Progress and challenges in RET-targeted cancer therapy
Xueqing Hu, Ujjwol Khatri, Tao Shen, Jie Wu
Progress and challenges in RET-targeted cancer therapy
The rearranged during transfection (RET) is a receptor protein tyrosine kinase. Oncogenic RET fusions or mutations are found most often in non-small cell lung cancer (NSCLC) and in thyroid cancer, but also increasingly in various types of cancers at low rates. In the last few years, two potent and selective RET protein tyrosine kinase inhibitors (TKIs), pralsetinib (BLU-667) and selpercatinib (LOXO-292, LY3527723) were developed and received regulatory approval. Although pralsetinib and selpercatinib gave high overall response rates (ORRs), < 10% of patients achieved a complete response (CR). The RET TKI-tolerated residual tumors inevitably develop resistance by secondary target mutations, acquired alternative oncogenes, or MET amplification. RET G810 mutations located at the kinase solvent front site were identified as the major on-target mechanism of acquired resistance to both selpercatinib and pralsetinib. Several next-generation of RET TKIs capable of inhibiting the selpercatinib/pralsetinib-resistant RET mutants have progressed to clinical trials. However, it is likely that new TKI-adapted RET mutations will emerge to cause resistance to these next-generation of RET TKIs. Solving the problem requires a better understanding of the multiple mechanisms that support the RET TKI-tolerated persisters to identify a converging point of vulnerability to devise an effective co-treatment to eliminate the residual tumors.
pralsetinib / selpercatinib / RET-alteration / lung cancer / thyroid cancer / tumor-agnostic therapy / drug resistance
[1] |
Mulligan LM. RET revisited: expanding the oncogenic portfolio. Nat Rev Cancer 2014; 14(3): 173–186
CrossRef
Pubmed
Google scholar
|
[2] |
Thein KZ, Velcheti V, Mooers BHM, Wu J, Subbiah V. Precision therapy for RET-altered cancers with RET inhibitors. Trends Cancer 2021; 7(12): 1074–1088
CrossRef
Pubmed
Google scholar
|
[3] |
Drilon A, Hu ZI, Lai GGY, Tan DSW. Targeting RET-driven cancers: lessons from evolving preclinical and clinical landscapes. Nat Rev Clin Oncol 2018; 15(3): 151–167
CrossRef
Pubmed
Google scholar
|
[4] |
Liu X, Hu X, Shen T, Li Q, Mooers BHM, Wu J. RET kinase alterations in targeted cancer therapy. Cancer Drug Resist 2020; 3(3): 472–481
CrossRef
Pubmed
Google scholar
|
[5] |
Subbiah V, Yang D, Velcheti V, Drilon A, Meric-Bernstam F. State-of-the-art strategies for targeting RET-dependent cancers. J Clin Oncol 2020; 38(11): 1209–1221
CrossRef
Pubmed
Google scholar
|
[6] |
Piotrowska Z, Isozaki H, Lennerz JK, Gainor JF, Lennes IT, Zhu VW, Marcoux N, Banwait MK, Digumarthy SR, Su W, Yoda S, Riley AK, Nangia V, Lin JJ, Nagy RJ, Lanman RB, Dias-Santagata D, Mino-Kenudson M, Iafrate AJ, Heist RS, Shaw AT, Evans EK, Clifford C, Ou SI, Wolf B, Hata AN, Sequist LV. Landscape of acquired resistance to osimertinib in EGFR-mutant NSCLC and clinical validation of combined EGFR and RET inhibition with osimertinib and BLU-667 for acquired RET fusion. Cancer Discov 2018; 8(12): 1529–1539
CrossRef
Pubmed
Google scholar
|
[7] |
Zhao Z, Su C, Xiu W, Wang W, Zeng S, Huang M, Gong Y, Lu Y, Zhang Y. Response to pralsetinib observed in meningeal-metastatic EGFR-mutant NSCLC with acquired RET fusion: a brief report. JTO Clin Res Rep 2022; 3(6): 100343
CrossRef
Pubmed
Google scholar
|
[8] |
Wang C, Zhang Z, Sun Y, Wang S, Wu M, Ou Q, Xu Y, Chen Z, Shao Y, Liu H, Hou P. RET fusions as primary oncogenic drivers and secondary acquired resistance to EGFR tyrosine kinase inhibitors in patients with non-small-cell lung cancer. J Transl Med 2022; 20(1): 390
CrossRef
Pubmed
Google scholar
|
[9] |
Awad MM, Liu S, Rybkin II, Arbour KC, Dilly J, Zhu VW, Johnson ML, Heist RS, Patil T, Riely GJ, Jacobson JO, Yang X, Persky NS, Root DE, Lowder KE, Feng H, Zhang SS, Haigis KM, Hung YP, Sholl LM, Wolpin BM, Wiese J, Christiansen J, Lee J, Schrock AB, Lim LP, Garg K, Li M, Engstrom LD, Waters L, Lawson JD, Olson P, Lito P, Ou SI, Christensen JG, Jänne PA, Aguirre AJ. Acquired resistance to KRASG12C inhibition in cancer. N Engl J Med 2021; 384(25): 2382–2393
CrossRef
Pubmed
Google scholar
|
[10] |
Adashek JJ, Desai AP, Andreev-Drakhlin AY, Roszik J, Cote GJ, Subbiah V. Hallmarks of RET and co-occuring genomic alterations in RET-aberrant cancers. Mol Cancer Ther 2021; 20(10): 1769–1776
CrossRef
Pubmed
Google scholar
|
[11] |
Hegde A, Andreev-Drakhlin AY, Roszik J, Huang L, Liu S, Hess K, Cabanillas M, Hu MI, Busaidy NL, Sherman SI, Dadu R, Grubbs EG, Ali SM, Lee J, Elamin YY, Simon GR, Blumenschein GR Jr, Papadimitrakopoulou VA, Hong D, Meric-Bernstam F, Heymach J, Subbiah V. Responsiveness to immune checkpoint inhibitors versus other systemic therapies in RET-aberrant malignancies. ESMO Open 2020; 5(5): e000799
CrossRef
Pubmed
Google scholar
|
[12] |
Saito M, Shiraishi K, Kunitoh H, Takenoshita S, Yokota J, Kohno T. Gene aberrations for precision medicine against lung adenocarcinoma. Cancer Sci 2016; 107(6): 713–720
CrossRef
Pubmed
Google scholar
|
[13] |
Mazieres J, Drilon A, Lusque A, Mhanna L, Cortot AB, Mezquita L, Thai AA, Mascaux C, Couraud S, Veillon R, Van den Heuvel M, Neal J, Peled N, Früh M, Ng TL, Gounant V, Popat S, Diebold J, Sabari J, Zhu VW, Rothschild SI, Bironzo P, Martinez-Marti A, Curioni-Fontecedro A, Rosell R, Lattuca-Truc M, Wiesweg M, Besse B, Solomon B, Barlesi F, Schouten RD, Wakelee H, Camidge DR, Zalcman G, Novello S, Ou SI, Milia J, Gautschi O. Immune checkpoint inhibitors for patients with advanced lung cancer and oncogenic driver alterations: results from the IMMUNOTARGET registry. Ann Oncol 2019; 30(8): 1321–1328
CrossRef
Pubmed
Google scholar
|
[14] |
Gautschi O, Milia J, Filleron T, Wolf J, Carbone DP, Owen D, Camidge R, Narayanan V, Doebele RC, Besse B, Remon-Masip J, Janne PA, Awad MM, Peled N, Byoung CC, Karp DD, Van Den Heuvel M, Wakelee HA, Neal JW, Mok TSK, Yang JCH, Ou SI, Pall G, Froesch P, Zalcman G, Gandara DR, Riess JW, Velcheti V, Zeidler K, Diebold J, Früh M, Michels S, Monnet I, Popat S, Rosell R, Karachaliou N, Rothschild SI, Shih JY, Warth A, Muley T, Cabillic F, Mazières J, Drilon A. Targeting RET in patients with RET-rearranged lung cancers: results from the global, multicenter RET registry. J Clin Oncol 2017; 35(13): 1403–1410
CrossRef
Pubmed
Google scholar
|
[15] |
Subbiah V, Gainor JF, Rahal R, Brubaker JD, Kim JL, Maynard M, Hu W, Cao Q, Sheets MP, Wilson D, Wilson KJ, DiPietro L, Fleming P, Palmer M, Hu MI, Wirth L, Brose MS, Ou SI, Taylor M, Garralda E, Miller S, Wolf B, Lengauer C, Guzi T, Evans EK. Precision targeted therapy with BLU-667 for RET-driven cancers. Cancer Discov 2018; 8(7): 836–849
CrossRef
Pubmed
Google scholar
|
[16] |
Subbiah V, Velcheti V, Tuch BB, Ebata K, Busaidy NL, Cabanillas ME, Wirth LJ, Stock S, Smith S, Lauriault V, Corsi-Travali S, Henry D, Burkard M, Hamor R, Bouhana K, Winski S, Wallace RD, Hartley D, Rhodes S, Reddy M, Brandhuber BJ, Andrews S, Rothenberg SM, Drilon A. Selective RET kinase inhibition for patients with RET-altered cancers. Ann Oncol 2018; 29(8): 1869–1876
CrossRef
Pubmed
Google scholar
|
[17] |
Gainor JF, Curigliano G, Kim DW, Lee DH, Besse B, Baik CS, Doebele RC, Cassier PA, Lopes G, Tan DSW, Garralda E, Paz-Ares LG, Cho BC, Gadgeel SM, Thomas M, Liu SV, Taylor MH, Mansfield AS, Zhu VW, Clifford C, Zhang H, Palmer M, Green J, Turner CD, Subbiah V. Pralsetinib for RET fusion-positive non-small-cell lung cancer (ARROW): a multi-cohort, open-label, phase 1/2 study. Lancet Oncol 2021; 22(7): 959–969
CrossRef
Pubmed
Google scholar
|
[18] |
Drilon A, Oxnard GR, Tan DSW, Loong HHF, Johnson M, Gainor J, McCoach CE, Gautschi O, Besse B, Cho BC, Peled N, Weiss J, Kim YJ, Ohe Y, Nishio M, Park K, Patel J, Seto T, Sakamoto T, Rosen E, Shah MH, Barlesi F, Cassier PA, Bazhenova L, De Braud F, Garralda E, Velcheti V, Satouchi M, Ohashi K, Pennell NA, Reckamp KL, Dy GK, Wolf J, Solomon B, Falchook G, Ebata K, Nguyen M, Nair B, Zhu EY, Yang L, Huang X, Olek E, Rothenberg SM, Goto K, Subbiah V. Efficacy of selpercatinib in RET fusion-positive non-small-cell lung cancer. N Engl J Med 2020; 383(9): 813–824
CrossRef
Pubmed
Google scholar
|
[19] |
Subbiah V, Hu MI, Wirth LJ, Schuler M, Mansfield AS, Curigliano G, Brose MS, Zhu VW, Leboulleux S, Bowles DW, Baik CS, Adkins D, Keam B, Matos I, Garralda E, Gainor JF, Lopes G, Lin CC, Godbert Y, Sarker D, Miller SG, Clifford C, Zhang H, Turner CD, Taylor MH. Pralsetinib for patients with advanced or metastatic RET-altered thyroid cancer (ARROW): a multi-cohort, open-label, registrational, phase 1/2 study. Lancet Diabetes Endocrinol 2021; 9(8): 491–501
CrossRef
Pubmed
Google scholar
|
[20] |
Wirth LJ, Sherman E, Robinson B, Solomon B, Kang H, Lorch J, Worden F, Brose M, Patel J, Leboulleux S, Godbert Y, Barlesi F, Morris JC, Owonikoko TK, Tan DSW, Gautschi O, Weiss J, de la Fouchardière C, Burkard ME, Laskin J, Taylor MH, Kroiss M, Medioni J, Goldman JW, Bauer TM, Levy B, Zhu VW, Lakhani N, Moreno V, Ebata K, Nguyen M, Heirich D, Zhu EY, Huang X, Yang L, Kherani J, Rothenberg SM, Drilon A, Subbiah V, Shah MH, Cabanillas ME. Efficacy of selpercatinib in RET-altered thyroid cancers. N Engl J Med 2020; 383(9): 825–835
CrossRef
Pubmed
Google scholar
|
[21] |
Griesinger F, Curigliano G, Thomas M, Subbiah V, Baik CS, Tan DSW, Lee DH, Misch D, Garralda E, Kim DW, van der Wekken AJ, Gainor JF, Paz-Ares L, Liu SV, Kalemkerian GP, Houvras Y, Bowles DW, Mansfield AS, Lin JJ, Smoljanovic V, Rahman A, Kong S, Zalutskaya A, Louie-Gao M, Boral AL, Mazières J. Safety and efficacy of pralsetinib in RET fusion-positive non-small-cell lung cancer including as first-line therapy: update from the ARROW trial. Ann Oncol 2022; 33(11): 1168–1178
CrossRef
Pubmed
Google scholar
|
[22] |
Drilon A, Subbiah V, Gautschi O, Tomasini P, de Braud F, Solomon BJ, Shao-Weng Tan D, Alonso G, Wolf J, Park K, Goto K, Soldatenkova V, Szymczak S, Barker SS, Puri T, Bence Lin A, Loong H, Besse B. Selpercatinib in patients with RET fusion-positive non-small-cell lung cancer: updated safety and efficacy from the registrational LIBRETTO-001 phase I/II trial. J Clin Oncol 2023; 41(2): 385–394
CrossRef
Pubmed
Google scholar
|
[23] |
Subbiah V, Cassier PA, Siena S, Garralda E, Paz-Ares L, Garrido P, Nadal E, Vuky J, Lopes G, Kalemkerian GP, Bowles DW, Seetharam M, Chang J, Zhang H, Green J, Zalutskaya A, Schuler M, Fan Y, Curigliano G. Pan-cancer efficacy of pralsetinib in patients with RET fusion-positive solid tumors from the phase 1/2 ARROW trial. Nat Med 2022; 28(8): 1640–1645
CrossRef
Pubmed
Google scholar
|
[24] |
Subbiah V, Wolf J, Konda B, Kang H, Spira A, Weiss J, Takeda M, Ohe Y, Khan S, Ohashi K, Soldatenkova V, Szymczak S, Sullivan L, Wright J, Drilon A. Tumour-agnostic efficacy and safety of selpercatinib in patients with RET fusion-positive solid tumours other than lung or thyroid tumours (LIBRETTO-001): a phase 1/2, open-label, basket trial. Lancet Oncol 2022; 23(10): 1261–1273
CrossRef
Pubmed
Google scholar
|
[25] |
Solomon BJ, Tan L, Lin JJ, Wong SQ, Hollizeck S, Ebata K, Tuch BB, Yoda S, Gainor JF, Sequist LV, Oxnard GR, Gautschi O, Drilon A, Subbiah V, Khoo C, Zhu EY, Nguyen M, Henry D, Condroski KR, Kolakowski GR, Gomez E, Ballard J, Metcalf AT, Blake JF, Dawson SJ, Blosser W, Stancato LF, Brandhuber BJ, Andrews S, Robinson BG, Rothenberg SM. RET solvent front mutations mediate acquired resistance to selective RET inhibition in RET-driven malignancies. J Thorac Oncol 2020; 15(4): 541–549
CrossRef
Pubmed
Google scholar
|
[26] |
Lin JJ, Liu SV, McCoach CE, Zhu VW, Tan AC, Yoda S, Peterson J, Do A, Prutisto-Chang K, Dagogo-Jack I, Sequist LV, Wirth LJ, Lennerz JK, Hata AN, Mino-Kenudson M, Nardi V, Ou SI, Tan DSW, Gainor JF. Mechanisms of resistance to selective RET tyrosine kinase inhibitors in RET fusion-positive non-small-cell lung cancer. Ann Oncol 2020; 31(12): 1725–1733
CrossRef
Pubmed
Google scholar
|
[27] |
Subbiah V, Shen T, Terzyan SS, Liu X, Hu X, Patel KP, Hu M, Cabanillas M, Behrang A, Meric-Bernstam F, Vo PTT, Mooers BHM, Wu J. Structural basis of acquired resistance to selpercatinib and pralsetinib mediated by non-gatekeeper RET mutations. Ann Oncol 2021; 32(2): 261–268
CrossRef
Pubmed
Google scholar
|
[28] |
Rosen EY, Johnson ML, Clifford SE, Somwar R, Kherani JF, Son J, Bertram AA, Davare MA, Gladstone E, Ivanova EV, Henry DN, Kelley EM, Lin M, Milan MSD, Nair BC, Olek EA, Scanlon JE, Vojnic M, Ebata K, Hechtman JF, Li BT, Sholl LM, Taylor BS, Ladanyi M, Jänne PA, Rothenberg SM, Drilon A, Oxnard GR. Overcoming MET-dependent resistance to selective RET inhibition in patients with RET fusion-positive lung cancer by combining selpercatinib with crizotinib. Clin Cancer Res 2021; 27(1): 34–42
CrossRef
Pubmed
Google scholar
|
[29] |
Rosen EY, Won HH, Zheng Y, Cocco E, Selcuklu D, Gong Y, Friedman ND, de Bruijn I, Sumer O, Bielski CM, Savin C, Bourque C, Falcon C, Clarke N, Jing X, Meng F, Zimel C, Shifman S, Kittane S, Wu F, Ladanyi M, Ebata K, Kherani J, Brandhuber BJ, Fagin J, Sherman EJ, Rekhtman N, Berger MF, Scaltriti M, Hyman DM, Taylor BS, Drilon A. The evolution of RET inhibitor resistance in RET-driven lung and thyroid cancers. Nat Commun 2022; 13(1): 1450
CrossRef
Pubmed
Google scholar
|
[30] |
Lian EY, Maritan SM, Cockburn JG, Kasaian K, Crupi MJ, Hurlbut D, Jones SJ, Wiseman SM, Mulligan LM. Differential roles of RET isoforms in medullary and papillary thyroid carcinomas. Endocr Relat Cancer 2017; 24(1): 53–69
CrossRef
Pubmed
Google scholar
|
[31] |
Takeuchi K, Soda M, Togashi Y, Suzuki R, Sakata S, Hatano S, Asaka R, Hamanaka W, Ninomiya H, Uehara H, Lim Choi Y, Satoh Y, Okumura S, Nakagawa K, Mano H, Ishikawa Y. RET, ROS1 and ALK fusions in lung cancer. Nat Med 2012; 18(3): 378–381
CrossRef
Pubmed
Google scholar
|
[32] |
Wells SA Jr, Asa SL, Dralle H, Elisei R, Evans DB, Gagel RF, Lee N, Machens A, Moley JF, Pacini F, Raue F, Frank-Raue K, Robinson B, Rosenthal MS, Santoro M, Schlumberger M, Shah M, Waguespack SG; American Thyroid Association Guidelines Task Force on Medullary Thyroid Carcinoma. Revised American Thyroid Association guidelines for the management of medullary thyroid carcinoma. Thyroid 2015; 25(6): 567–610
CrossRef
Pubmed
Google scholar
|
[33] |
Krampitz GW, Norton JA. RET gene mutations (genotype and phenotype) of multiple endocrine neoplasia type 2 and familial medullary thyroid carcinoma. Cancer 2014; 120(13): 1920–1931
CrossRef
Pubmed
Google scholar
|
[34] |
Elisei R, Ciampi R, Matrone A, Prete A, Gambale C, Ramone T, Simeakis G, Materazzi G, Torregrossa L, Ugolini C, Romei C. Somatic RET indels in sporadic medullary thyroid cancer: prevalence and response to selpercatinib. J Clin Endocrinol Metab 2022; 107(8): 2195–2202
CrossRef
Pubmed
Google scholar
|
[35] |
Asai N, Iwashita T, Matsuyama M, Takahashi M. Mechanism of activation of the ret proto-oncogene by multiple endocrine neoplasia 2A mutations. Mol Cell Biol 1995; 15(3): 1613–1619
CrossRef
Pubmed
Google scholar
|
[36] |
Plaza-Menacho I, Barnouin K, Goodman K, Martínez-Torres RJ, Borg A, Murray-Rust J, Mouilleron S, Knowles P, McDonald NQ. Oncogenic RET kinase domain mutations perturb the autophosphorylation trajectory by enhancing substrate presentation in trans. Mol Cell 2014; 53(5): 738–751
CrossRef
Pubmed
Google scholar
|
[37] |
Margraf RL, Crockett DK, Krautscheid PM, Seamons R, Calderon FR, Wittwer CT, Mao R. Multiple endocrine neoplasia type 2 RET protooncogene database: repository of MEN2-associated RET sequence variation and reference for genotype/phenotype correlations. Hum Mutat 2009; 30(4): 548–556
CrossRef
Pubmed
Google scholar
|
[38] |
Gao J, Aksoy BA, Dogrusoz U, Dresdner G, Gross B, Sumer SO, Sun Y, Jacobsen A, Sinha R, Larsson E, Cerami E, Sander C, Schultz N. Integrative analysis of complex cancer genomics and clinical profiles using the cBioPortal. Sci Signal 2013; 6(269): pl1
CrossRef
Pubmed
Google scholar
|
[39] |
Fusco A, Grieco M, Santoro M, Berlingieri MT, Pilotti S, Pierotti MA, Della Porta G, Vecchio G. A new oncogene in human thyroid papillary carcinomas and their lymph-nodal metastases. Nature 1987; 328(6126): 170–172
CrossRef
Pubmed
Google scholar
|
[40] |
Romei C, Ciampi R, Elisei R. A comprehensive overview of the role of the RET proto-oncogene in thyroid carcinoma. Nat Rev Endocrinol 2016; 12(4): 192–202
CrossRef
Pubmed
Google scholar
|
[41] |
Ju YS, Lee WC, Shin JY, Lee S, Bleazard T, Won JK, Kim YT, Kim JI, Kang JH, Seo JS. A transforming KIF5B and RET gene fusion in lung adenocarcinoma revealed from whole-genome and transcriptome sequencing. Genome Res 2012; 22(3): 436–445
CrossRef
Pubmed
Google scholar
|
[42] |
Kohno T, Ichikawa H, Totoki Y, Yasuda K, Hiramoto M, Nammo T, Sakamoto H, Tsuta K, Furuta K, Shimada Y, Iwakawa R, Ogiwara H, Oike T, Enari M, Schetter AJ, Okayama H, Haugen A, Skaug V, Chiku S, Yamanaka I, Arai Y, Watanabe S, Sekine I, Ogawa S, Harris CC, Tsuda H, Yoshida T, Yokota J, Shibata T. KIF5B-RET fusions in lung adenocarcinoma. Nat Med 2012; 18(3): 375–377
CrossRef
Pubmed
Google scholar
|
[43] |
Lipson D, Capelletti M, Yelensky R, Otto G, Parker A, Jarosz M, Curran JA, Balasubramanian S, Bloom T, Brennan KW, Donahue A, Downing SR, Frampton GM, Garcia L, Juhn F, Mitchell KC, White E, White J, Zwirko Z, Peretz T, Nechushtan H, Soussan-Gutman L, Kim J, Sasaki H, Kim HR, Park SI, Ercan D, Sheehan CE, Ross JS, Cronin MT, Jänne PA, Stephens PJ. Identification of new ALK and RET gene fusions from colorectal and lung cancer biopsies. Nat Med 2012; 18(3): 382–384
CrossRef
Pubmed
Google scholar
|
[44] |
Li F, Feng Y, Fang R, Fang Z, Xia J, Han X, Liu XY, Chen H, Liu H, Ji H. Identification of RET gene fusion by exon array analyses in “pan-negative” lung cancer from never smokers. Cell Res 2012; 22(5): 928–931
CrossRef
Pubmed
Google scholar
|
[45] |
Paratala BS, Chung JH, Williams CB, Yilmazel B, Petrosky W, Williams K, Schrock AB, Gay LM, Lee E, Dolfi SC, Pham K, Lin S, Yao M, Kulkarni A, DiClemente F, Liu C, Rodriguez-Rodriguez L, Ganesan S, Ross JS, Ali SM, Leyland-Jones B, Hirshfield KM. RET rearrangements are actionable alterations in breast cancer. Nat Commun 2018; 9(1): 4821
CrossRef
Pubmed
Google scholar
|
[46] |
Gainor JF, Shaw AT. Novel targets in non-small cell lung cancer: ROS1 and RET fusions. Oncologist 2013; 18(7): 865–875
CrossRef
Pubmed
Google scholar
|
[47] |
Richardson DS, Gujral TS, Peng S, Asa SL, Mulligan LM. Transcript level modulates the inherent oncogenicity of RET/PTC oncoproteins. Cancer Res 2009; 69(11): 4861–4869
CrossRef
Pubmed
Google scholar
|
[48] |
James J, Ruggeri B, Armstrong RC, Rowbottom MW, Jones-Bolin S, Gunawardane RN, Dobrzanski P, Gardner MF, Zhao H, Cramer MD, Hunter K, Nepomuceno RR, Cheng M, Gitnick D, Yazdanian M, Insko DE, Ator MA, Apuy JL, Faraoni R, Dorsey BD, Williams M, Bhagwat SS, Holladay MW. CEP-32496: a novel orally active BRAF(V600E) inhibitor with selective cellular and in vivo antitumor activity. Mol Cancer Ther 2012; 11(4): 930–941
CrossRef
Pubmed
Google scholar
|
[49] |
Li GG, Somwar R, Joseph J, Smith RS, Hayashi T, Martin L, Franovic A, Schairer A, Martin E, Riely GJ, Harris J, Yan S, Wei G, Oliver JW, Patel R, Multani P, Ladanyi M, Drilon A. Antitumor activity of RXDX-105 in multiple cancer types with RET rearrangements or mutations. Clin Cancer Res 2017; 23(12): 2981–2990
CrossRef
Pubmed
Google scholar
|
[50] |
Drilon A, Fu S, Patel MR, Fakih M, Wang D, Olszanski AJ, Morgensztern D, Liu SV, Cho BC, Bazhenova L, Rodriguez CP, Doebele RC, Wozniak A, Reckamp KL, Seery T, Nikolinakos P, Hu Z, Oliver JW, Trone D, McArthur K, Patel R, Multani PS, Ahn MJ. A phase I/Ib trial of the VEGFR-sparing multikinase RET inhibitor RXDX-105. Cancer Discov 2019; 9(3): 384–395
CrossRef
Pubmed
Google scholar
|
[51] |
Das TK, Cagan RL. KIF5B-RET oncoprotein signals through a multi-kinase signaling hub. Cell Rep 2017; 20(10): 2368–2383
CrossRef
Pubmed
Google scholar
|
[52] |
Tulpule A, Guan J, Neel DS, Allegakoen HR, Lin YP, Brown D, Chou YT, Heslin A, Chatterjee N, Perati S, Menon S, Nguyen TA, Debnath J, Ramirez AD, Shi X, Yang B, Feng S, Makhija S, Huang B, Bivona TG. Kinase-mediated RAS signaling via membraneless cytoplasmic protein granules. Cell 2021; 184(10): 2649–2664.e18
CrossRef
Pubmed
Google scholar
|
[53] |
Levinson S, Cagan RL. Drosophila cancer models identify functional differences between RET fusions. Cell Rep 2016; 16(11): 3052–3061
CrossRef
Pubmed
Google scholar
|
[54] |
Belli C, Penault-Llorca F, Ladanyi M, Normanno N, Scoazec JY, Lacroix L, Reis-Filho JS, Subbiah V, Gainor JF, Endris V, Repetto M, Drilon A, Scarpa A, André F, Douillard JY, Curigliano G. ESMO recommendations on the standard methods to detect RET fusions and mutations in daily practice and clinical research. Ann Oncol 2021; 32(3): 337–350
CrossRef
Pubmed
Google scholar
|
[55] |
Liu X, Shen T, Mooers BHM, Hilberg F, Wu J. Drug resistance profiles of mutations in the RET kinase domain. Br J Pharmacol 2018; 175(17): 3504–3515
CrossRef
Pubmed
Google scholar
|
[56] |
Dagogo-Jack I, Stevens SE, Lin JJ, Nagy R, Ferris L, Shaw AT, Gainor JF. Emergence of a RET V804M gatekeeper mutation during treatment with vandetanib in RET-rearranged NSCLC. J Thorac Oncol 2018; 13(11): e226–e227
CrossRef
Pubmed
Google scholar
|
[57] |
Knowles PP, Murray-Rust J, Kjaer S, Scott RP, Hanrahan S, Santoro M, Ibáñez CF, McDonald NQ. Structure and chemical inhibition of the RET tyrosine kinase domain. J Biol Chem 2006; 281(44): 33577–33587
CrossRef
Pubmed
Google scholar
|
[58] |
Terzyan SS, Shen T, Liu X, Huang Q, Teng P, Zhou M, Hilberg F, Cai J, Mooers BHM, Wu J. Structural basis of resistance of mutant RET protein-tyrosine kinase to its inhibitors nintedanib and vandetanib. J Biol Chem 2019; 294(27): 10428–10437
CrossRef
Pubmed
Google scholar
|
[59] |
Jänne PA, Yang JC, Kim DW, Planchard D, Ohe Y, Ramalingam SS, Ahn MJ, Kim SW, Su WC, Horn L, Haggstrom D, Felip E, Kim JH, Frewer P, Cantarini M, Brown KH, Dickinson PA, Ghiorghiu S, Ranson M. AZD9291 in EGFR inhibitor-resistant non-small-cell lung cancer. N Engl J Med 2015; 372(18): 1689–1699
CrossRef
Pubmed
Google scholar
|
[60] |
Ramalingam SS, Vansteenkiste J, Planchard D, Cho BC, Gray JE, Ohe Y, Zhou C, Reungwetwattana T, Cheng Y, Chewaskulyong B, Shah R, Cobo M, Lee KH, Cheema P, Tiseo M, John T, Lin MC, Imamura F, Kurata T, Todd A, Hodge R, Saggese M, Rukazenkov Y, Soria JC; FLAURA Investigators. Overall survival with osimertinib in untreated, EGFR-mutated advanced NSCLC. N Engl J Med 2020; 382(1): 41–50
CrossRef
Pubmed
Google scholar
|
[61] |
Cho BC, Chewaskulyong B, Lee KH, Dechaphunkul A, Sriuranpong V, Imamura F, Nogami N, Kurata T, Okamoto I, Zhou C, Cheng Y, Cho EK, Voon PJ, Lee JS, Mann H, Saggese M, Reungwetwattana T, Ramalingam SS, Ohe Y. Osimertinib versus standard of care EGFR TKI as first-line treatment in patients with EGFRm advanced NSCLC: FLAURA Asian Subset. J Thorac Oncol 2019; 14(1): 99–106
CrossRef
Pubmed
Google scholar
|
[62] |
Subbiah V, Gainor JF, Oxnard GR, Tan DSW, Owen DH, Cho BC, Loong HH, McCoach CE, Weiss J, Kim YJ, Bazhenova L, Park K, Daga H, Besse B, Gautschi O, Rolfo C, Zhu EY, Kherani JF, Huang X, Kang S, Drilon A. Intracranial efficacy of selpercatinib in RET fusion-positive non-small cell lung cancers on the LIBRETTO-001 trial. Clin Cancer Res 2021; 27(15): 4160–4167
CrossRef
Pubmed
Google scholar
|
[63] |
Drilon A, Lin JJ, Filleron T, Ni A, Milia J, Bergagnini I, Hatzoglou V, Velcheti V, Offin M, Li B, Carbone DP, Besse B, Mok T, Awad MM, Wolf J, Owen D, Camidge DR, Riely GJ, Peled N, Kris MG, Mazieres J, Gainor JF, Gautschi O. Frequency of brain metastases and multikinase inhibitor outcomes in patients with RET-rearranged lung cancers. J Thorac Oncol 2018; 13(10): 1595–1601
CrossRef
Pubmed
Google scholar
|
[64] |
Urbanska EM, Sørensen JB, Melchior LC, Costa JC, Santoni-Rugiu E. Durable response to combined osimertinib and pralsetinib treatment for osimertinib resistance due to novel intergenic ANK3-RET fusion in EGFR-mutated non-small-cell lung cancer. JCO Precis Oncol 2022; 6(6): e2200040
CrossRef
Pubmed
Google scholar
|
[65] |
Huang Q, Schneeberger VE, Luetteke N, Jin C, Afzal R, Budzevich MM, Makanji RJ, Martinez GV, Shen T, Zhao L, Fung KM, Haura EB, Coppola D, Wu J. Preclinical modeling of KIF5B-RET fusion lung adenocarcinoma. Mol Cancer Ther 2016; 15(10): 2521–2529
CrossRef
Pubmed
Google scholar
|
[66] |
Shen T, Hu X, Liu X, Subbiah V, Mooers BHM, Wu J. The L730V/I RET roof mutations display different activities toward pralsetinib and selpercatinib. NPJ Precis Oncol 2021; 5(1): 48
CrossRef
Pubmed
Google scholar
|
[67] |
Lin JJ, Gainor JF. An early look at selective RET inhibitor resistance: new challenges and opportunities. Br J Cancer 2021; 124(11): 1757–1758
CrossRef
Pubmed
Google scholar
|
[68] |
Subbiah V, Shen T, Tetzlaff M, Weissferdt A, Byers LA, Cascone T, Behrang A, Meric-Bernstam F, Mooers BHM, Rothenberg SM, Ebata K, Wu J. Patient-driven discovery and post-clinical validation of NTRK3 fusion as an acquired resistance mechanism to selpercatinib in RET fusion-positive lung cancer. Ann Oncol 2021; 32(6): 817–819
CrossRef
Pubmed
Google scholar
|
[69] |
Zhu VW, Madison R, Schrock AB, Ou SI. Emergence of High Level of MET Amplification as off-target resistance to selpercatinib treatment in KIF5B-RET NSCLC. J Thorac Oncol 2020; 15(7): e124–e127
CrossRef
Pubmed
Google scholar
|
[70] |
Drilon A, Rogers E, Zhai D, Deng W, Zhang X, Lee D, Ung J, Whitten J, Zhang H, Liu J, Hu T, Zhuang H, Lu Y, Huang Z, Braber A, Zimmerman Z, Xin R, Cui J, Subbiah V. TPX-0046 is novel and potent RET/SRC inhibitor for RET-driven cancers. Ann Oncol 2019; 30(ESMO abstract): 506P
|
[71] |
Drilon AE, Zhai D, Rogers E, Deng W, Zhang X, Ung J, Lee D, Rodon L, Graber A, Zimmerman ZF, Murray BW, Subbiah V. The next-generation RET inhibitor TPX-0046 is active in drug-resistant and naïve RET-driven cancer models. J Clin Oncol 2020; 38(15 suppl): 3616
CrossRef
Google scholar
|
[72] |
Repetto M, Crimini E, Ascione L, Boscolo Bielo L, Belli C, Curigliano G. The return of RET GateKeeper mutations? An in-silico exploratory analysis of potential resistance mechanisms to novel RET macrocyclic inhibitor TPX-0046. Invest New Drugs 2022; 40(5): 1133–1136
CrossRef
Pubmed
Google scholar
|
[73] |
Pennell NA, Wirth LJ, Gainor JF, Rotow JK, Johnson ML, Bauer TM, Kroiss M, Sukrithan V, Kang H, Worden FP, Bestvina CM, Hadoux J, Cassier PA, Italiano A, Wolf J, Brose MS, Avsar E, Axelson MD, Subbiah V, Drilon AE. A first-in-human phase 1 study of the next-generation RET inhibitor, LOXO-260, in RET inhibitor refractory patients with RET-altered cancers (trial in progress). J Clin Oncol 2022; 40(suppl 16): TPS8595
|
[74] |
MiyazakiIIshida KKatoMSuzukiTFujitaH OhkuboSIwasawa Y. Discovery of TAS0953/HM06, a novel next generation RET-specific inhibitor capable of inhibiting RET solvent front mutations. AACR-NCI-EORTC Virtual International Conference 2021; October 7–10
|
[75] |
Schoffski P, Cho BC, Italiano A, Loong HHF, Massard C, Rodriguez LM, Shih JY, Subbiah V, Verlingue L, Andreas K, Basson CT, Clawson A, Ho PTC, Knight S, Scheuber A, Keegan M. BOS172738, a highly potent and selective RET inhibitor, for the treatment of RET-altered tumors including RET-fusion+ NSCLC and RET-mutant MTC: phase 1 study results. J Clin Oncol 2021; 39(15 suppl): 3008
CrossRef
Google scholar
|
[76] |
Subbiah V, Zhong J, Lu Y, Liu Y, Chen M, Chen X, Wang H, Zhu J, Lu S, Drilon AE. The development of APS03118, a potent next-generation RET inhibitor for treating RET-inhibitor-resistant patients. J Clin Oncol 2022; 40(16 suppl): e15107
CrossRef
Google scholar
|
/
〈 | 〉 |