H, Sonneveld P, San Miguel J, Lonial S, Jackson GH, Anderson KC, Avet-Loiseau H, Munshi N, Thakurta A, Morgan GJ. Identification of novel mutational drivers reveals oncogene dependencies in multiple myeloma. Blood 2018; 132(6): 587–597
CrossRef Google scholar
[41]
An HW, Kim SY, Kwon JW, Seok SH, Woo SH, Kim DY, Park JW. In vivo CRISPR-Cas9 knockout screening using quantitative PCR identifies thymosin beta-4 X-linked that promotes diffuse-type gastric cancer metastasis. Mol Carcinog 2021; 60(9): 597–606
CrossRef Google scholar
[42]
Chu Y, You M, Zhang J, Gao G, Han R, Luo W, Liu T, Zuo J, Wang F. Adipose-derived mesenchymal stem cells enhance ovarian cancer growth and metastasis by increasing thymosin beta 4X-linked expression. Stem Cells Int 2019; 2019: 9037197
CrossRef Google scholar
[43]
Khodabakhshi AH, Morin RD, Fejes AP, Mungall AJ, Mungall KL, Bolger-Munro M, Johnson NA, Connors JM, Gascoyne RD, Marra MA, Birol I, Jones SJM. Recurrent targets of aberrant somatic hypermutation in lymphoma. Oncotarget 2012; 3(11): 1308–1319
CrossRef Google scholar
[44]
Yuniati L, Scheijen B, van der Meer LT, van Leeuwen FN. Tumor suppressors BTG1 and BTG2: beyond growth control. J Cell Physiol 2019; 234(5): 5379–5389
CrossRef Google scholar
[45]
Liao D. Emerging roles of the EBF family of transcription factors in tumor suppression. Mol Cancer Res 2009; 7(12): 1893–1901
CrossRef Google scholar
[46]
Hodkinson BP, Schaffer M, Brody JD, Jurczak W, Carpio C, Ben-Yehuda D, Avivi I, Forslund A, Özcan M, Alvarez J, Ceulemans R, Fourneau N, Younes A, Balasubramanian S. Biomarkers of response to ibrutinib plus nivolumab in relapsed diffuse large B-cell lymphoma, follicular lymphoma, or Richter’s transformation. Transl Oncol 2021; 14(1): 100977
CrossRef Google scholar
[47]
Rohde M, Bonn BR, Zimmermann M, Lange J, Möricke A, Klapper W, Oschlies I, Szczepanowski M, Nagel I, Schrappe M; MMML-MYC-SYS Project; ICGC MMML-Seq Project; Loeffler M, Siebert R, Reiter A, Burkhardt B. Relevance of ID3-TCF3-CCND3 pathway mutations in pediatric aggressive B-cell lymphoma treated according to the non-Hodgkin Lymphoma Berlin-Frankfurt-Münster protocols. Haematologica 2017; 102(6): 1091–1098
CrossRef Google scholar
[48]
Martín-Garcia D, Navarro A, Valdés-Mas R, Clot G, Gutiérrez-Abril J, Prieto M, Ribera-Cortada I, Woroniecka R, Rymkiewicz G, Bens S, de Leval L, Rosenwald A, Ferry JA, Hsi ED, Fu K, Delabie J, Weisenburger D, de Jong D, Climent F, O’Connor SJ, Swerdlow SH, Torrents D, Beltran S, Espinet B, González-Farré B, Veloza L, Costa D, Matutes E, Siebert R, Ott G, Quintanilla-Martinez L, Jaffe ES, López-Otín C, Salaverria I, Puente XS, Campo E, Beà S. CCND2 and CCND3 hijack immunoglobulin light-chain enhancers in cyclin D1 mantle cell lymphoma. Blood 2019; 133(9): 940–951
CrossRef Google scholar
[49]
Donati B, Lorenzini E, Ciarrocchi A. BRD4 and cancer: going beyond transcriptional regulation. Mol Cancer 2018; 17(1): 164
CrossRef Google scholar
[50]
Chapuy B, McKeown MR, Lin CY, Monti S, Roemer MG, Qi J, Rahl PB, Sun HH, Yeda KT, Doench JG, Reichert E, Kung AL, Rodig SJ, Young RA, Shipp MA, Bradner JE. Discovery and characterization of super-enhancer-associated dependencies in diffuse large B cell lymphoma. Cancer Cell 2013; 24(6): 777–790
CrossRef Google scholar
[51]
Tsukamoto T, Nakahata S, Sato R, Kanai A, Nakano M, Chinen Y, Maegawa-Matsui S, Matsumura-Kimoto Y, Takimoto-Shimomura T, Mizuno Y, Kuwahara-Ota S, Kawaji Y, Taniwaki M, Inaba T, Tashiro K, Morishita K, Kuroda J. BRD4-regulated molecular targets in mantle cell lymphoma: insights into targeted therapeutic approach. Cancer Genomics Proteomics 2020; 17(1): 77–89
CrossRef Google scholar
[52]
Chung NG, Kim MS, Yoo NJ, Lee SH. Somatic mutation of STAG2, an aneuploidy-related gene, is rare in acute leukemias. Leuk Lymphoma 2012; 53(6): 1234–1235
CrossRef Google scholar
[53]
Hashemi Zonouz T, Abdulbaki R, Bandyopadhyay BC, Nava VE. Novel mutations in a lethal case of lymphomatous adult T cell lymphoma with cryptic myocardial involvement. Curr Oncol 2021; 28(1): 818–824
CrossRef Google scholar
[54]
Serizawa M, Yokota T, Hosokawa A, Kusafuka K, Sugiyama T, Tsubosa Y, Yasui H, Nakajima T, Koh Y. The efficacy of uracil DNA glycosylase pretreatment in amplicon-based massively parallel sequencing with DNA extracted from archived formalin-fixed paraffin-embedded esophageal cancer tissues. Cancer Genet 2015; 208(9): 415–427
CrossRef Google scholar
[55]
Fukumura K, Kawazu M, Kojima S, Ueno T, Sai E, Soda M, Ueda H, Yasuda T, Yamaguchi H, Lee J, Shishido-Hara Y, Sasaki A, Shirahata M, Mishima K, Ichimura K, Mukasa A, Narita Y, Saito N, Aburatani H, Nishikawa R, Nagane M, Mano H. Genomic characterization of primary central nervous system lymphoma. Acta Neuropathol 2016; 131(6): 865–875
CrossRef Google scholar

Acknowledgments

We thank Shanghai Yuanqi Biomedical Technology Co. Ltd. (Shanghai, China) for the bioinformatics analysis. This study was supported by funds from the Translational Research Grant of National Clinical Research Center for Hematologic Disease (No. 2020ZKZC01), the National Natural Science Foundation of China (Nos. 81830006, 82170219, and 81800188) and the Lymphoma Research Fund of China Anti-Cancer Association.

Electronic Supplementary Material

Supplementary material is available in the online version of this article at https://doi.org/10.1007/s11684-023-0994-x and is accessible for authorized users.

Compliance with ethics guidelines

Xianggui Yuan, Teng Yu, Jianzhi Zhao, Huawei Jiang, Yuanyuan Hao, Wen Lei, Yun Liang, Baizhou Li, and Wenbin Qian declare that they have no conflict of interest. All procedures followed were in accordance with the ethical standards of the responsible committee on human experimentation (institutional and national) and with the Helsinki Declaration of 1975, as revised in 2000. Informed consent was obtained from all patients for being included in the study.

RIGHTS & PERMISSIONS

2023 Higher Education Press
AI Summary AI Mindmap
PDF(8853 KB)

Accesses

Citations

Detail

Sections
Recommended

/