ADT-OH improves intestinal barrier function and remodels the gut microbiota in DSS-induced colitis
Zhiqian Bi, Jia Chen, Xiaoyao Chang, Dangran Li, Yingying Yao, Fangfang Cai, Huangru Xu, Jian Cheng, Zichun Hua, Hongqin Zhuang
ADT-OH improves intestinal barrier function and remodels the gut microbiota in DSS-induced colitis
Owing to the increasing incidence and prevalence of inflammatory bowel disease (IBD) worldwide, effective and safe treatments for IBD are urgently needed. Hydrogen sulfide (H2S) is an endogenous gasotransmitter and plays an important role in inflammation. To date, H2S-releasing agents are viewed as potential anti-inflammatory drugs. The slow-releasing H2S donor 5-(4-hydroxyphenyl)-3H-1,2-dithiole-3-thione (ADT-OH), known as a potent therapeutic with chemopreventive and cytoprotective properties, has received attention recently. Here, we reported its anti-inflammatory effects on dextran sodium sulfate (DSS)-induced acute (7 days) and chronic (30 days) colitis. We found that ADT-OH effectively reduced the DSS-colitis clinical score and reversed the inflammation-induced shortening of colon length. Moreover, ADT-OH reduced intestinal inflammation by suppressing the nuclear factor kappa-B pathway. In vivo and in vitro results showed that ADT-OH decreased intestinal permeability by increasing the expression of zonula occludens-1 and occludin and blocking increases in myosin II regulatory light chain phosphorylation and epithelial myosin light chain kinase protein expression levels. In addition, ADT-OH restored intestinal microbiota dysbiosis characterized by the significantly increased abundance of Muribaculaceae and Alistipes and markedly decreased abundance of Helicobacter, Mucispirillum, Parasutterella, and Desulfovibrio. Transplanting ADT-OH-modulated microbiota can alleviate DSS-induced colitis and negatively regulate the expression of local and systemic proinflammatory cytokines. Collectively, ADT-OH is safe without any short-term (5 days) or long-term (30 days) toxicological adverse effects and can be used as an alternative therapeutic agent for IBD treatment.
inflammatory bowel disease / ADT-OH / intestinal permeability / gut microbiota
[1] |
Rubin SJS, Bai L, Haileselassie Y, Garay G, Yun C, Becker L, Streett SE, Sinha SR, Habtezion A. Mass cytometry reveals systemic and local immune signatures that distinguish inflammatory bowel diseases. Nat Commun 2019; 10(1): 2686–2699
CrossRef
Google scholar
|
[2] |
Zhou J, Huang S, Wang Z, Huang J, Xu L, Tang X, Wan YY, Li QJ, Symonds ALJ, Long H, Zhu B. Targeting EZH2 histone methyltransferase activity alleviates experimental intestinal inflammation. Nat Commun 2019; 10(1): 2427–2437
CrossRef
Google scholar
|
[3] |
Liu TC, Stappenbeck TS. Genetics and pathogenesis of inflammatory bowel disease. Annu Rev Pathol 2016; 11(1): 127–148
CrossRef
Google scholar
|
[4] |
Danese S, Fiocchi C. Etiopathogenesis of inflammatory bowel diseases. World J Gastroenterol 2006; 12(30): 4807–4812
CrossRef
Google scholar
|
[5] |
Zhang YZ, Li YY. Inflammatory bowel disease: pathogenesis. World J Gastroenterol 2014; 20(1): 91–99
CrossRef
Google scholar
|
[6] |
Bernstein CN. Treatment of IBD: where we are and where we are going. Am J Gastroenterol 2015; 110(1): 114–126
CrossRef
Google scholar
|
[7] |
TargownikLEBernsteinCN. Infectious and malignant complications of TNF inhibitor therapy in IBD. Am J Gastroenterol 2013; 108(12): 1835–1842, quiz 1843 doi:10.1038/ajg.2013.294
Pubmed
|
[8] |
Stappenbeck TS, Rioux JD, Mizoguchi A, Saitoh T, Huett A, Darfeuille-Michaud A, Wileman T, Mizushima N, Carding S, Akira S, Parkes M, Xavier RJ. Crohn disease: a current perspective on genetics, autophagy and immunity. Autophagy 2011; 7(4): 355–374
CrossRef
Google scholar
|
[9] |
Meddings JB, Sutherland LR, May GR. Intestinal permeability in patients with Crohn’s disease. Gut 1994; 35(11): 1675–1676
CrossRef
Google scholar
|
[10] |
Nusrat A, Parkos CA, Verkade P, Foley CS, Liang TW, Innis-Whitehouse W, Eastburn KK, Madara JL. Tight junctions are membrane microdomains. J Cell Sci 2000; 113(10): 1771–1781
CrossRef
Google scholar
|
[11] |
GroschwitzKRHoganSP. Intestinal barrier function: molecular regulation and disease pathogenesis. J Allergy Clin Immunol 2009; 124(1): 3–20, quiz 21–22 doi:10.1016/j.jaci.2009.05.038
Pubmed
|
[12] |
Turner JR, Rill BK, Carlson SL, Carnes D, Kerner R, Mrsny RJ, Madara JL. Physiological regulation of epithelial tight junctions is associated with myosin light-chain phosphorylation. Am J Physiol 1997; 273(4): C1378–C1385
CrossRef
Google scholar
|
[13] |
Garrett WS, Gordon JI, Glimcher LH. Homeostasis and inflammation in the intestine. Cell 2010; 140(6): 859–870
CrossRef
Google scholar
|
[14] |
Morgan XC, Tickle TL, Sokol H, Gevers D, Devaney KL, Ward DV, Reyes JA, Shah SA, LeLeiko N, Snapper SB, Bousvaros A, Korzenik J, Sands BE, Xavier RJ, Huttenhower C. Dysfunction of the intestinal microbiome in inflammatory bowel disease and treatment. Genome Biol 2012; 13(9): R79
CrossRef
Google scholar
|
[15] |
Mukhopadhya I, Hansen R, El-Omar EM, Hold GL. IBD-what role do Proteobacteria play? Nat Rev Gastroenterol Hepatol 2012; 9(4): 219–230 doi:10.1038/nrgastro.2012.14
Pubmed
|
[16] |
Lavelle A, Lennon G, O'Sullivan O, Docherty N, Balfe A, Maguire A, Mulcahy HE, Doherty G, O'Donoghue D, Hyland J, Ross RP, Coffey JC, Sheahan K, Cotter PD, Shanahan F, Winter DC, O'Connell PR. Spatial variation of the colonic microbiota in patients with ulcerative colitis and control volunteers. Gut 2015; 64(10): 1553–1561
CrossRef
Google scholar
|
[17] |
Wang M, Molin G, Ahrné S, Adawi D, Jeppsson B. High proportions of proinflammatory bacteria on the colonic mucosa in a young patient with ulcerative colitis as revealed by cloning and sequencing of 16S rRNA genes. Dig Dis Sci 2007; 52(3): 620–627
CrossRef
Google scholar
|
[18] |
Singh SB, Lin HC. Hydrogen sulfide in physiology and diseases of the digestive tract. Microorganisms 2015; 3(4): 866–889
CrossRef
Google scholar
|
[19] |
Szabo C, Hellmich MR. Endogenously produced hydrogen sulfide supports tumor cell growth and proliferation. Cell Cycle 2013; 12(18): 2915–2916
CrossRef
Google scholar
|
[20] |
Burguera EF, Meijide-Failde R, Blanco FJ. Hydrogen sulfide and inflammatory joint diseases. Curr Drug Targets 2017; 18(14): 1641–1652
|
[21] |
Fiorucci S, Orlandi S, Mencarelli A, Caliendo G, Santagada V, Distrutti E, Santucci L, Cirino G, Wallace JL. Enhanced activity of a hydrogen sulphide-releasing derivative of mesalamine (ATB-429) in a mouse model of colitis. Br J Pharmacol 2007; 150(8): 996–1002
CrossRef
Google scholar
|
[22] |
Muniraj N, Stamp LK, Badiei A, Hegde A, Cameron V, Bhatia M. Hydrogen sulfide acts as a pro-inflammatory mediator in rheumatic disease. Int J Rheum Dis 2017; 20(2): 182–189
CrossRef
Google scholar
|
[23] |
Miao X, Meng X, Wu G, Ju Z, Zhang HH, Hu S, Xu GY. Upregulation of cystathionine-β-synthetase expression contributes to inflammatory pain in rat temporomandibular joint. Mol Pain 2014; 10: 9
CrossRef
Google scholar
|
[24] |
AhmadASzaboC. Both the H2S biosynthesis inhibitor aminooxyacetic acid and the mitochondrially targeted H2S donor AP39 exert protective effects in a mouse model of burn injury. Pharmacol Res 2016; 113(Pt A):348–355
|
[25] |
Zhang HX, Liu SJ, Tang XL, Duan GL, Ni X, Zhu XY, Liu YJ, Wang CNH. H2S attenuates LPS-induced acute lung injury by reducing oxidative/nitrative stress and inflammation. Cell Physiol Biochem 2016; 40(6): 1603–1612
CrossRef
Google scholar
|
[26] |
Bátai IZ, Sár CP, Horváth Á, Borbély É, Bölcskei K, Kemény Á, Sándor Z, Nemes B, Helyes Z, Perkecz A, Mócsai A, Pozsgai G, Pintér E. TRPA1 ion channel determines beneficial and detrimental effects of GYY4137 in murine serum-transfer arthritis. Front Pharmacol 2019; 10(10): 964
CrossRef
Google scholar
|
[27] |
Cai F, Xu H, Cao N, Zhang X, Liu J, Lu Y, Chen J, Yang Y, Cheng J, Hua ZC, Zhuang H. ADT-OH, a hydrogen sulfide-releasing donor, induces apoptosis and inhibits the development of melanoma in vivo by upregulating FADD. Cell Death Dis 2020; 11(1): 33–47
CrossRef
Google scholar
|
[28] |
De Long MJ, Dolan P, Santamaria AB, Bueding E. 1,2-Dithiol-3-thione analogs: effects on NAD(P)H: quinone reductase and glutathione levels in murine hepatoma cells. Carcinogenesis 1986; 7(6): 977–980
CrossRef
Google scholar
|
[29] |
Zhang Y, Munday R. Dithiolethiones for cancer chemoprevention: where do we stand? Mol Cancer Ther 2008; 7(11): 3470–3479 doi:10.1158/1535-7163.MCT-08-0625
Pubmed
|
[30] |
Lam S, MacAulay C, Le Riche JC, Dyachkova Y, Coldman A, Guillaud M, Hawk E, Christen MO, Gazdar AF. A randomized phase IIb trial of anethole dithiolethione in smokers with bronchial dysplasia. J Natl Cancer Inst 2002; 94(13): 1001–1009
CrossRef
Google scholar
|
[31] |
Reddy BS, Rao CV, Rivenson A, Kelloff G. Chemoprevention of colon carcinogenesis by organosulfur compounds. Cancer Res 1993; 53(15): 3493–3498
|
[32] |
Chegaev K, Rolando B, Cortese D, Gazzano E, Buondonno I, Lazzarato L, Fanelli M, Hattinger CM, Serra M, Riganti C, Fruttero R, Ghigo D, Gasco A. H2S-donating doxorubicins may overcome cardiotoxicity and multidrug resistance. J Med Chem 2016; 59(10): 4881–4889
CrossRef
Google scholar
|
[33] |
Wang Y, Jia J, Ao G, Hu L, Liu H, Xiao Y, Du H, Alkayed NJ, Liu CF, Cheng J. Hydrogen sulfide protects blood-brain barrier integrity following cerebral ischemia. J Neurochem 2014; 129(5): 827–838
CrossRef
Google scholar
|
[34] |
Zhou X, Cao Y, Ao G, Hu L, Liu H, Wu J, Wang X, Jin M, Zheng S, Zhen X, Alkayed NJ, Jia J, Cheng J. CaMKKβ-dependent activation of AMP-activated protein kinase is critical to suppressive effects of hydrogen sulfide on neuroinflammation. Antioxid Redox Signal 2014; 21(12): 1741–1758
CrossRef
Google scholar
|
[35] |
Hirata I, Naito Y, Takagi T, Mizushima K, Suzuki T, Omatsu T, Handa O, Ichikawa H, Ueda H, Yoshikawa T. Endogenous hydrogen sulfide is an anti-inflammatory molecule in dextran sodium sulfate-induced colitis in mice. Dig Dis Sci 2011; 56(5): 1379–1386
CrossRef
Google scholar
|
[36] |
Meir M, Burkard N, Ungewiß H, Diefenbacher M, Flemming S, Kannapin F, Germer CT, Schweinlin M, Metzger M, Waschke J, Schlegel N. Neurotrophic factor GDNF regulates intestinal barrier function in inflammatory bowel disease. J Clin Invest 2019; 129(7): 2824–2840
CrossRef
Google scholar
|
[37] |
Leonard M, Creed E, Brayden D, Baird AW. Evaluation of the Caco-2 monolayer as a model epithelium for iontophoretic transport. Pharm Res 2000; 17(10): 1181–1188
CrossRef
Google scholar
|
[38] |
Rahman K, Desai C, Iyer SS, Thorn NE, Kumar P, Liu Y, Smith T, Neish AS, Li H, Tan S, Wu P, Liu X, Yu Y, Farris AB, Nusrat A, Parkos CA, Anania FA. Loss of junctional adhesion molecule a promotes severe steatohepatitis in mice on a diet high in saturated fat, fructose, and cholesterol. Gastroenterology 2016; 151(4): 733–746.e12
CrossRef
Google scholar
|
[39] |
Caporaso JG, Lauber CL, Walters WA, Berg-Lyons D, Lozupone CA, Turnbaugh PJ, Fierer N, Knight R. Global patterns of 16S rRNA diversity at a depth of millions of sequences per sample. Proc Natl Acad Sci USA 2011; 108(Suppl 1): 4516–4522
CrossRef
Google scholar
|
[40] |
Fordham RP, Sansom OJ. Colon contradictions: NF-κB signaling in intestinal tumorigenesis. J Exp Med 2015; 212(13): 2185
CrossRef
Google scholar
|
[41] |
Blankenberg S, Barbaux S, Tiret L. Adhesion molecules and atherosclerosis. Atherosclerosis 2003; 170(2): 191–203
CrossRef
Google scholar
|
[42] |
Howden CW, Gillanders I, Morris AJ, Duncan A, Danesh B, Russell RI. Intestinal permeability in patients with Crohn’s disease and their first-degree relatives. Am J Gastroenterol 1994; 89(8): 1175–1176
|
[43] |
Cao M, Wang P, Sun C, He W, Wang F. Amelioration of IFN-γ and TNF-α-induced intestinal epithelial barrier dysfunction by berberine via suppression of MLCK-MLC phosphorylation signaling pathway. PLoS One 2013; 8(5): e61944
CrossRef
Google scholar
|
[44] |
Li C, Zhao Y, Cheng J, Guo J, Zhang Q, Zhang X, Ren J, Wang F, Huang J, Hu H, Wang R, Zhang J. A proresolving peptide nanotherapy for site-specific treatment of inflammatory bowel disease by regulating proinflammatory microenvironment and gut microbiota. Adv Sci (Weinh) 2019; 6(18): 1900610
CrossRef
Google scholar
|
[45] |
Guo FF, Yu TC, Hong J, Fang JY. Emerging roles of hydrogen sulfide in inflammatory and neoplastic colonic diseases. Front Physiol 2016; 7: 156
CrossRef
Google scholar
|
[46] |
Wallace JL, Caliendo G, Santagada V, Cirino G, Fiorucci S. Gastrointestinal safety and anti-inflammatory effects of a hydrogen sulfide-releasing diclofenac derivative in the rat. Gastroenterology 2007; 132(1): 261–271
CrossRef
Google scholar
|
[47] |
Liu L, Cui J, Song CJ, Bian JS, Sparatore A, Soldato PD, Wang XY, Yan CDH. H2S-releasing aspirin protects against aspirin-induced gastric injury via reducing oxidative stress. PLoS One 2012; 7(9): e46301
CrossRef
Google scholar
|
[48] |
Marutani E, Kosugi S, Tokuda K, Khatri A, Nguyen R, Atochin DN, Kida K, Van Leyen K, Arai K, Ichinose F. A novel hydrogen sulfide-releasing N-methyl-D-aspartate receptor antagonist prevents ischemic neuronal death. J Biol Chem 2012; 287(38): 32124–32135
CrossRef
Google scholar
|
[49] |
Sen N, Paul BD, Gadalla MM, Mustafa AK, Sen T, Xu R, Kim S, Snyder SH. Hydrogen sulfide-linked sulfhydration of NF-κB mediates its antiapoptotic actions. Mol Cell 2012; 45(1): 13–24
CrossRef
Google scholar
|
[50] |
Chen Y, Zhu C, Yang Z, Chen J, He Y, Jiao Y, He W, Qiu L, Cen J, Guo Z. A ratiometric fluorescent probe for rapid detection of hydrogen sulfide in mitochondria. Angew Chem Int Ed Engl 2013; 52(6): 1688–1691
CrossRef
Google scholar
|
[51] |
Nam B, Lee W, Sarkar S, Kim JH, Bhise A, Park H, Kim JY, Huynh PT, Rajkumar S, Lee K, Ha YS, Cho SH, Lim JE, Kim KW, Lee KC, Suk K, Yoo J. In vivo detection of hydrogen sulfide in the brain of live mouse: application in neuroinflammation models. Eur J Nucl Med Mol Imaging 2022; 49(12): 4073–4087
CrossRef
Google scholar
|
[52] |
Renga B. Hydrogen sulfide generation in mammals: the molecular biology of cystathionine-β-synthase (CBS) and cystathionine-γ-lyase (CSE). Inflamm Allergy Drug Targets 2011; 10(2): 85–91
CrossRef
Google scholar
|
[53] |
Shatalin K, Shatalina E, Mironov A, Nudler E. H2S: a universal defense against antibiotics in bacteria. Science 2011; 334(6058): 986–990
CrossRef
Google scholar
|
[54] |
Zhang J, Zhang Q, Wang Y, Li J, Bai Z, Zhao Q, Wang Z, He D, Zhang J, Chen Y. Toxicities and beneficial protection of H2S donors based on nonsteroidal anti-inflammatory drugs. MedChemComm 2019; 10(5): 742–756
CrossRef
Google scholar
|
[55] |
Ghosh S, Panaccione R. Anti-adhesion molecule therapy for inflammatory bowel disease. Therap Adv Gastroenterol 2010; 3(4): 239–258
CrossRef
Google scholar
|
[56] |
Velikova G, Banks RE, Gearing A, Hemingway I, Forbes MA, Preston SR, Jones M, Wyatt J, Miller K, Ward U, Al-Maskatti J, Singh SM, Ambrose NS, Primrose JN, Selby PJ. Circulating soluble adhesion molecules E-cadherin, E-selectin, intercellular adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1) in patients with gastric cancer. Br J Cancer 1997; 76(11): 1398–1404
CrossRef
Google scholar
|
[57] |
Wang XH, Wang F, You SJ, Cao YJ, Cao LD, Han Q, Liu CF, Hu LF. Dysregulation of cystathionine γ-lyase (CSE)/hydrogen sulfide pathway contributes to ox-LDL-induced inflammation in macrophage. Cell Signal 2013; 25(11): 2255–2262
CrossRef
Google scholar
|
[58] |
Lin WC, Pan WY, Liu CK, Huang WX, Song HL, Chang KS, Li MJ, Sung HW. In situ self-spray coating system that can uniformly disperse a poorly water-soluble H2S donor on the colorectal surface to treat inflammatory bowel diseases. Biomaterials 2018; 182: 289–298
CrossRef
Google scholar
|
[59] |
Egge N, Arneaud SLB, Wales P, Mihelakis M, McClendon J, Fonseca RS, Savelle C, Gonzalez I, Ghorashi A, Yadavalli S, Lehman WJ, Mirzaei H, Douglas PM. Age-onset phosphorylation of a minor actin variant promotes intestinal barrier dysfunction. Dev Cell 2019; 51(5): 587–601.e7
CrossRef
Google scholar
|
[60] |
Clayburgh DR, Shen L, Turner JR. A porous defense: the leaky epithelial barrier in intestinal disease. Lab Invest 2004; 84(3): 282–291
CrossRef
Google scholar
|
[61] |
Shi H, Yu Y, Lin D, Zheng P, Zhang P, Hu M, Wang Q, Pan W, Yang X, Hu T, Li Q, Tang R, Zhou F, Zheng K, Huang XF. β-glucan attenuates cognitive impairment via the gut-brain axis in diet-induced obese mice. Microbiome 2020; 8(1): 143
CrossRef
Google scholar
|
[62] |
Zhou Y, Xu ZZ, He Y, Yang Y, Liu L, Lin Q, Nie Y, Li M, Zhi F, Liu S, Amir A, González A, Tripathi A, Chen M, Wu GD, Knight R, Zhou H, Chen Y. Gut microbiota offers universal biomarkers across ethnicity in inflammatory bowel disease diagnosis and infliximab response prediction. mSystems 2018; 3(1): e00188–17
CrossRef
Google scholar
|
[63] |
Shang L, Liu H, Yu H, Chen M, Yang T, Zeng X, Qiao S. Core altered microorganisms in colitis mouse model: a comprehensive time-point and fecal microbiota transplantation analysis. Antibiotics (Basel) 2021; 10(6): 643
CrossRef
Google scholar
|
[64] |
Parker BJ, Wearsch PA, Veloo ACM, Rodriguez-Palacios A. The genus Alistipes: gut bacteria with emerging implications to inflammation, cancer, and mental health. Front Immunol 2020; 11: 906
CrossRef
Google scholar
|
[65] |
Li AL, Ni WW, Zhang QM, Li Y, Zhang X, Wu HY, Du P, Hou JC, Zhang Y. Effect of cinnamon essential oil on gut microbiota in the mouse model of dextran sodium sulfate-induced colitis. Microbiol Immunol 2020; 64(1): 23–32
CrossRef
Google scholar
|
[66] |
Hu Y, Liu JP, Zhu Y, Lu NH. The importance of Toll-like receptors in NF-κB signaling pathway activation by Helicobacter pylori infection and the regulators of this response. Helicobacter 2016; 21(5): 428–440
CrossRef
Google scholar
|
[67] |
Wang H, Huang J, Ding Y, Zhou J, Gao G, Han H, Zhou J, Ke L, Rao P, Chen T, Zhang L. Nanoparticles isolated from porcine bone soup ameliorated dextran sulfate sodium-induced colitis and regulated gut microbiota in mice. Front Nutr 2022; 9: 821404
CrossRef
Google scholar
|
/
〈 | 〉 |