Distinct mononuclear diploid cardiac subpopulation with minimal cell–cell communications persists in embryonic and adult mammalian heart

Miaomiao Zhu, Huamin Liang, Zhe Zhang, Hao Jiang, Jingwen Pu, Xiaoyi Hang, Qian Zhou, Jiacheng Xiang, Ximiao He

PDF(5339 KB)
PDF(5339 KB)
Front. Med. ›› 2023, Vol. 17 ›› Issue (5) : 939-956. DOI: 10.1007/s11684-023-0987-9
RESEARCH ARTICLE
RESEARCH ARTICLE

Distinct mononuclear diploid cardiac subpopulation with minimal cell–cell communications persists in embryonic and adult mammalian heart

Author information +
History +

Abstract

A small proportion of mononuclear diploid cardiomyocytes (MNDCMs), with regeneration potential, could persist in adult mammalian heart. However, the heterogeneity of MNDCMs and changes during development remains to be illuminated. To this end, 12 645 cardiac cells were generated from embryonic day 17.5 and postnatal days 2 and 8 mice by single-cell RNA sequencing. Three cardiac developmental paths were identified: two switching to cardiomyocytes (CM) maturation with close CM–fibroblast (FB) communications and one maintaining MNDCM status with least CM–FB communications. Proliferative MNDCMs having interactions with macrophages and non-proliferative MNDCMs (non-pMNDCMs) with minimal cell–cell communications were identified in the third path. The non-pMNDCMs possessed distinct properties: the lowest mitochondrial metabolisms, the highest glycolysis, and high expression of Myl4 and Tnni1. Single-nucleus RNA sequencing and immunohistochemical staining further proved that the Myl4+Tnni1+ MNDCMs persisted in embryonic and adult hearts. These MNDCMs were mapped to the heart by integrating the spatial and single-cell transcriptomic data. In conclusion, a novel non-pMNDCM subpopulation with minimal cell–cell communications was unveiled, highlighting the importance of microenvironment contribution to CM fate during maturation. These findings could improve the understanding of MNDCM heterogeneity and cardiac development, thus providing new clues for approaches to effective cardiac regeneration.

Keywords

mononuclear diploid cardiomyocytes / cell–cell communication / cardiac fibroblast / single-cell RNA sequencing / cardiac regeneration

Cite this article

Download citation ▾
Miaomiao Zhu, Huamin Liang, Zhe Zhang, Hao Jiang, Jingwen Pu, Xiaoyi Hang, Qian Zhou, Jiacheng Xiang, Ximiao He. Distinct mononuclear diploid cardiac subpopulation with minimal cell–cell communications persists in embryonic and adult mammalian heart. Front. Med., 2023, 17(5): 939‒956 https://doi.org/10.1007/s11684-023-0987-9

References

[1]
Murry CE, Reinecke H, Pabon LM. Regeneration gaps. J Am Coll Cardiol 2006; 47(9): 1777–1785
CrossRef Pubmed Google scholar
[2]
Whelan RS, Kaplinskiy V, Kitsis RN. Cell death in the pathogenesis of heart disease: mechanisms and significance. Annu Rev Physiol 2010; 72(1): 19–44
CrossRef Pubmed Google scholar
[3]
Wang Y, Yao F, Wang L, Li Z, Ren Z, Li D, Zhang M, Han L, Wang SQ, Zhou B, Wang L. Single-cell analysis of murine fibroblasts identifies neonatal to adult switching that regulates cardiomyocyte maturation. Nat Commun 2020; 11(1): 2585
CrossRef Pubmed Google scholar
[4]
Bergmann O, Bhardwaj RD, Bernard S, Zdunek S, Barnabé-Heider F, Walsh S, Zupicich J, Alkass K, Buchholz BA, Druid H, Jovinge S, Frisén J. Evidence for cardiomyocyte renewal in humans. Science 2009; 324(5923): 98–102
CrossRef Pubmed Google scholar
[5]
Senyo SE, Steinhauser ML, Pizzimenti CL, Yang VK, Cai L, Wang M, Wu TD, Guerquin-Kern JL, Lechene CP, Lee RT. Mammalian heart renewal by pre-existing cardiomyocytes. Nature 2013; 493(7432): 433–436
CrossRef Pubmed Google scholar
[6]
Carvalho AB, de Carvalho AC. Heart regeneration: past, present and future. World J Cardiol 2010; 2(5): 107–111
CrossRef Pubmed Google scholar
[7]
Laflamme MA, Murry CE. Heart regeneration. Nature 2011; 473(7347): 326–335
CrossRef Pubmed Google scholar
[8]
Soonpaa MH, Kim KK, Pajak L, Franklin M, Field LJ. Cardiomyocyte DNA synthesis and binucleation during murine development. Am J Physiol 1996; 271(5 Pt 2): H2183–H2189
Pubmed
[9]
Mollova M, Bersell K, Walsh S, Savla J, Das LT, Park SY, Silberstein LE, Dos Remedios CG, Graham D, Colan S, Kühn B. Cardiomyocyte proliferation contributes to heart growth in young humans. Proc Natl Acad Sci USA 2013; 110(4): 1446–1451
CrossRef Pubmed Google scholar
[10]
Ye L, Qiu L, Zhang H, Chen H, Jiang C, Hong H, Liu J. Cardiomyocytes in young infants with congenital heart disease: a three-month window of proliferation. Sci Rep 2016; 6(1): 23188
CrossRef Pubmed Google scholar
[11]
Porrello ER, Mahmoud AI, Simpson E, Hill JA, Richardson JA, Olson EN, Sadek HA. Transient regenerative potential of the neonatal mouse heart. Science 2011; 331(6020): 1078–1080
CrossRef Pubmed Google scholar
[12]
Poss KD, Wilson LG, Keating MT. Heart regeneration in zebrafish. Science 2002; 298(5601): 2188–2190
CrossRef Pubmed Google scholar
[13]
Oberpriller JO, Oberpriller JC. Response of the adult newt ventricle to injury. J Exp Zool 1974; 187(2): 249–259
CrossRef Pubmed Google scholar
[14]
Ali SR, Hippenmeyer S, Saadat LV, Luo L, Weissman IL, Ardehali R. Existing cardiomyocytes generate cardiomyocytes at a low rate after birth in mice. Proc Natl Acad Sci USA 2014; 111(24): 8850–8855
CrossRef Pubmed Google scholar
[15]
Li F, Wang X, Capasso JM, Gerdes AM. Rapid transition of cardiac myocytes from hyperplasia to hypertrophy during postnatal development. J Mol Cell Cardiol 1996; 28(8): 1737–1746
CrossRef Pubmed Google scholar
[16]
Patterson M, Barske L, Van Handel B, Rau CD, Gan P, Sharma A, Parikh S, Denholtz M, Huang Y, Yamaguchi Y, Shen H, Allayee H, Crump JG, Force TI, Lien CL, Makita T, Lusis AJ, Kumar SR, Sucov HM. Frequency of mononuclear diploid cardiomyocytes underlies natural variation in heart regeneration. Nat Genet 2017; 49(9): 1346–1353
CrossRef Pubmed Google scholar
[17]
Xavier-Vidal R, Mandarim-de-Lacerda CA. Cardiomyocyte proliferation and hypertrophy in the human fetus: quantitative study of the myocyte nuclei. Bull Assoc Anat (Nancy) 1995; 79(246): 27–31
Pubmed
[18]
Kikuchi K, Holdway JE, Werdich AA, Anderson RM, Fang Y, Egnaczyk GF, Evans T, Macrae CA, Stainier DY, Poss KD. Primary contribution to zebrafish heart regeneration by gata4+ cardiomyocytes. Nature 2010; 464(7288): 601–605
CrossRef Pubmed Google scholar
[19]
Derks W, Bergmann O. Polyploidy in cardiomyocytes: roadblock to heart regeneration?. Circ Res 2020; 126(4): 552–565
CrossRef Pubmed Google scholar
[20]
Malliaras K, Zhang Y, Seinfeld J, Galang G, Tseliou E, Cheng K, Sun B, Aminzadeh M, Marbán E. Cardiomyocyte proliferation and progenitor cell recruitment underlie therapeutic regeneration after myocardial infarction in the adult mouse heart. EMBO Mol Med 2013; 5(2): 191–209
CrossRef Pubmed Google scholar
[21]
Chen X, Wilson RM, Kubo H, Berretta RM, Harris DM, Zhang X, Jaleel N, MacDonnell SM, Bearzi C, Tillmanns J, Trofimova I, Hosoda T, Mosna F, Cribbs L, Leri A, Kajstura J, Anversa P, Houser SR. Adolescent feline heart contains a population of small, proliferative ventricular myocytes with immature physiological properties. Circ Res 2007; 100(4): 536–544
CrossRef Pubmed Google scholar
[22]
Liao HS, Kang PM, Nagashima H, Yamasaki N, Usheva A, Ding B, Lorell BH, Izumo S. Cardiac-specific overexpression of cyclin-dependent kinase 2 increases smaller mononuclear cardiomyocytes. Circ Res 2001; 88(4): 443–450
CrossRef Pubmed Google scholar
[23]
Mahmoud AI, Kocabas F, Muralidhar SA, Kimura W, Koura AS, Thet S, Porrello ER, Sadek HA. Meis1 regulates postnatal cardiomyocyte cell cycle arrest. Nature 2013; 497(7448): 249–253
CrossRef Pubmed Google scholar
[24]
Paik DT, Cho S, Tian L, Chang HY, Wu JC. Single-cell RNA sequencing in cardiovascular development, disease and medicine. Nat Rev Cardiol 2020; 17(8): 457–473
CrossRef Pubmed Google scholar
[25]
Jia G, Preussner J, Chen X, Guenther S, Yuan X, Yekelchyk M, Kuenne C, Looso M, Zhou Y, Teichmann S, Braun T. Single cell RNA-seq and ATAC-seq analysis of cardiac progenitor cell transition states and lineage settlement. Nat Commun 2018; 9(1): 4877
CrossRef Pubmed Google scholar
[26]
DeLaughter DM, Bick AG, Wakimoto H, McKean D, Gorham JM, Kathiriya IS, Hinson JT, Homsy J, Gray J, Pu W, Bruneau BG, Seidman JG, Seidman CE. Single-cell resolution of temporal gene expression during heart development. Dev Cell 2016; 39(4): 480–490
CrossRef Pubmed Google scholar
[27]
Churko JM, Garg P, Treutlein B, Venkatasubramanian M, Wu H, Lee J, Wessells QN, Chen SY, Chen WY, Chetal K, Mantalas G, Neff N, Jabart E, Sharma A, Nolan GP, Salomonis N, Wu JC. Defining human cardiac transcription factor hierarchies using integrated single-cell heterogeneity analysis. Nat Commun 2018; 9(1): 4906
CrossRef Pubmed Google scholar
[28]
Gladka MM, Molenaar B, de Ruiter H, van der Elst S, Tsui H, Versteeg D, Lacraz GPA, Huibers MMH, van Oudenaarden A, van Rooij E. Single-cell sequencing of the healthy and diseased heart reveals cytoskeleton-associated protein 4 as a new modulator of fibroblasts activation. Circulation 2018; 138(2): 166–180
CrossRef Pubmed Google scholar
[29]
Wang L, Yu P, Zhou B, Song J, Li Z, Zhang M, Guo G, Wang Y, Chen X, Han L, Hu S. Single-cell reconstruction of the adult human heart during heart failure and recovery reveals the cellular landscape underlying cardiac function. Nat Cell Biol 2020; 22(1): 108–119
CrossRef Pubmed Google scholar
[30]
Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C, Jha S, Batut P, Chaisson M, Gingeras TR. STAR: ultrafast universal RNA-seq aligner. Bioinformatics 2013; 29(1): 15–21
CrossRef Pubmed Google scholar
[31]
Butler A, Hoffman P, Smibert P, Papalexi E, Satija R. Integrating single-cell transcriptomic data across different conditions, technologies, and species. Nat Biotechnol 2018; 36(5): 411–420
CrossRef Pubmed Google scholar
[32]
Yu G, Wang LG, Han Y, He QY. clusterProfiler: an R package for comparing biological themes among gene clusters. OMICS 2012; 16(5): 284–287
CrossRef Pubmed Google scholar
[33]
Trapnell C, Cacchiarelli D, Grimsby J, Pokharel P, Li S, Morse M, Lennon NJ, Livak KJ, Mikkelsen TS, Rinn JL. The dynamics and regulators of cell fate decisions are revealed by pseudotemporal ordering of single cells. Nat Biotechnol 2014; 32(4): 381–386
CrossRef Pubmed Google scholar
[34]
Jin S, MacLean AL, Peng T, Nie Q. scEpath: energy landscape-based inference of transition probabilities and cellular trajectories from single-cell transcriptomic data. Bioinformatics 2018; 34(12): 2077–2086
CrossRef Pubmed Google scholar
[35]
Tirosh I, Izar B, Prakadan SM, Wadsworth MH 2nd, Treacy D, Trombetta JJ, Rotem A, Rodman C, Lian C, Murphy G, Fallahi-Sichani M, Dutton-Regester K, Lin JR, Cohen O, Shah P, Lu D, Genshaft AS, Hughes TK, Ziegler CG, Kazer SW, Gaillard A, Kolb KE, Villani AC, Johannessen CM, Andreev AY, Van Allen EM, Bertagnolli M, Sorger PK, Sullivan RJ, Flaherty KT, Frederick DT, Jané-Valbuena J, Yoon CH, Rozenblatt-Rosen O, Shalek AK, Regev A, Garraway LA. Dissecting the multicellular ecosystem of metastatic melanoma by single-cell RNA-seq. Science 2016; 352(6282): 189–196
CrossRef Pubmed Google scholar
[36]
Guerrero-Juarez CF, Dedhia PH, Jin S, Ruiz-Vega R, Ma D, Liu Y, Yamaga K, Shestova O, Gay DL, Yang Z, Kessenbrock K, Nie Q, Pear WS, Cotsarelis G, Plikus MV. Single-cell analysis reveals fibroblast heterogeneity and myeloid-derived adipocyte progenitors in murine skin wounds. Nat Commun 2019; 10(1): 650
CrossRef Pubmed Google scholar
[37]
Jin S, Guerrero-Juarez CF, Zhang L, Chang I, Ramos R, Kuan CH, Myung P, Plikus MV, Nie Q. Inference and analysis of cell-cell communication using CellChat. Nat Commun 2021; 12(1): 1088
CrossRef Pubmed Google scholar
[38]
Hirose K, Payumo AY, Cutie S, Hoang A, Zhang H, Guyot R, Lunn D, Bigley RB, Yu H, Wang J, Smith M, Gillett E, Muroy SE, Schmid T, Wilson E, Field KA, Reeder DM, Maden M, Yartsev MM, Wolfgang MJ, Grützner F, Scanlan TS, Szweda LI, Buffenstein R, Hu G, Flamant F, Olgin JE, Huang GN. Evidence for hormonal control of heart regenerative capacity during endothermy acquisition. Science 2019; 364(6436): 184–188
CrossRef Pubmed Google scholar
[39]
Zhang Z, Zhu M, Xie Q, Larkin RM, Shi X, Zheng B. CProtMEDIAS: clustering of amino acid sequences encoded by gene families by MErging and DIgitizing Aligned Sequences. Brief Bioinform 2022; 23(4): bbac276
CrossRef Pubmed Google scholar
[40]
Wu T, Liang Z, Zhang Z, Liu C, Zhang L, Gu Y, Peterson KL, Evans SM, Fu XD, Chen J. PRDM16 is a compact myocardium-enriched transcription factor required to maintain compact myocardial cardiomyocyte identity in left ventricle. Circulation 2022; 145(8): 586–602
CrossRef Pubmed Google scholar
[41]
Yamada S, Ko T, Hatsuse S, Nomura S, Zhang B, Dai Z, Inoue S, Kubota M, Sawami K, Yamada T, Sassa T, Katagiri M, Fujita K, Katoh M, Ito M, Harada M, Toko H, Takeda N, Morita H, Aburatani H, Komuro I. Spatiotemporal transcriptome analysis reveals critical roles for mechano-sensing genes at the border zone in remodeling after myocardial infarction. Nat Cardiovasc Res 2022; 1: 1072–1083
CrossRef Google scholar
[42]
Cui M, Wang Z, Chen K, Shah AM, Tan W, Duan L, Sanchez-Ortiz E, Li H, Xu L, Liu N, Bassel-Duby R, Olson EN. Dynamic transcriptional responses to injury of regenerative and non-regenerative cardiomyocytes revealed by single-nucleus RNA sequencing. Dev Cell 2020; 53(1): 102–116.e8
CrossRef Pubmed Google scholar
[43]
Butler A, Hoffman P, Smibert P, Papalexi E, Satija R. Integrating single-cell transcriptomic data across different conditions, technologies, and species. Nat Biotechnol 2018; 36(5): 411–420
CrossRef Pubmed Google scholar
[44]
Zeitlin SG, Shelby RD, Sullivan KF. CENP-A is phosphorylated by Aurora B kinase and plays an unexpected role in completion of cytokinesis. J Cell Biol 2001; 155(7): 1147–1157
CrossRef Pubmed Google scholar
[45]
Kunitoku N, Sasayama T, Marumoto T, Zhang D, Honda S, Kobayashi O, Hatakeyama K, Ushio Y, Saya H, Hirota T. CENP-A phosphorylation by Aurora-A in prophase is required for enrichment of Aurora-B at inner centromeres and for kinetochore function. Dev Cell 2003; 5(6): 853–864
CrossRef Pubmed Google scholar
[46]
Orthaus S, Biskup C, Hoffmann B, Hoischen C, Ohndorf S, Benndorf K, Diekmann S. Assembly of the inner kinetochore proteins CENP-A and CENP-B in living human cells. ChemBioChem 2008; 9(1): 77–92
CrossRef Pubmed Google scholar
[47]
Bailey AO, Panchenko T, Sathyan KM, Petkowski JJ, Pai PJ, Bai DL, Russell DH, Macara IG, Shabanowitz J, Hunt DF, Black BE, Foltz DR. Posttranslational modification of CENP-A influences the conformation of centromeric chromatin. Proc Natl Acad Sci USA 2013; 110(29): 11827–11832
CrossRef Pubmed Google scholar
[48]
Yu Z, Zhou X, Wang W, Deng W, Fang J, Hu H, Wang Z, Li S, Cui L, Shen J, Zhai L, Peng S, Wong J, Dong S, Yuan Z, Ou G, Zhang X, Xu P, Lou J, Yang N, Chen P, Xu RM, Li G. Dynamic phosphorylation of CENP-A at Ser68 orchestrates its cell-cycle-dependent deposition at centromeres. Dev Cell 2015; 32(1): 68–81
CrossRef Pubmed Google scholar
[49]
Roulland Y, Ouararhni K, Naidenov M, Ramos L, Shuaib M, Syed SH, Lone IN, Boopathi R, Fontaine E, Papai G, Tachiwana H, Gautier T, Skoufias D, Padmanabhan K, Bednar J, Kurumizaka H, Schultz P, Angelov D, Hamiche A, Dimitrov S. The flexible ends of CENP-A nucleosome are required for mitotic fidelity. Mol Cell 2016; 63(4): 674–685
CrossRef Pubmed Google scholar
[50]
Szibor M, Pöling J, Warnecke H, Kubin T, Braun T. Remodeling and dedifferentiation of adult cardiomyocytes during disease and regeneration. Cell Mol Life Sci 2014; 71(10): 1907–1916
CrossRef Pubmed Google scholar
[51]
Teschendorff AE, Enver T. Single-cell entropy for accurate estimation of differentiation potency from a cell’s transcriptome. Nat Commun 2017; 8(1): 15599
CrossRef Pubmed Google scholar
[52]
Ridker PM, Everett BM, Thuren T, MacFadyen JG, Chang WH, Ballantyne C, Fonseca F, Nicolau J, Koenig W, Anker SD, Kastelein JJP, Cornel JH, Pais P, Pella D, Genest J, Cifkova R, Lorenzatti A, Forster T, Kobalava Z, Vida-Simiti L, Flather M, Shimokawa H, Ogawa H, Dellborg M, Rossi PRF, Troquay RPT, Libby P, Glynn RJ; CANTOS Trial Group. Antiinflammatory therapy with canakinumab for atherosclerotic disease. N Engl J Med 2017; 377(12): 1119–1131
CrossRef Pubmed Google scholar
[53]
Uygur A, Lee RT. Mechanisms of cardiac regeneration. Dev Cell 2016; 36(4): 362–374
CrossRef Pubmed Google scholar
[54]
Vivien CJ, Hudson JE, Porrello ER. Evolution, comparative biology and ontogeny of vertebrate heart regeneration. NPJ Regen Med 2016; 1(1): 16012
CrossRef Pubmed Google scholar
[55]
Dodson M, Darley-Usmar V, Zhang J. Cellular metabolic and autophagic pathways: traffic control by redox signaling. Free Radic Biol Med 2013; 63: 207–221
CrossRef Pubmed Google scholar
[56]
Honkoop H, de Bakker DE, Aharonov A, Kruse F, Shakked A, Nguyen PD, de Heus C, Garric L, Muraro MJ, Shoffner A, Tessadori F, Peterson JC, Noort W, Bertozzi A, Weidinger G, Posthuma G, Grün D, van der Laarse WJ, Klumperman J, Jaspers RT, Poss KD, van Oudenaarden A, Tzahor E, Bakkers J. Single-cell analysis uncovers that metabolic reprogramming by ErbB2 signaling is essential for cardiomyocyte proliferation in the regenerating heart. eLife 2019; 8: e50163
CrossRef Pubmed Google scholar
[57]
Galow AM, Wolfien M, Müller P, Bartsch M, Brunner RM, Hoeflich A, Wolkenhauer O, David R, Goldammer T. Integrative cluster analysis of whole hearts reveals proliferative cardiomyocytes in adult mice. Cells 2020; 9(5): 1144
CrossRef Pubmed Google scholar
[58]
Gan P, Patterson M, Sucov HM. Cardiomyocyte polyploidy and implications for heart regeneration. Annu Rev Physiol 2020; 82: 45–61
CrossRef Pubmed Google scholar
[59]
Pellieux C, Foletti A, Peduto G, Aubert JF, Nussberger J, Beermann F, Brunner HR, Pedrazzini T. Dilated cardiomyopathy and impaired cardiac hypertrophic response to angiotensin II in mice lacking FGF-2. J Clin Invest 2001; 108(12): 1843–1851
CrossRef Pubmed Google scholar
[60]
Dobaczewski M, Chen W, Frangogiannis NG. Transforming growth factor (TGF)-β signaling in cardiac remodeling. J Mol Cell Cardiol 2011; 51(4): 600–606
CrossRef Pubmed Google scholar
[61]
Demyanets S, Kaun C, Pentz R, Krychtiuk KA, Rauscher S, Pfaffenberger S, Zuckermann A, Aliabadi A, Gröger M, Maurer G, Huber K, Wojta J. Components of the interleukin-33/ST2 system are differentially expressed and regulated in human cardiac cells and in cells of the cardiac vasculature. J Mol Cell Cardiol 2013; 60: 16–26
CrossRef Pubmed Google scholar
[62]
Sanada S, Hakuno D, Higgins LJ, Schreiter ER, McKenzie AN, Lee RT. IL-33 and ST2 comprise a critical biomechanically induced and cardioprotective signaling system. J Clin Invest 2007; 117(6): 1538–1549
CrossRef Pubmed Google scholar
[63]
Xia N, Lu Y, Gu M, Li N, Liu M, Jiao J, Zhu Z, Li J, Li D, Tang T, Lv B, Nie S, Zhang M, Liao M, Liao Y, Yang X, Cheng X. A unique population of regulatory T cells in heart potentiates cardiac protection from myocardial infarction. Circulation 2020; 142(20): 1956–1973
CrossRef Pubmed Google scholar
[64]
Ambari AM, Setianto B, Santoso A, Radi B, Dwiputra B, Susilowati E, Tulrahmi F, Doevendans PA, Cramer MJ. Angiotensin converting enzyme inhibitors (ACEIs) decrease the progression of cardiac fibrosis in rheumatic heart disease through the inhibition of IL-33/sST2. Front Cardiovasc Med 2020; 7: 115
CrossRef Pubmed Google scholar
[65]
Ieda M, Tsuchihashi T, Ivey KN, Ross RS, Hong TT, Shaw RM, Srivastava D. Cardiac fibroblasts regulate myocardial proliferation through beta1 integrin signaling. Dev Cell 2009; 16(2): 233–244
CrossRef Pubmed Google scholar
[66]
Godwin JW, Pinto AR, Rosenthal NA. Macrophages are required for adult salamander limb regeneration. Proc Natl Acad Sci USA 2013; 110(23): 9415–9420
CrossRef Pubmed Google scholar
[67]
Aurora AB, Porrello ER, Tan W, Mahmoud AI, Hill JA, Bassel-Duby R, Sadek HA, Olson EN. Macrophages are required for neonatal heart regeneration. J Clin Invest 2014; 124(3): 1382–1392
CrossRef Pubmed Google scholar

Acknowledgements

We would like to thank Prof. Bin Zhang and Prof. Nianguo Dong for their constructive suggestions, and all the laboratory members for critically reading the manuscript. This study was supported by the National Key Research and Development Program of China (No.2021YFA1101901) and the Fundamental Research Funds for the Central Universities, HUST (No. 2021GCRC073).

Electronic Supplementary Material

Supplementary material is available in the online version of this article at https://doi.org/10.1007/s11684-023-0987-9 and is accessible for authorized users.

Compliance with ethics guidelines

Miaomiao Zhu, Huamin Liang, Zhe Zhang, Hao Jiang, Jingwen Pu, Xiaoyi Hang, Qian Zhou, Jiacheng Xiang, and Ximiao He declare that they have no competing interests. All institutional and national guidelines for the care and use of laboratory animals were followed.

RIGHTS & PERMISSIONS

2023 Higher Education Press
AI Summary AI Mindmap
PDF(5339 KB)

Accesses

Citations

Detail

Sections
Recommended

/