Dynein axonemal heavy chain 10 deficiency causes primary ciliary dyskinesia in humans and mice

Rongchun Wang, Danhui Yang, Chaofeng Tu, Cheng Lei, Shuizi Ding, Ting Guo, Lin Wang, Ying Liu, Chenyang Lu, Binyi Yang, Shi Ouyang, Ke Gong, Zhiping Tan, Yun Deng, Yueqiu Tan, Jie Qing, Hong Luo

PDF(7107 KB)
PDF(7107 KB)
Front. Med. ›› 2023, Vol. 17 ›› Issue (5) : 957-971. DOI: 10.1007/s11684-023-0988-8
RESEARCH ARTICLE
RESEARCH ARTICLE

Dynein axonemal heavy chain 10 deficiency causes primary ciliary dyskinesia in humans and mice

Author information +
History +

Abstract

Primary ciliary dyskinesia (PCD) is a congenital, motile ciliopathy with pleiotropic symptoms. Although nearly 50 causative genes have been identified, they only account for approximately 70% of definitive PCD cases. Dynein axonemal heavy chain 10 (DNAH10) encodes a subunit of the inner arm dynein heavy chain in motile cilia and sperm flagella. Based on the common axoneme structure of motile cilia and sperm flagella, DNAH10 variants are likely to cause PCD. Using exome sequencing, we identified a novel DNAH10 homozygous variant (c.589C > T, p.R197W) in a patient with PCD from a consanguineous family. The patient manifested sinusitis, bronchiectasis, situs inversus, and asthenoteratozoospermia. Immunostaining analysis showed the absence of DNAH10 and DNALI1 in the respiratory cilia, and transmission electron microscopy revealed strikingly disordered axoneme 9+2 architecture and inner dynein arm defects in the respiratory cilia and sperm flagella. Subsequently, animal models of Dnah10-knockin mice harboring missense variants and Dnah10-knockout mice recapitulated the phenotypes of PCD, including chronic respiratory infection, male infertility, and hydrocephalus. To the best of our knowledge, this study is the first to report DNAH10 deficiency related to PCD in human and mouse models, which suggests that DNAH10 recessive mutation is causative of PCD.

Keywords

DNAH10 / mice / motile cilia / mutation / primary ciliary dyskinesia

Cite this article

Download citation ▾
Rongchun Wang, Danhui Yang, Chaofeng Tu, Cheng Lei, Shuizi Ding, Ting Guo, Lin Wang, Ying Liu, Chenyang Lu, Binyi Yang, Shi Ouyang, Ke Gong, Zhiping Tan, Yun Deng, Yueqiu Tan, Jie Qing, Hong Luo. Dynein axonemal heavy chain 10 deficiency causes primary ciliary dyskinesia in humans and mice. Front. Med., 2023, 17(5): 957‒971 https://doi.org/10.1007/s11684-023-0988-8

References

[1]
Lucas JS, Davis SD, Omran H, Shoemark A. Primary ciliary dyskinesia in the genomics age. Lancet Respir Med 2020; 8(2): 202–216
CrossRef Pubmed Google scholar
[2]
Wallmeier J, Nielsen KG, Kuehni CE, Lucas JS, Leigh MW, Zariwala MA, Omran H. Motile ciliopathies. Nat Rev Dis Primers 2020; 6(1): 77
CrossRef Pubmed Google scholar
[3]
Goutaki M, Meier AB, Halbeisen FS, Lucas JS, Dell SD, Maurer E, Casaulta C, Jurca M, Spycher BD, Kuehni CE. Clinical manifestations in primary ciliary dyskinesia: systematic review and meta-analysis. Eur Respir J 2016; 48(4): 1081–1095
CrossRef Pubmed Google scholar
[4]
Lucas JS, Barbato A, Collins SA, Goutaki M, Behan L, Caudri D, Dell S, Eber E, Escudier E, Hirst RA, Hogg C, Jorissen M, Latzin P, Legendre M, Leigh MW, Midulla F, Nielsen KG, Omran H, Papon JF, Pohunek P, Redfern B, Rigau D, Rindlisbacher B, Santamaria F, Shoemark A, Snijders D, Tonia T, Titieni A, Walker WT, Werner C, Bush A, Kuehni CE. European Respiratory Society guidelines for the diagnosis of primary ciliary dyskinesia. Eur Respir J 2017; 49(1): 1601090
CrossRef Pubmed Google scholar
[5]
Fliegauf M, Benzing T, Omran H. When cilia go bad: cilia defects and ciliopathies. Nat Rev Mol Cell Biol 2007; 8(11): 880–893
CrossRef Pubmed Google scholar
[6]
KingSM. Dyneins: Dynein Mechanics, Dysfunction, and Disease. Saint Louis: Elsevier Science & Technology, 2017
[7]
Maiti AK, Mattéi MG, Jorissen M, Volz A, Zeigler A, Bouvagnet P. Identification, tissue specific expression, and chromosomal localisation of several human dynein heavy chain genes. Eur J Hum Genet 2000; 8(12): 923–932
CrossRef Pubmed Google scholar
[8]
Fagerberg L, Hallström BM, Oksvold P, Kampf C, Djureinovic D, Odeberg J, Habuka M, Tahmasebpoor S, Danielsson A, Edlund K, Asplund A, Sjöstedt E, Lundberg E, Szigyarto CA, Skogs M, Takanen JO, Berling H, Tegel H, Mulder J, Nilsson P, Schwenk JM, Lindskog C, Danielsson F, Mardinoglu A, Sivertsson A, von Feilitzen K, Forsberg M, Zwahlen M, Olsson I, Navani S, Huss M, Nielsen J, Ponten F, Uhlén M. Analysis of the human tissue-specific expression by genome-wide integration of transcriptomics and antibody-based proteomics. Mol Cell Proteomics 2014; 13(2): 397–406
CrossRef Pubmed Google scholar
[9]
Olbrich H, Häffner K, Kispert A, Völkel A, Volz A, Sasmaz G, Reinhardt R, Hennig S, Lehrach H, Konietzko N, Zariwala M, Noone PG, Knowles M, Mitchison HM, Meeks M, Chung EM, Hildebrandt F, Sudbrak R, Omran H. Mutations in DNAH5 cause primary ciliary dyskinesia and randomization of left-right asymmetry. Nat Genet 2002; 30(2): 143–144
CrossRef Pubmed Google scholar
[10]
Fassad MR, Shoemark A, Legendre M, Hirst RA, Koll F, le Borgne P, Louis B, Daudvohra F, Patel MP, Thomas L, Dixon M, Burgoyne T, Hayes J, Nicholson AG, Cullup T, Jenkins L, Carr SB, Aurora P, Lemullois M, Aubusson-Fleury A, Papon JF, O’Callaghan C, Amselem S, Hogg C, Escudier E, Tassin AM, Mitchison HM. Mutations in outer dynein arm heavy chain DNAH9 cause motile cilia defects and situs inversus. Am J Hum Genet 2018; 103(6): 984–994
CrossRef Pubmed Google scholar
[11]
Pifferi M, Michelucci A, Conidi ME, Cangiotti AM, Simi P, Macchia P, Boner AL. New DNAH11 mutations in primary ciliary dyskinesia with normal axonemal ultrastructure. Eur Respir J 2010; 35(6): 1413–1416
CrossRef Pubmed Google scholar
[12]
Ben Khelifa M, Coutton C, Zouari R, Karaouzène T, Rendu J, Bidart M, Yassine S, Pierre V, Delaroche J, Hennebicq S, Grunwald D, Escalier D, Pernet-Gallay K, Jouk PS, Thierry-Mieg N, Touré A, Arnoult C, Ray PF. Mutations in DNAH1, which encodes an inner arm heavy chain dynein, lead to male infertility from multiple morphological abnormalities of the sperm flagella. Am J Hum Genet 2014; 94(1): 95–104
CrossRef Pubmed Google scholar
[13]
Imtiaz F, Allam R, Ramzan K, Al-Sayed M. Variation in DNAH1 may contribute to primary ciliary dyskinesia. BMC Med Genet 2015; 16(1): 14
CrossRef Pubmed Google scholar
[14]
Li Y, Yagi H, Onuoha EO, Damerla RR, Francis R, Furutani Y, Tariq M, King SM, Hendricks G, Cui C, Saydmohammed M, Lee DM, Zahid M, Sami I, Leatherbury L, Pazour GJ, Ware SM, Nakanishi T, Goldmuntz E, Tsang M, Lo CW. DNAH6 and its interactions with PCD genes in heterotaxy and primary ciliary dyskinesia. PLoS Genet 2016; 12(2): e1005821
CrossRef Pubmed Google scholar
[15]
Tu C, Nie H, Meng L, Yuan S, He W, Luo A, Li H, Li W, Du J, Lu G, Lin G, Tan YQ. Identification of DNAH6 mutations in infertile men with multiple morphological abnormalities of the sperm flagella. Sci Rep 2019; 9(1): 15864
CrossRef Pubmed Google scholar
[16]
Tu C, Cong J, Zhang Q, He X, Zheng R, Yang X, Gao Y, Wu H, Lv M, Gu Y, Lu S, Liu C, Tian S, Meng L, Wang W, Tan C, Nie H, Li D, Zhang H, Gong F, Hu L, Lu G, Xu W, Lin G, Zhang F, Cao Y, Tan YQ. Bi-allelic mutations of DNAH10 cause primary male infertility with asthenoteratozoospermia in humans and mice. Am J Hum Genet 2021; 108(8): 1466–1477
CrossRef Pubmed Google scholar
[17]
Li K, Wang G, Lv M, Wang J, Gao Y, Tang F, Xu C, Yang W, Yu H, Shao Z, Geng H, Tan Q, Shen Q, Tang D, Ni X, Wang T, Song B, Wu H, Huo R, Zhang Z, Xu Y, Zhou P, Tao F, Wei Z, He X, Cao Y. Bi-allelic variants in DNAH10 cause asthenoteratozoospermia and male infertility. J Assist Reprod Genet 2022; 39(1): 251–259
CrossRef Pubmed Google scholar
[18]
Liu C, Cao R, Xu Y, Li T, Li F, Chen S, Xu R, Sun K. Rare copy number variants analysis identifies novel candidate genes in heterotaxy syndrome patients with congenital heart defects. Genome Med 2018; 10(1): 40
CrossRef Pubmed Google scholar
[19]
Wang Y, Troutwine BR, Zhang H, Gray RS. The axonemal dynein heavy chain 10 gene is essential for monocilia motility and spine alignment in zebrafish. Dev Biol 2022; 482: 82–90
CrossRef Pubmed Google scholar
[20]
Paff T, Kooi IE, Moutaouakil Y, Riesebos E, Sistermans EA, Daniels HJMA, Weiss JMM, Niessen HHWM, Haarman EG, Pals G, Micha D. Diagnostic yield of a targeted gene panel in primary ciliary dyskinesia patients. Hum Mutat 2018; 39(5): 653–665
CrossRef Pubmed Google scholar
[21]
Guo T, Tu CF, Yang DH, Ding SZ, Lei C, Wang RC, Liu L, Kang X, Shen XQ, Yang YF, Tan ZP, Tan YQ, Luo H. Bi-allelic BRWD1 variants cause male infertility with asthenoteratozoospermia and likely primary ciliary dyskinesia. Hum Genet 2021; 140(5): 761–773
CrossRef Pubmed Google scholar
[22]
Quinodoz M, Peter VG, Bedoni N, Royer Bertrand B, Cisarova K, Salmaninejad A, Sepahi N, Rodrigues R, Piran M, Mojarrad M, Pasdar A, Ghanbari Asad A, Sousa AB, Coutinho Santos L, Superti-Furga A, Rivolta C. AutoMap is a high performance homozygosity mapping tool using next-generation sequencing data. Nat Commun 2021; 12(1): 518
CrossRef Pubmed Google scholar
[23]
Dai C, Hu L, Gong F, Tan Y, Cai S, Zhang S, Dai J, Lu C, Chen J, Chen Y, Lu G, Du J, Lin G. ZP2 pathogenic variants cause in vitro fertilization failure and female infertility. Genet Med 2019; 21(2): 431–440
CrossRef Pubmed Google scholar
[24]
Cooper TG, Noonan E, von Eckardstein S, Auger J, Baker HW, Behre HM, Haugen TB, Kruger T, Wang C, Mbizvo MT, Vogelsong KM. World Health Organization reference values for human semen characteristics. Hum Reprod Update 2010; 16(3): 231–245
CrossRef Pubmed Google scholar
[25]
Johanisson E, Campana A, Luthi R, de Agostini A. Evaluation of “round cells” in semen analysis: a comparative study. Hum Reprod Update 2000; 6(4): 404–412
CrossRef Pubmed Google scholar
[26]
Sanchez-Alvarez J, Cano-Corres R, Fuentes-Arderiu X. A complement for the WHO Laboratory Manual for the Examination and Processing of Human Semen (First Edition, 2010). EJIFCC 2012; 23(3): 103–106
Pubmed
[27]
Wang H, Yang H, Shivalila CS, Dawlaty MM, Cheng AW, Zhang F, Jaenisch R. One-step generation of mice carrying mutations in multiple genes by CRISPR/Cas-mediated genome engineering. Cell 2013; 153(4): 910–918
CrossRef Pubmed Google scholar
[28]
Francis R, Lo C. Ex vivo method for high resolution imaging of cilia motility in rodent airway epithelia. J Vis Exp 2013; 8(78): 50343
CrossRef Pubmed Google scholar
[29]
Leigh MW, Hazucha MJ, Chawla KK, Baker BR, Shapiro AJ, Brown DE, Lavange LM, Horton BJ, Qaqish B, Carson JL, Davis SD, Dell SD, Ferkol TW, Atkinson JJ, Olivier KN, Sagel SD, Rosenfeld M, Milla C, Lee HS, Krischer J, Zariwala MA, Knowles MR. Standardizing nasal nitric oxide measurement as a test for primary ciliary dyskinesia. Ann Am Thorac Soc 2013; 10(6): 574–581
CrossRef Pubmed Google scholar
[30]
Ibañez-Tallon I, Gorokhova S, Heintz N. Loss of function of axonemal dynein Mdnah5 causes primary ciliary dyskinesia and hydrocephalus. Hum Mol Genet 2002; 11(6): 715–721
CrossRef Pubmed Google scholar
[31]
Liu C, Lv M, He X, Zhu Y, Amiri-Yekta A, Li W, Wu H, Kherraf ZE, Liu W, Zhang J, Tan Q, Tang S, Zhu YJ, Zhong Y, Li C, Tian S, Zhang Z, Jin L, Ray P, Zhang F, Cao Y. Homozygous mutations in SPEF2 induce multiple morphological abnormalities of the sperm flagella and male infertility. J Med Genet 2020; 57(1): 31–37
CrossRef Pubmed Google scholar
[32]
Tu C, Nie H, Meng L, Wang W, Li H, Yuan S, Cheng D, He W, Liu G, Du J, Gong F, Lu G, Lin G, Zhang Q, Tan YQ. Novel mutations in SPEF2 causing different defects between flagella and cilia bridge: the phenotypic link between MMAF and PCD. Hum Genet 2020; 139(2): 257–271
CrossRef Pubmed Google scholar
[33]
Coutton C, Vargas AS, Amiri-Yekta A, Kherraf ZE, Ben Mustapha SF, Le Tanno P, Wambergue-Legrand C, Karaouzène T, Martinez G, Crouzy S, Daneshipour A, Hosseini SH, Mitchell V, Halouani L, Marrakchi O, Makni M, Latrous H, Kharouf M, Deleuze JF, Boland A, Hennebicq S, Satre V, Jouk PS, Thierry-Mieg N, Conne B, Dacheux D, Landrein N, Schmitt A, Stouvenel L, Lorès P, El Khouri E, Bottari SP, Fauré J, Wolf JP, Pernet-Gallay K, Escoffier J, Gourabi H, Robinson DR, Nef S, Dulioust E, Zouari R, Bonhivers M, Touré A, Arnoult C, Ray PF. Mutations in CFAP43 and CFAP44 cause male infertility and flagellum defects in Trypanosoma and human. Nat Commun 2018; 9(1): 686
CrossRef Pubmed Google scholar
[34]
Morimoto Y, Yoshida S, Kinoshita A, Satoh C, Mishima H, Yamaguchi N, Matsuda K, Sakaguchi M, Tanaka T, Komohara Y, Imamura A, Ozawa H, Nakashima M, Kurotaki N, Kishino T, Yoshiura KI, Ono S. Nonsense mutation in CFAP43 causes normal-pressure hydrocephalus with ciliary abnormalities. Neurology 2019; 92(20): e2364–e2374
CrossRef Pubmed Google scholar
[35]
Sironen A, Shoemark A, Patel M, Loebinger MR, Mitchison HM. Sperm defects in primary ciliary dyskinesia and related causes of male infertility. Cell Mol Life Sci 2020; 77(11): 2029–2048
CrossRef Pubmed Google scholar
[36]
Onoufriadis A, Paff T, Antony D, Shoemark A, Micha D, Kuyt B, Schmidts M, Petridi S, Dankert-Roelse JE, Haarman EG, Daniels JM, Emes RD, Wilson R, Hogg C, Scambler PJ, Chung EM; UK10K; Pals G, Mitchison HM. Splice-site mutations in the axonemal outer dynein arm docking complex gene CCDC114 cause primary ciliary dyskinesia. Am J Hum Genet 2013; 92(1): 88–98
CrossRef Pubmed Google scholar
[37]
Jain R, Pan J, Driscoll JA, Wisner JW, Huang T, Gunsten SP, You Y, Brody SL. Temporal relationship between primary and motile ciliogenesis in airway epithelial cells. Am J Respir Cell Mol Biol 2010; 43(6): 731–739
CrossRef Pubmed Google scholar
[38]
Merveille AC, Davis EE, Becker-Heck A, Legendre M, Amirav I, Bataille G, Belmont J, Beydon N, Billen F, Clément A, Clercx C, Coste A, Crosbie R, de Blic J, Deleuze S, Duquesnoy P, Escalier D, Escudier E, Fliegauf M, Horvath J, Hill K, Jorissen M, Just J, Kispert A, Lathrop M, Loges NT, Marthin JK, Momozawa Y, Montantin G, Nielsen KG, Olbrich H, Papon JF, Rayet I, Roger G, Schmidts M, Tenreiro H, Towbin JA, Zelenika D, Zentgraf H, Georges M, Lequarré AS, Katsanis N, Omran H, Amselem S. CCDC39 is required for assembly of inner dynein arms and the dynein regulatory complex and for normal ciliary motility in humans and dogs. Nat Genet 2011; 43(1): 72–78
CrossRef Pubmed Google scholar
[39]
Becker-Heck A, Zohn IE, Okabe N, Pollock A, Lenhart KB, Sullivan-Brown J, McSheene J, Loges NT, Olbrich H, Haeffner K, Fliegauf M, Horvath J, Reinhardt R, Nielsen KG, Marthin JK, Baktai G, Anderson KV, Geisler R, Niswander L, Omran H, Burdine RD. The coiled-coil domain containing protein CCDC40 is essential for motile cilia function and left-right axis formation. Nat Genet 2011; 43(1): 79–84
CrossRef Pubmed Google scholar
[40]
Antony D, Becker-Heck A, Zariwala MA, Schmidts M, Onoufriadis A, Forouhan M, Wilson R, Taylor-Cox T, Dewar A, Jackson C, Goggin P, Loges NT, Olbrich H, Jaspers M, Jorissen M, Leigh MW, Wolf WE, Daniels ML, Noone PG, Ferkol TW, Sagel SD, Rosenfeld M, Rutman A, Dixit A, O’Callaghan C, Lucas JS, Hogg C, Scambler PJ, Emes RD; Uk10k; Chung EM, Shoemark A, Knowles MR, Omran H, Mitchison HM. Mutations in CCDC39 and CCDC40 are the major cause of primary ciliary dyskinesia with axonemal disorganization and absent inner dynein arms. Hum Mutat 2013; 34(3): 462–472
CrossRef Pubmed Google scholar
[41]
Kumar V, Umair Z, Kumar S, Goutam RS, Park S, Kim J. The regulatory roles of motile cilia in CSF circulation and hydrocephalus. Fluids Barriers CNS 2021; 18(1): 31
CrossRef Pubmed Google scholar
[42]
Wallmeier J, Frank D, Shoemark A, Nöthe-Menchen T, Cindric S, Olbrich H, Loges NT, Aprea I, Dougherty GW, Pennekamp P, Kaiser T, Mitchison HM, Hogg C, Carr SB, Zariwala MA, Ferkol T, Leigh MW, Davis SD, Atkinson J, Dutcher SK, Knowles MR, Thiele H, Altmüller J, Krenz H, Wöste M, Brentrup A, Ahrens F, Vogelberg C, Morris-Rosendahl DJ, Omran H. De novo mutations in FOXJ1 result in a motile ciliopathy with hydrocephalus and randomization of left/right body asymmetry. Am J Hum Genet 2019; 105(5): 1030–1039
CrossRef Pubmed Google scholar
[43]
Núnez-Ollé M, Jung C, Terré B, Balsiger NA, Plata C, Roset R, Pardo-Pastor C, Garrido M, Rojas S, Alameda F, Lloreta J, Martín-Caballero J, Flores JM, Stracker TH, Valverde MA, Muñoz FJ, Gil-Gómez G. Constitutive Cyclin O deficiency results in penetrant hydrocephalus, impaired growth and infertility. Oncotarget 2017; 8(59): 99261–99273
CrossRef Pubmed Google scholar
[44]
Robson EA, Dixon L, Causon L, Dawes W, Benenati M, Fassad M, Hirst RA, Kenia P, Moya EF, Patel M, Peckham D, Rutman A, Mitchison HM, Mankad K, O’Callaghan C. Hydrocephalus and diffuse choroid plexus hyperplasia in primary ciliary dyskinesia-related MCIDAS mutation. Neurol Genet 2020; 6(4): e482
CrossRef Pubmed Google scholar
[45]
Ibañez-Tallon I, Pagenstecher A, Fliegauf M, Olbrich H, Kispert A, Ketelsen UP, North A, Heintz N, Omran H. Dysfunction of axonemal dynein heavy chain Mdnah5 inhibits ependymal flow and reveals a novel mechanism for hydrocephalus formation. Hum Mol Genet 2004; 13(18): 2133–2141
CrossRef Pubmed Google scholar
[46]
Mouse Genome Sequencing Consortium. Initial sequencing and comparative analysis of the mouse genome. Nature 2002; 420(6915): 520–562
CrossRef Pubmed Google scholar
[47]
Rossi A, Kontarakis Z, Gerri C, Nolte H, Hölper S, Krüger M, Stainier DY. Genetic compensation induced by deleterious mutations but not gene knockdowns. Nature 2015; 524(7564): 230–233
CrossRef Pubmed Google scholar
[48]
El-Brolosy MA, Kontarakis Z, Rossi A, Kuenne C, Günther S, Fukuda N, Kikhi K, Boezio GLM, Takacs CM, Lai SL, Fukuda R, Gerri C, Giraldez AJ, Stainier DYR. Genetic compensation triggered by mutant mRNA degradation. Nature 2019; 568(7751): 193–197
CrossRef Pubmed Google scholar
[49]
van der Vaart J, Böttinger L, Geurts MH, van de Wetering WJ, Knoops K, Sachs N, Begthel H, Korving J, Lopez-Iglesias C, Peters PJ, Eitan K, Gileles-Hillel A, Clevers H. Modelling of primary ciliary dyskinesia using patient-derived airway organoids. EMBO Rep 2021; 22(12): e52058
CrossRef Pubmed Google scholar
[50]
Sachs N, Papaspyropoulos A, Zomer-van Ommen DD, Heo I, Böttinger L, Klay D, Weeber F, Huelsz-Prince G, Iakobachvili N, Amatngalim GD, de Ligt J, van Hoeck A, Proost N, Viveen MC, Lyubimova A, Teeven L, Derakhshan S, Korving J, Begthel H, Dekkers JF, Kumawat K, Ramos E, van Oosterhout MF, Offerhaus GJ, Wiener DJ, Olimpio EP, Dijkstra KK, Smit EF, van der Linden M, Jaksani S, van de Ven M, Jonkers J, Rios AC, Voest EE, van Moorsel CH, van der Ent CK, Cuppen E, van Oudenaarden A, Coenjaerts FE, Meyaard L, Bont LJ, Peters PJ, Tans SJ, van Zon JS, Boj SF, Vries RG, Beekman JM, Clevers H. Long-term expanding human airway organoids for disease modeling. EMBO J 2019; 38(4): e100300
CrossRef Pubmed Google scholar

Acknowledgements

The authors would like to thank all individuals who participated in this study. We also thank the Center of Cryo-electron Microscopy at Central South University and Zhejiang University for technical support. We would like to thank Editage for English language editing. This study was supported by the National Natural Science Foundation of China (Nos. 82070003, 82100057, 81900002, 82101961, 31970504, and 31772548); Natural Science Foundation of Hunan Province, China (Nos. 2020JJ5805 and 2021JJ30943); Xiangya Clinical Big Data System Construction Project in Pulmonary Inflammatory Disease of Central South University; and the National Key Clinical Specialty Construction Projects of China.

Electronic Supplementary Material

Supplementary material is available in the online version of this article at https://doi.org/10.1007/s11684-023-0988-8 and is accessible for authorized users.

Compliance with ethics guidelines

Rongchun Wang, Danhui Yang, Chaofeng Tu, Cheng Lei, Shuizi Ding, Ting Guo, Lin Wang, Ying Liu, Chenyang Lu, Binyi Yang, Shi Ouyang, Ke Gong, Zhiping Tan, Yun Deng, YueqiuTan, Jie Qing, and Hong Luo declare that they have no conflict of interest. All procedures followed were in accordance with the ethical standards of the responsible committee on human experimentation (institutional and national) and with the Helsinki Declaration of 1975, as revised in 2000. Informed consent was obtained from all patients for being included in the study. All institutional and national guidelines for the care and use of laboratory animals were followed.

RIGHTS & PERMISSIONS

2023 Higher Education Press
AI Summary AI Mindmap
PDF(7107 KB)

Accesses

Citations

Detail

Sections
Recommended

/