The critical importance of epigenetics in autoimmune-related skin diseases

Lingyu Gao, Qianjin Lu

PDF(1203 KB)
PDF(1203 KB)
Front. Med. ›› 2023, Vol. 17 ›› Issue (1) : 43-57. DOI: 10.1007/s11684-022-0980-8
REVIEW
REVIEW

The critical importance of epigenetics in autoimmune-related skin diseases

Author information +
History +

Abstract

Autoimmune-related skin diseases are a group of disorders with diverse etiology and pathophysiology involved in autoimmunity. Genetics and environmental factors may contribute to the development of these autoimmune disorders. Although the etiology and pathogenesis of these disorders are poorly understood, environmental variables that induce aberrant epigenetic regulations may provide some insights. Epigenetics is the study of heritable mechanisms that regulate gene expression without changing DNA sequences. The most important epigenetic mechanisms are DNA methylation, histone modification, and noncoding RNAs. In this review, we discuss the most recent findings regarding the function of epigenetic mechanisms in autoimmune-related skin disorders, including systemic lupus erythematosus, bullous skin diseases, psoriasis, and systemic sclerosis. These findings will expand our understanding and highlight the possible clinical applications of precision epigenetics approaches.

Keywords

epigenetics / autoimmune-related skin diseases / DNA methylation / histone modifications / noncoding RNAs

Cite this article

Download citation ▾
Lingyu Gao, Qianjin Lu. The critical importance of epigenetics in autoimmune-related skin diseases. Front. Med., 2023, 17(1): 43‒57 https://doi.org/10.1007/s11684-022-0980-8

References

[1]
Zhang L, Lu Q, Chang C. Epigenetics in health and disease. Adv Exp Med Biol 2020; 1253: 3–55
CrossRef Pubmed Google scholar
[2]
Lander ES. Initial impact of the sequencing of the human genome. Nature 2011; 470(7333): 187–197
CrossRef Pubmed Google scholar
[3]
Bird A. Perceptions of epigenetics. Nature 2007; 447(7143): 396–398
CrossRef Pubmed Google scholar
[4]
Lu Q. The critical importance of epigenetics in autoimmunity. J Autoimmun 2013; 41: 1–5
CrossRef Pubmed Google scholar
[5]
Wu H, Chang C, Lu Q. The epigenetics of lupus erythematosus. Adv Exp Med Biol 2020; 1253: 185–207
CrossRef Pubmed Google scholar
[6]
Lu Q, Wu R, Zhao M, Garcia-Gomez A, Ballestar E. miRNAs as therapeutic targets in inflammatory disease. Trends Pharmacol Sci 2019; 40(11): 853–865
CrossRef Pubmed Google scholar
[7]
Dolcino M, Friso S, Selmi C, Lunardi C. Editorial: Role of epigenetics in autoimmune diseases. Front Immunol 2020; 11: 1284
CrossRef Pubmed Google scholar
[8]
Selmi C, Lu Q, Humble MC. Heritability versus the role of the environment in autoimmunity. J Autoimmun 2012; 39(4): 249–252
CrossRef Pubmed Google scholar
[9]
Meda F, Folci M, Baccarelli A, Selmi C. The epigenetics of autoimmunity. Cell Mol Immunol 2011; 8(3): 226–236
CrossRef Pubmed Google scholar
[10]
Hedrich CM, Mäbert K, Rauen T, Tsokos GC. DNA methylation in systemic lupus erythematosus. Epigenomics 2017; 9(4): 505–525
CrossRef Pubmed Google scholar
[11]
Kaul A, Gordon C, Crow MK, Touma Z, Urowitz MB, van Vollenhoven R, Ruiz-Irastorza G, Hughes G. Systemic lupus erythematosus. Nat Rev Dis Primers 2016; 2(1): 16039
CrossRef Pubmed Google scholar
[12]
Ha E, Bae SC, Kim K. Recent advances in understanding the genetic basis of systemic lupus erythematosus. Semin Immunopathol 2022; 44(1): 29–46
CrossRef Pubmed Google scholar
[13]
Xiang Z, Yang Y, Chang C, Lu Q. The epigenetic mechanism for discordance of autoimmunity in monozygotic twins. J Autoimmun 2017; 83: 43–50
CrossRef Pubmed Google scholar
[14]
Deng Q, Luo Y, Chang C, Wu H, Ding Y, Xiao R. The emerging epigenetic role of CD8+ T cells in autoimmune diseases: a systematic review. Front Immunol 2019; 10: 856
CrossRef Pubmed Google scholar
[15]
Richardson B, Scheinbart L, Strahler J, Gross L, Hanash S, Johnson M. Evidence for impaired T cell DNA methylation in systemic lupus erythematosus and rheumatoid arthritis. Arthritis Rheum 1990; 33(11): 1665–1673
CrossRef Pubmed Google scholar
[16]
Lu Q, Kaplan M, Ray D, Ray D, Zacharek S, Gutsch D, Richardson B. Demethylation of ITGAL (CD11a) regulatory sequences in systemic lupus erythematosus. Arthritis Rheum 2002; 46(5): 1282–1291
CrossRef Pubmed Google scholar
[17]
Lu Q, Wu A, Ray D, Deng C, Attwood J, Hanash S, Pipkin M, Lichtenheld M, Richardson B. DNA methylation and chromatin structure regulate T cell perforin gene expression. J Immunol 2003; 170(10): 5124–5132
CrossRef Pubmed Google scholar
[18]
Lu Q, Wu A, Richardson BC. Demethylation of the same promoter sequence increases CD70 expression in lupus T cells and T cells treated with lupus-inducing drugs. J Immunol 2005; 174(10): 6212–6219
CrossRef Pubmed Google scholar
[19]
Lu Q, Wu A, Tesmer L, Ray D, Yousif N, Richardson B. Demethylation of CD40LG on the inactive X in T cells from women with lupus. J Immunol 2007; 179(9): 6352–6358
CrossRef Pubmed Google scholar
[20]
Zhao M, Sun Y, Gao F, Wu X, Tang J, Yin H, Luo Y, Richardson B, Lu Q. Epigenetics and SLE: RFX1 downregulation causes CD11a and CD70 overexpression by altering epigenetic modifications in lupus CD4+ T cells. J Autoimmun 2010; 35(1): 58–69
CrossRef Pubmed Google scholar
[21]
Liao W, Li M, Wu H, Jia S, Zhang N, Dai Y, Zhao M, Lu Q. Down-regulation of MBD4 contributes to hypomethylation and overexpression of CD70 in CD4+ T cells in systemic lupus erythematosus. Clin Epigenetics 2017; 9(1): 104
CrossRef Pubmed Google scholar
[22]
Li Y, Zhao M, Yin H, Gao F, Wu X, Luo Y, Zhao S, Zhang X, Su Y, Hu N, Long H, Richardson B, Lu Q. Overexpression of the growth arrest and DNA damage-induced 45α gene contributes to autoimmunity by promoting DNA demethylation in lupus T cells. Arthritis Rheum 2010; 62(5): 1438–1447
CrossRef Pubmed Google scholar
[23]
Zhang P, Lu Q. Genetic and epigenetic influences on the loss of tolerance in autoimmunity. Cell Mol Immunol 2018; 15(6): 575–585
CrossRef Pubmed Google scholar
[24]
Zhao M, Wang J, Liao W, Li D, Li M, Wu H, Zhang Y, Gershwin ME, Lu Q. Increased 5-hydroxymethylcytosine in CD4+ T cells in systemic lupus erythematosus. J Autoimmun 2016; 69: 64–73
CrossRef Pubmed Google scholar
[25]
Coit P, Jeffries M, Altorok N, Dozmorov MG, Koelsch KA, Wren JD, Merrill JT, McCune WJ, Sawalha AH. Genome-wide DNA methylation study suggests epigenetic accessibility and transcriptional poising of interferon-regulated genes in naïve CD4+ T cells from lupus patients. J Autoimmun 2013; 43: 78–84
CrossRef Pubmed Google scholar
[26]
Coit P, Yalavarthi S, Ognenovski M, Zhao W, Hasni S, Wren JD, Kaplan MJ, Sawalha AH. Epigenome profiling reveals significant DNA demethylation of interferon signature genes in lupus neutrophils. J Autoimmun 2015; 58: 59–66
CrossRef Pubmed Google scholar
[27]
Absher DM, Li X, Waite LL, Gibson A, Roberts K, Edberg J, Chatham WW, Kimberly RP. Genome-wide DNA methylation analysis of systemic lupus erythematosus reveals persistent hypomethylation of interferon genes and compositional changes to CD4+ T-cell populations. PLoS Genet 2013; 9(8): e1003678
CrossRef Pubmed Google scholar
[28]
Crow MK, Olferiev M, Kirou KA. Type I interferons in autoimmune disease. Annu Rev Pathol 2019; 14(1): 369–393
CrossRef Pubmed Google scholar
[29]
Zhao M, Zhou Y, Zhu B, Wan M, Jiang T, Tan Q, Liu Y, Jiang J, Luo S, Tan Y, Wu H, Renauer P, Del Mar Ayala Gutiérrez M, Castillo Palma MJ, Ortega Castro R, Fernández-Roldán C, Raya E, Faria R, Carvalho C, Alarcón-Riquelme ME, Xiang Z, Chen J, Li F, Ling G, Zhao H, Liao X, Lin Y, Sawalha AH, Lu Q. IFI44L promoter methylation as a blood biomarker for systemic lupus erythematosus. Ann Rheum Dis 2016; 75(11): 1998–2006
CrossRef Pubmed Google scholar
[30]
Liu X, Lu H, Chen T, Nallaparaju KC, Yan X, Tanaka S, Ichiyama K, Zhang X, Zhang L, Wen X, Tian Q, Bian XW, Jin W, Wei L, Dong C. Genome-wide analysis identifies Bcl6-controlled regulatory networks during T follicular helper cell differentiation. Cell Rep 2016; 14(7): 1735–1747
CrossRef Pubmed Google scholar
[31]
Huang X, Wu H, Qiu H, Yang H, Deng Y, Zhao M, Luo H, Zhou X, Xie Y, Chan V, Lau CS, Lu Q. The expression of Bcl-6 in circulating follicular helper-like T cells positively correlates with the disease activity in systemic lupus erythematosus. Clin Immunol 2016; 173: 161–170
CrossRef Pubmed Google scholar
[32]
Wu H, Deng Y, Long D, Yang M, Li Q, Feng Y, Chen Y, Qiu H, Huang X, He Z, Hu L, Yin H, Li G, Guo Y, Du W, Zhao M, Lu L, Lu Q. The IL-21-TET2-AIM2-c-MAF pathway drives the T follicular helper cell response in lupus-like disease. Clin Transl Med 2022; 12(3): e781
CrossRef Pubmed Google scholar
[33]
Gao X, Song Y, Du P, Yang S, Cui H, Lu S, Hu L, Liu L, Jia S, Zhao M. Administration of a microRNA-21 inhibitor improves the lupus-like phenotype in MRL/lpr mice by repressing Tfh cell-mediated autoimmune responses. Int Immunopharmacol 2022; 106: 108578
CrossRef Pubmed Google scholar
[34]
Wu H, Deng Y, Feng Y, Long D, Ma K, Wang X, Zhao M, Lu L, Lu Q. Epigenetic regulation in B-cell maturation and its dysregulation in autoimmunity. Cell Mol Immunol 2018; 15(7): 676–684
CrossRef Pubmed Google scholar
[35]
Yang M, Long D, Hu L, Zhao Z, Li Q, Guo Y, He Z, Zhao M, Lu L, Li F, Long H, Wu H, Lu Q. AIM2 deficiency in B cells ameliorates systemic lupus erythematosus by regulating Blimp-1-Bcl-6 axis-mediated B-cell differentiation. Signal Transduct Target Ther 2021; 6(1): 341
CrossRef Pubmed Google scholar
[36]
Johnson DG, Dent SY. Chromatin: receiver and quarterback for cellular signals. Cell 2013; 152(4): 685–689
CrossRef Pubmed Google scholar
[37]
Zhao S, Yue Y, Li Y, Li H. Identification and characterization of ‘readers’ for novel histone modifications. Curr Opin Chem Biol 2019; 51: 57–65
CrossRef Pubmed Google scholar
[38]
Black JC, Van Rechem C, Whetstine JR. Histone lysine methylation dynamics: establishment, regulation, and biological impact. Mol Cell 2012; 48(4): 491–507
CrossRef Pubmed Google scholar
[39]
Hu N, Qiu X, Luo Y, Yuan J, Li Y, Lei W, Zhang G, Zhou Y, Su Y, Lu Q. Abnormal histone modification patterns in lupus CD4+ T cells. J Rheumatol 2008; 35(5): 804–810
Pubmed
[40]
Zhang Q, Long H, Liao J, Zhao M, Liang G, Wu X, Zhang P, Ding S, Luo S, Lu Q. Inhibited expression of hematopoietic progenitor kinase 1 associated with loss of jumonji domain containing 3 promoter binding contributes to autoimmunity in systemic lupus erythematosus. J Autoimmun 2011; 37(3): 180–189
CrossRef Pubmed Google scholar
[41]
Yin H, Wu H, Zhao M, Zhang Q, Long H, Fu S, Lu Q. Histone demethylase JMJD3 regulates CD11a expression through changes in histone H3K27 tri-methylation levels in CD4+ T cells of patients with systemic lupus erythematosus. Oncotarget 2017; 8(30): 48938–48947
CrossRef Pubmed Google scholar
[42]
Liu Z, Cao W, Xu L, Chen X, Zhan Y, Yang Q, Liu S, Chen P, Jiang Y, Sun X, Tao Y, Hu Y, Li C, Wang Q, Wang Y, Chen CD, Shi Y, Zhang X. The histone H3 lysine-27 demethylase Jmjd3 plays a critical role in specific regulation of Th17 cell differentiation. J Mol Cell Biol 2015; 7(6): 505–516
CrossRef Pubmed Google scholar
[43]
Zhao M, Li MY, Gao XF, Jia SJ, Gao KQ, Zhou Y, Zhang HH, Huang Y, Wang J, Wu HJ, Lu QJ. Downregulation of BDH2 modulates iron homeostasis and promotes DNA demethylation in CD4+ T cells of systemic lupus erythematosus. Clin Immunol 2018; 187: 113–121
CrossRef Pubmed Google scholar
[44]
Guo Y, Zhao M, Lu Q. Transcription factor RFX1 is ubiquitinated by E3 ligase STUB1 in systemic lupus erythematosus. Clin Immunol 2016; 169: 1–7
CrossRef Pubmed Google scholar
[45]
Zhao M, Tan Y, Peng Q, Huang C, Guo Y, Liang G, Zhu B, Huang Y, Liu A, Wang Z, Li M, Gao X, Wu R, Wu H, Long H, Lu Q. IL-6/STAT3 pathway induced deficiency of RFX1 contributes to Th17-dependent autoimmune diseases via epigenetic regulation. Nat Commun 2018; 9(1): 583
CrossRef Pubmed Google scholar
[46]
Wang Z, Zhao M, Yin J, Liu L, Hu L, Huang Y, Liu A, Ouyang J, Min X, Rao S, Zhou W, Wu H, Yoshimura A, Lu Q. E4BP4-mediated inhibition of T follicular helper cell differentiation is compromised in autoimmune diseases. J Clin Invest 2020; 130(7): 3717–3733
CrossRef Pubmed Google scholar
[47]
Liu L, Hu L, Yang L, Jia S, Du P, Min X, Wu J, Wu H, Long H, Lu Q, Zhao M. UHRF1 downregulation promotes T follicular helper cell differentiation by increasing BCL6 expression in SLE. Clin Epigenetics 2021; 13(1): 31
CrossRef Pubmed Google scholar
[48]
Tsai CY, Shen CY, Liu CW, Hsieh SC, Liao HT, Li KJ, Lu CS, Lee HT, Lin CS, Wu CH, Kuo YM, Yu CL. Aberrant non-coding RNA expression in patients with systemic lupus erythematosus: consequences for immune dysfunctions and tissue damage. Biomolecules 2020; 10(12): 1641
CrossRef Pubmed Google scholar
[49]
Gao X, Liu L, Min X, Jia S, Zhao M. Non-coding RNAs in CD4+ T cells: new insights into the pathogenesis of systemic lupus erythematosus. Front Immunol 2020; 11: 568
CrossRef Pubmed Google scholar
[50]
Dai R, Ahmed SA. MicroRNA, a new paradigm for understanding immunoregulation, inflammation, and autoimmune diseases. Transl Res 2011; 157(4): 163–179
CrossRef Pubmed Google scholar
[51]
Ma X, Liu Q. MicroRNAs in the pathogenesis of systemic lupus erythematosus. Int J Rheum Dis 2013; 16(2): 115–121
CrossRef Pubmed Google scholar
[52]
Bartel DP. Metazoan microRNAs. Cell 2018; 173(1): 20–51
CrossRef Pubmed Google scholar
[53]
Wang R, Wei A, Zhang Y, Xu G, Nong X, Liu C, Zeng Y, Huang H, Pang X, Wei W, Wang C, Huang H. Association between genetic variants of microRNA-21 and microRNA-155 and systemic lupus erythematosus: a case-control study from a Chinese population. J Clin Lab Anal 2022; 36(7): e24518
CrossRef Pubmed Google scholar
[54]
Khoshmirsafa M, Kianmehr N, Falak R, Mowla SJ, Seif F, Mirzaei B, Valizadeh M, Shekarabi M. Elevated expression of miR-21 and miR-155 in peripheral blood mononuclear cells as potential biomarkers for lupus nephritis. Int J Rheum Dis 2019; 22(3): 458–467
CrossRef Pubmed Google scholar
[55]
Mohammed SR, Shaker OG, Mohammed AA, Fouad NA, Hussein HA, Ahmed NA, Ahmed OM, Ali DY, Mohamed MM, Ibrahim AA. Impact of miR-155 (rs767649 A>T) and miR-146a (rs57095329 A>G) polymorphisms in system lupus erythematosus susceptibility in an Egyptian cohort. Eur Rev Med Pharmacol Sci 2021; 25(3): 1425–1435
Pubmed
[56]
Pan W, Zhu S, Yuan M, Cui H, Wang L, Luo X, Li J, Zhou H, Tang Y, Shen N. MicroRNA-21 and microRNA-148a contribute to DNA hypomethylation in lupus CD4+ T cells by directly and indirectly targeting DNA methyltransferase 1. J Immunol 2010; 184(12): 6773–6781
CrossRef Pubmed Google scholar
[57]
Singh RP, Hahn BH, Bischoff DS. Identification and contribution of inflammation-induced novel microRNA in the pathogenesis of systemic lupus erythematosus. Front Immunol 2022; 13: 848149
CrossRef Pubmed Google scholar
[58]
Leiss H, Salzberger W, Jacobs B, Gessl I, Kozakowski N, Blüml S, Puchner A, Kiss A, Podesser BK, Smolen JS, Stummvoll GH. MicroRNA 155-deficiency leads to decreased autoantibody levels and reduced severity of nephritis and pneumonitis in pristane-induced lupus. PLoS One 2017; 12(7): e0181015
CrossRef Pubmed Google scholar
[59]
Latini A, Ciccacci C, Benedittis G, Novelli L, Ceccarelli F, Conti F, Novelli G, Perricone C, Borgiani P. Altered expression of miR-142, miR-155, miR-499a and of their putative common target MDM2 in systemic lupus erythematosus. Epigenomics 2021; 13(1): 5–13
CrossRef Pubmed Google scholar
[60]
Qin H, Zhu X, Liang J, Wu J, Yang Y, Wang S, Shi W, Xu J. MicroRNA-29b contributes to DNA hypomethylation of CD4+ T cells in systemic lupus erythematosus by indirectly targeting DNA methyltransferase 1. J Dermatol Sci 2013; 69(1): 61–67
CrossRef Pubmed Google scholar
[61]
Qin HH, Zhu XH, Liang J, Wu JF, Yang YS, Xu JH. The expression and significance of miR-17-92 cluster miRs in CD4+ T cells from patients with systemic lupus erythematosus. Clin Exp Rheumatol 2013; 31(3): 472–473
Pubmed
[62]
Hou G, Harley ITW, Lu X, Zhou T, Xu N, Yao C, Qin Y, Ouyang Y, Ma J, Zhu X, Yu X, Xu H, Dai D, Ding H, Yin Z, Ye Z, Deng J, Zhou M, Tang Y, Namjou B, Guo Y, Weirauch MT, Kottyan LC, Harley JB, Shen N. SLE non-coding genetic risk variant determines the epigenetic dysfunction of an immune cell specific enhancer that controls disease-critical microRNA expression. Nat Commun 2021; 12(1): 135
CrossRef Pubmed Google scholar
[63]
Sarhan RA, Aboelenein HR, Sourour SK, Fawzy IO, Salah S, Abdelaziz AI. Targeting E2F1 and c-Myc expression by microRNA-17-5p represses interferon-stimulated gene MxA in peripheral blood mononuclear cells of pediatric systemic lupus erythematosus patients. Discov Med 2015; 19(107): 419–425
Pubmed
[64]
Huang J, Xu X, Wang X, Yang J, Xue M, Yang Y, Zhang R, Yang X, Yang J. MicroRNA-590-3p inhibits T helper 17 cells and ameliorates inflammation in lupus mice. Immunology 2022; 165(2): 260–273
CrossRef Pubmed Google scholar
[65]
Ding S, Liang Y, Zhao M, Liang G, Long H, Zhao S, Wang Y, Yin H, Zhang P, Zhang Q, Lu Q. Decreased microRNA-142-3p/5p expression causes CD4+ T cell activation and B cell hyperstimulation in systemic lupus erythematosus. Arthritis Rheum 2012; 64(9): 2953–2963
CrossRef Pubmed Google scholar
[66]
Ding S, Zhang Q, Luo S, Gao L, Huang J, Lu J, Chen J, Zeng Q, Guo A, Zeng J, Lu Q. BCL-6 suppresses miR-142-3p/5p expression in SLE CD4+ T cells by modulating histone methylation and acetylation of the miR-142 promoter. Cell Mol Immunol 2020; 17(5): 474–482
CrossRef Pubmed Google scholar
[67]
Zhao J, Sun BK, Erwin JA, Song JJ, Lee JT. Polycomb proteins targeted by a short repeat RNA to the mouse X chromosome. Science 2008; 322(5902): 750–756
CrossRef Pubmed Google scholar
[68]
Syrett CM, Paneru B, Sandoval-Heglund D, Wang J, Banerjee S, Sindhava V, Behrens EM, Atchison M, Anguera MC. Altered X-chromosome inactivation in T cells may promote sex-biased autoimmune diseases. JCI Insight 2019; 4(7): e126751
CrossRef Pubmed Google scholar
[69]
Yu B, Qi Y, Li R, Shi Q, Satpathy AT, Chang HY. B cell-specific XIST complex enforces X-inactivation and restrains atypical B cells. Cell 2021; 184(7): 1790–1803.e17
CrossRef Pubmed Google scholar
[70]
You Y, Zhao X, Wu Y, Mao J, Ge L, Guo J, Zhao C, Chen D, Song Z. Integrated transcriptome profiling revealed that elevated long non-coding RNA-AC007278.2 expression repressed CCR7 transcription in systemic lupus erythematosus. Front Immunol 2021; 12: 615859
CrossRef Pubmed Google scholar
[71]
Egami S, Yamagami J, Amagai M. Autoimmune bullous skin diseases, pemphigus and pemphigoid. J Allergy Clin Immunol 2020; 145(4): 1031–1047
CrossRef Pubmed Google scholar
[72]
Schmidt E, Zillikens D. Pemphigoid diseases. Lancet 2013; 381(9863): 320–332
CrossRef Pubmed Google scholar
[73]
Pollmann R, Schmidt T, Eming R, Hertl M. Pemphigus: a comprehensive review on pathogenesis, clinical presentation and novel therapeutic approaches. Clin Rev Allergy Immunol 2018; 54(1): 1–25
CrossRef Pubmed Google scholar
[74]
Tavakolpour S. Pemphigus trigger factors: special focus on pemphigus vulgaris and pemphigus foliaceus. Arch Dermatol Res 2018; 310(2): 95–106
CrossRef Pubmed Google scholar
[75]
Zhao M, Huang W, Zhang Q, Gao F, Wang L, Zhang G, Su Y, Xiao R, Zhang J, Tang M, Cheng W, Tan Y, Lu Q. Aberrant epigenetic modifications in peripheral blood mononuclear cells from patients with pemphigus vulgaris. Br J Dermatol 2012; 167(3): 523–531
CrossRef Pubmed Google scholar
[76]
Papara C, Zillikens D, Sadik CD, Baican A. MicroRNAs in pemphigus and pemphigoid diseases. Autoimmun Rev 2021; 20(7): 102852
CrossRef Pubmed Google scholar
[77]
Wang M, Liang L, Li L, Han K, Li Q, Peng Y, Peng X, Zeng K. Increased miR-424-5p expression in peripheral blood mononuclear cells from patients with pemphigus. Mol Med Rep 2017; 15(6): 3479–3484
CrossRef Pubmed Google scholar
[78]
Lin N, Liu Q, Wang M, Wang Q, Zeng K. Usefulness of miRNA-338-3p in the diagnosis of pemphigus and its correlation with disease severity. PeerJ 2018; 6: e5388
CrossRef Pubmed Google scholar
[79]
Liu Q, Cui F, Wang M, Xiong H, Peng X, Liang L, Li L, Zhang J, Peng X, Zeng K. Increased expression of microRNA-338-3p contributes to production of Dsg3 antibody in pemphigus vulgaris patients. Mol Med Rep 2018; 18(1): 550–556
CrossRef Pubmed Google scholar
[80]
Cipolla GA, Park JK, de Oliveira LA, Lobo-Alves SC, de Almeida RC, Farias TD, Lemos DS, Malheiros D, Lavker RM, Petzl-Erler MLA. A 3'UTR polymorphism marks differential KLRG1 mRNA levels through disruption of a miR-584-5p binding site and associates with pemphigus foliaceus susceptibility. Biochim Biophys Acta 2016; 1859(10): 1306–1313
CrossRef Pubmed Google scholar
[81]
Daniel BS, Murrell DF. Review of autoimmune blistering diseases: the pemphigoid diseases. J Eur Acad Dermatol Venereol 2019; 33(9): 1685–1694
CrossRef Pubmed Google scholar
[82]
Qiu L, Zhang L, Qi R, Gao X, Chen H, Xiao T. miR-1291 functions as a potential serum biomarker for bullous pemphigoid. Dis Markers 2020; 2020: 9505312
CrossRef Pubmed Google scholar
[83]
Deng Y, Chang C, Lu Q. The inflammatory response in psoriasis: a comprehensive review. Clin Rev Allergy Immunol 2016; 50(3): 377–389
CrossRef Pubmed Google scholar
[84]
Dopytalska K, Ciechanowicz P, Wiszniewski K, Szymańska E, Walecka I. The role of epigenetic factors in psoriasis. Int J Mol Sci 2021; 22(17): 9294
CrossRef Pubmed Google scholar
[85]
Shao S, Gudjonsson JE. Epigenetics of psoriasis. Adv Exp Med Biol 2020; 1253: 209–221
CrossRef Pubmed Google scholar
[86]
Zhang P, Su Y, Chen H, Zhao M, Lu Q. Abnormal DNA methylation in skin lesions and PBMCs of patients with psoriasis vulgaris. J Dermatol Sci 2010; 60(1): 40–42
CrossRef Pubmed Google scholar
[87]
Zhang P, Zhao M, Liang G, Yin G, Huang D, Su F, Zhai H, Wang L, Su Y, Lu Q. Whole-genome DNA methylation in skin lesions from patients with psoriasis vulgaris. J Autoimmun 2013; 41: 17–24
CrossRef Pubmed Google scholar
[88]
Roberson ED, Liu Y, Ryan C, Joyce CE, Duan S, Cao L, Martin A, Liao W, Menter A, Bowcock AM. A subset of methylated CpG sites differentiate psoriatic from normal skin. J Invest Dermatol 2012; 132(3): 583–592
CrossRef Pubmed Google scholar
[89]
Verma D, Ekman AK, Bivik Eding C, Enerbäck C. Genome-wide DNA methylation profiling identifies differential methylation in uninvolved psoriatic epidermis. J Invest Dermatol 2018; 138(5): 1088–1093
CrossRef Pubmed Google scholar
[90]
Chen M, Chen ZQ, Cui PG, Yao X, Li YM, Li AS, Gong JQ, Cao YH. The methylation pattern of p16INK4a gene promoter in psoriatic epidermis and its clinical significance. Br J Dermatol 2008; 158(5): 987–993
CrossRef Pubmed Google scholar
[91]
Bai J, Liu Z, Xu Z, Ke F, Zhang L, Zhu H, Lou F, Wang H, Fei Y, Shi YL, Wang H. Epigenetic downregulation of SFRP4 contributes to epidermal hyperplasia in psoriasis. J Immunol 2015; 194(9): 4185–4198
CrossRef Pubmed Google scholar
[92]
Zhang K, Zhang R, Li X, Yin G, Niu X. Promoter methylation status of p15 and p21 genes in HPP-CFCs of bone marrow of patients with psoriasis. Eur J Dermatol 2009; 19(2): 141–146
CrossRef Pubmed Google scholar
[93]
Yooyongsatit S, Ruchusatsawat K, Noppakun N, Hirankarn N, Mutirangura A, Wongpiyabovorn J. Patterns and functional roles of LINE-1 and Alu methylation in the keratinocyte from patients with psoriasis vulgaris. J Hum Genet 2015; 60(7): 349–355
CrossRef Pubmed Google scholar
[94]
Zhou F, Wang W, Shen C, Li H, Zuo X, Zheng X, Yue M, Zhang C, Yu L, Chen M, Zhu C, Yin X, Tang M, Li Y, Chen G, Wang Z, Liu S, Zhou Y, Zhang F, Zhang W, Li C, Yang S, Sun L, Zhang X. Epigenome-wide association analysis identified nine skin DNA methylation loci for psoriasis. J Invest Dermatol 2016; 136(4): 779–787
CrossRef Pubmed Google scholar
[95]
Zhou F, Shen C, Hsu YH, Gao J, Dou J, Ko R, Zheng X, Sun L, Cui Y, Zhang X. DNA methylation-based subclassification of psoriasis in the Chinese Han population. Front Med 2018; 12(6): 717–725
CrossRef Pubmed Google scholar
[96]
Chandra A, Senapati S, Roy S, Chatterjee G, Chatterjee R. Epigenome-wide DNA methylation regulates cardinal pathological features of psoriasis. Clin Epigenetics 2018; 10(1): 108
CrossRef Pubmed Google scholar
[97]
Henri P, Prevel C, Pellerano M, Lacotte J, Stoebner PE, Morris MC, Meunier L. Psoriatic epidermis is associated with upregulation of CDK2 and inhibition of CDK4 activity. Br J Dermatol 2020; 182(3): 678–689
CrossRef Pubmed Google scholar
[98]
Ling S, Xu B, Luo Y, Fang X, Liu X, Wang A, Zhou Y, Zhang S, Zong W, Li W, Yao X. Transglutaminase 3 attenuates skin inflammation in psoriasis by inhibiting NF-κB activation through phosphorylated STAT3–TET3 signaling. J Invest Dermatol 2022; 142(11): 2968–2977.e10
CrossRef Google scholar
[99]
Rando OJ. Combinatorial complexity in chromatin structure and function: revisiting the histone code. Curr Opin Genet Dev 2012; 22(2): 148–155
CrossRef Pubmed Google scholar
[100]
Zhang P, Su Y, Zhao M, Huang W, Lu Q. Abnormal histone modifications in PBMCs from patients with psoriasis vulgaris. Eur J Dermatol 2011; 21(4): 552–557
CrossRef Pubmed Google scholar
[101]
Ovejero-Benito MC, Reolid A, Sánchez-Jiménez P, Saiz-Rodríguez M, Muñoz-Aceituno E, Llamas-Velasco M, Martín-Vilchez S, Cabaleiro T, Román M, Ochoa D, Daudén E, Abad-Santos F. Histone modifications associated with biological drug response in moderate-to-severe psoriasis. Exp Dermatol 2018; 27(12): 1361–1371
CrossRef Pubmed Google scholar
[102]
Clop A, Bertoni A, Spain SL, Simpson MA, Pullabhatla V, Tonda R, Hundhausen C, Di Meglio P, De Jong P, Hayday AC, Nestle FO, Barker JN, Bell RJ, Capon F, Trembath RC. An in-depth characterization of the major psoriasis susceptibility locus identifies candidate susceptibility alleles within an HLA-C enhancer element. PLoS One 2013; 8(8): e71690
CrossRef Pubmed Google scholar
[103]
Tovar-Castillo LE, Cancino-Díaz JC, García-Vázquez F, Cancino-Gómez FG, León-Dorantes G, Blancas-González F, Jiménez-Zamudio L, García-Latorre E, Cancino-Díaz ME. Under-expression of VHL and over-expression of HDAC-1, HIF-1α, LL-37, and IAP-2 in affected skin biopsies of patients with psoriasis. Int J Dermatol 2007; 46(3): 239–246
CrossRef Pubmed Google scholar
[104]
Blander G, Bhimavarapu A, Mammone T, Maes D, Elliston K, Reich C, Matsui MS, Guarente L, Loureiro JJ. SIRT1 promotes differentiation of normal human keratinocytes. J Invest Dermatol 2009; 129(1): 41–49
CrossRef Pubmed Google scholar
[105]
Lowes MA, Bowcock AM, Krueger JG. Pathogenesis and therapy of psoriasis. Nature 2007; 445(7130): 866–873
CrossRef Pubmed Google scholar
[106]
Becher B, Pantelyushin S. Hiding under the skin: interleukin-17-producing γδ T cells go under the skin?. Nat Med 2012; 18(12): 1748–1750
CrossRef Pubmed Google scholar
[107]
Xia X, Cao G, Sun G, Zhu L, Tian Y, Song Y, Guo C, Wang X, Zhong J, Zhou W, Li P, Zhang H, Hao J, Li Z, Deng L, Yin Z, Gao Y. GLS1-mediated glutaminolysis unbridled by MALT1 protease promotes psoriasis pathogenesis. J Clin Invest 2020; 130(10): 5180–5196
CrossRef Pubmed Google scholar
[108]
Zhang T, Yang L, Ke Y, Lei J, Shen S, Shao S, Zhang C, Zhu Z, Dang E, Wang G. EZH2-dependent epigenetic modulation of histone H3 lysine-27 contributes to psoriasis by promoting keratinocyte proliferation. Cell Death Dis 2020; 11(10): 826
CrossRef Pubmed Google scholar
[109]
Sonkoly E, Bata-Csorgo Z, Pivarcsi A, Polyanka H, Kenderessy-Szabo A, Molnar G, Szentpali K, Bari L, Megyeri K, Mandi Y, Dobozy A, Kemeny L, Szell M. Identification and characterization of a novel, psoriasis susceptibility-related noncoding RNA gene, PRINS. J Biol Chem 2005; 280(25): 24159–24167
CrossRef Pubmed Google scholar
[110]
Hawkes JE, Nguyen GH, Fujita M, Florell SR, Callis Duffin K, Krueger GG, O’Connell RM. MicroRNAs in psoriasis. J Invest Dermatol 2016; 136(2): 365–371
CrossRef Pubmed Google scholar
[111]
Wu R, Zeng J, Yuan J, Deng X, Huang Y, Chen L, Zhang P, Feng H, Liu Z, Wang Z, Gao X, Wu H, Wang H, Su Y, Zhao M, Lu Q. MicroRNA-210 overexpression promotes psoriasis-like inflammation by inducing Th1 and Th17 cell differentiation. J Clin Invest 2018; 128(6): 2551–2568
CrossRef Pubmed Google scholar
[112]
Feng H, Wu R, Zhang S, Kong Y, Liu Z, Wu H, Wang H, Su Y, Zhao M, Lu Q. Topical administration of nanocarrier miRNA-210 antisense ameliorates imiquimod-induced psoriasis-like dermatitis in mice. J Dermatol 2020; 47(2): 147–154
CrossRef Pubmed Google scholar
[113]
Bian J, Liu R, Fan T, Liao L, Wang S, Geng W, Wang T, Shi W, Ruan Q. miR-340 alleviates psoriasis in mice through direct targeting of IL-17A. J Immunol 2018; 201(5): 1412–1420
CrossRef Pubmed Google scholar
[114]
Jiang M, Fang H, Dang E, Zhang J, Qiao P, Yu C, Yang A, Wang G. Small extracellular vesicles containing miR-381-3p from keratinocytes promote T helper type 1 and T helper type 17 polarization in psoriasis. J Invest Dermatol 2021; 141(3): 563–574
CrossRef Pubmed Google scholar
[115]
Sonkoly E, Wei T, Janson PC, Sääf A, Lundeberg L, Tengvall-Linder M, Norstedt G, Alenius H, Homey B, Scheynius A, Ståhle M, Pivarcsi A. MicroRNAs: novel regulators involved in the pathogenesis of psoriasis?. PLoS One 2007; 2(7): e610
CrossRef Pubmed Google scholar
[116]
Sonkoly E, Wei T, Pavez Loriè E, Suzuki H, Kato M, Törmä H, Ståhle M, Pivarcsi A. Protein kinase C-dependent upregulation of miR-203 induces the differentiation of human keratinocytes. J Invest Dermatol 2010; 130(1): 124–134
CrossRef Pubmed Google scholar
[117]
Leal B, Carvalho C, Ferreira AM, Nogueira M, Brás S, Silva BM, Selores M, Costa PP, Torres T. Serum levels of miR-146a in patients with psoriasis. Mol Diagn Ther 2021; 25(4): 475–485
CrossRef Pubmed Google scholar
[118]
Srivastava A, Nikamo P, Lohcharoenkal W, Li D, Meisgen F, Xu Landén N, Ståhle M, Pivarcsi A, Sonkoly E. MicroRNA-146a suppresses IL-17-mediated skin inflammation and is genetically associated with psoriasis. J Allergy Clin Immunol 2017; 139(2): 550–561
CrossRef Pubmed Google scholar
[119]
Hermann H, Runnel T, Aab A, Baurecht H, Rodriguez E, Magilnick N, Urgard E, Šahmatova L, Prans E, Maslovskaja J, Abram K, Karelson M, Kaldvee B, Reemann P, Haljasorg U, Rückert B, Wawrzyniak P, Weichenthal M, Mrowietz U, Franke A, Gieger C, Barker J, Trembath R, Tsoi LC, Elder JT, Tkaczyk ER, Kisand K, Peterson P, Kingo K, Boldin M, Weidinger S, Akdis CA, Rebane A. miR-146b probably assists miRNA-146a in the suppression of keratinocyte proliferation and inflammatory responses in psoriasis. J Invest Dermatol 2017; 137(9): 1945–1954
CrossRef Pubmed Google scholar
[120]
Vaher H, Kivihall A, Runnel T, Raam L, Prans E, Maslovskaja J, Abram K, Kaldvee B, Mrowietz U, Weidinger S, Kingo K, Rebane A. SERPINB2 and miR-146a/b are coordinately regulated and act in the suppression of psoriasis-associated inflammatory responses in keratinocytes. Exp Dermatol 2020; 29(1): 51–60
CrossRef Pubmed Google scholar
[121]
Wang Q, Chang W, Yang X, Cheng Y, Zhao X, Zhou L, Li J, Li J, Zhang K. Levels of miR-31 and its target genes in dermal mesenchymal cells of patients with psoriasis. Int J Dermatol 2019; 58(2): 198–204
CrossRef Pubmed Google scholar
[122]
Yan S, Xu Z, Lou F, Zhang L, Ke F, Bai J, Liu Z, Liu J, Wang H, Zhu H, Sun Y, Cai W, Gao Y, Su B, Li Q, Yang X, Yu J, Lai Y, Yu XZ, Zheng Y, Shen N, Chin YE, Wang H. NF-κB-induced microRNA-31 promotes epidermal hyperplasia by repressing protein phosphatase 6 in psoriasis. Nat Commun 2015; 6(1): 7652
CrossRef Pubmed Google scholar
[123]
Meisgen F, Xu N, Wei T, Janson PC, Obad S, Broom O, Nagy N, Kauppinen S, Kemény L, Ståhle M, Pivarcsi A, Sonkoly E. miR-21 is up-regulated in psoriasis and suppresses T cell apoptosis. Exp Dermatol 2012; 21(4): 312–314
CrossRef Pubmed Google scholar
[124]
Abdallah F, Henriet E, Suet A, Arar A, Clemençon R, Malinge JM, Lecellier G, Baril P, Pichon C. miR-21-3p/IL-22 axes are major drivers of psoriasis pathogenesis by modulating keratinocytes proliferation-survival balance and inflammatory response. Cells 2021; 10(10): 2547
CrossRef Pubmed Google scholar
[125]
Løvendorf MB, Zibert JR, Gyldenløve M, Røpke MA, Skov L. MicroRNA-223 and miR-143 are important systemic biomarkers for disease activity in psoriasis. J Dermatol Sci 2014; 75(2): 133–139
CrossRef Pubmed Google scholar
[126]
Rida MA, Chandran V. Challenges in the clinical diagnosis of psoriatic arthritis. Clin Immunol 2020; 214: 108390
CrossRef Pubmed Google scholar
[127]
Seifeldin NS, El Sayed SB, Asaad MK. Increased microRNA-1266 levels as a biomarker for disease activity in psoriasis vulgaris. Int J Dermatol 2016; 55(11): 1242–1247
CrossRef Pubmed Google scholar
[128]
Sonkoly E. The expanding microRNA world in psoriasis. Exp Dermatol 2017; 26(4): 375–376
CrossRef Pubmed Google scholar
[129]
Meng Z, Qiu J, Zhang H. miR-221-3p as a potential biomarker for patients with psoriasis and its role in inflammatory responses in keratinocytes. Skin Pharmacol Physiol 2021; 34(5): 300–306
CrossRef Pubmed Google scholar
[130]
Huang C, Zhong W, Ren X, Huang X, Li Z, Chen C, Jiang B, Chen Z, Jian X, Yang L, Liu X, Huang H, Shen C, Chen X, Dou X, Yu B. miR-193b-3p-ERBB4 axis regulates psoriasis pathogenesis via modulating cellular proliferation and inflammatory-mediator production of keratinocytes. Cell Death Dis 2021; 12(11): 963
CrossRef Pubmed Google scholar
[131]
Denton CP, Khanna D. Systemic sclerosis. Lancet 2017; 390(10103): 1685–1699
CrossRef Pubmed Google scholar
[132]
Tsou PS, Varga J, O’Reilly S. Advances in epigenetics in systemic sclerosis: molecular mechanisms and therapeutic potential. Nat Rev Rheumatol 2021; 17(10): 596–607
CrossRef Pubmed Google scholar
[133]
Lei W, Luo Y, Lei W, Luo Y, Yan K, Zhao S, Li Y, Qiu X, Zhou Y, Long H, Zhao M, Liang Y, Su Y, Lu Q. Abnormal DNA methylation in CD4+ T cells from patients with systemic lupus erythematosus, systemic sclerosis, and dermatomyositis. Scand J Rheumatol 2009; 38(5): 369–374
CrossRef Pubmed Google scholar
[134]
Jiang H, Xiao R, Lian X, Kanekura T, Luo Y, Yin Y, Zhang G, Yang Y, Wang Y, Zhao M, Lu Q. Demethylation of TNFSF7 contributes to CD70 overexpression in CD4+ T cells from patients with systemic sclerosis. Clin Immunol 2012; 143(1): 39–44
CrossRef Pubmed Google scholar
[135]
Wang Y, Shu Y, Xiao Y, Wang Q, Kanekura T, Li Y, Wang J, Zhao M, Lu Q, Xiao R. Hypomethylation and overexpression of ITGAL (CD11a) in CD4+ T cells in systemic sclerosis. Clin Epigenetics 2014; 6(1): 25
CrossRef Pubmed Google scholar
[136]
Christmann RB, Hayes E, Pendergrass S, Padilla C, Farina G, Affandi AJ, Whitfield ML, Farber HW, Lafyatis R. Interferon and alternative activation of monocyte/macrophages in systemic sclerosis-associated pulmonary arterial hypertension. Arthritis Rheum 2011; 63(6): 1718–1728
CrossRef Pubmed Google scholar
[137]
Li T, Ortiz-Fernández L, Andrés-León E, Ciudad L, Javierre BM, López-Isac E, Guillén-Del-Castillo A, Simeón-Aznar CP, Ballestar E, Martin J. Epigenomics and transcriptomics of systemic sclerosis CD4+ T cells reveal long-range dysregulation of key inflammatory pathways mediated by disease-associated susceptibility loci. Genome Med 2020; 12(1): 81
CrossRef Pubmed Google scholar
[138]
Ding W, Pu W, Wang L, Jiang S, Zhou X, Tu W, Yu L, Zhang J, Guo S, Liu Q, Ma Y, Chen S, Wu W, Reveille J, Zou H, Jin L, Wang J. Genome-wide DNA methylation analysis in systemic sclerosis reveals hypomethylation of IFN-associated genes in CD4+ and CD8+ T cells. J Invest Dermatol 2018; 138(5): 1069–1077
CrossRef Pubmed Google scholar
[139]
Wang Y, Kahaleh B. Epigenetic repression of bone morphogenetic protein receptor II expression in scleroderma. J Cell Mol Med 2013; 17(10): 1291–1299
CrossRef Pubmed Google scholar
[140]
Henderson J, Brown M, Horsburgh S, Duffy L, Wilkinson S, Worrell J, Stratton R, O’Reilly S. Methyl cap binding protein 2: a key epigenetic protein in systemic sclerosis. Rheumatology (Oxford) 2019; 58(3): 527–535
CrossRef Pubmed Google scholar
[141]
Dees C, Pötter S, Zhang Y, Bergmann C, Zhou X, Luber M, Wohlfahrt T, Karouzakis E, Ramming A, Gelse K, Yoshimura A, Jaenisch R, Distler O, Schett G, Distler JH. TGF-β-induced epigenetic deregulation of SOCS3 facilitates STAT3 signaling to promote fibrosis. J Clin Invest 2020; 130(5): 2347–2363
CrossRef Pubmed Google scholar
[142]
Ernst J, Kheradpour P, Mikkelsen TS, Shoresh N, Ward LD, Epstein CB, Zhang X, Wang L, Issner R, Coyne M, Ku M, Durham T, Kellis M, Bernstein BE. Mapping and analysis of chromatin state dynamics in nine human cell types. Nature 2011; 473(7345): 43–49
CrossRef Pubmed Google scholar
[143]
van der Kroef M, Castellucci M, Mokry M, Cossu M, Garonzi M, Bossini-Castillo LM, Chouri E, Wichers CGK, Beretta L, Trombetta E, Silva-Cardoso S, Vazirpanah N, Carvalheiro T, Angiolilli C, Bekker CPJ, Affandi AJ, Reedquist KA, Bonte-Mineur F, Zirkzee EJM, Bazzoni F, Radstake TRDJ, Rossato M. Histone modifications underlie monocyte dysregulation in patients with systemic sclerosis, underlining the treatment potential of epigenetic targeting. Ann Rheum Dis 2019; 78(4): 529–538
CrossRef Pubmed Google scholar
[144]
Ciechomska M, O’Reilly S, Przyborski S, Oakley F, Bogunia-Kubik K, van Laar JM. Histone demethylation and Toll-like receptor 8-dependent cross-talk in monocytes promotes transdifferentiation of fibroblasts in systemic sclerosis via Fra-2. Arthritis Rheumatol 2016; 68(6): 1493–1504
CrossRef Pubmed Google scholar
[145]
Tsou PS, Wren JD, Amin MA, Schiopu E, Fox DA, Khanna D, Sawalha AH. Histone deacetylase 5 is overexpressed in scleroderma endothelial cells and impairs angiogenesis via repression of proangiogenic factors. Arthritis Rheumatol 2016; 68(12): 2975–2985
CrossRef Pubmed Google scholar
[146]
Tsou PS, Campbell P, Amin MA, Coit P, Miller S, Fox DA, Khanna D, Sawalha AH. Inhibition of EZH2 prevents fibrosis and restores normal angiogenesis in scleroderma. Proc Natl Acad Sci USA 2019; 116(9): 3695–3702
CrossRef Pubmed Google scholar
[147]
Wasson CW, Abignano G, Hermes H, Malaab M, Ross RL, Jimenez SA, Chang HY, Feghali-Bostwick CA, Del Galdo F. Long non-coding RNA HOTAIR drives EZH2-dependent myofibroblast activation in systemic sclerosis through miRNA 34a-dependent activation of NOTCH. Ann Rheum Dis 2020; 79(4): 507–517
CrossRef Pubmed Google scholar
[148]
Ciechomska M, Wojtas B, Swacha M, Olesinska M, Benes V, Maslinski W. Global miRNA and mRNA expression profiles identify miRNA-26a-2-3p-dependent repression of IFN signature in systemic sclerosis human monocytes. Eur J Immunol 2020; 50(7): 1057–1066
CrossRef Pubmed Google scholar
[149]
Rossato M, Affandi AJ, Thordardottir S, Wichers CGK, Cossu M, Broen JCA, Moret FM, Bossini-Castillo L, Chouri E, van Bon L, Wolters F, Marut W, van der Kroef M, Silva-Cardoso S, Bekker CPJ, Dolstra H, van Laar JM, Martin J, van Roon JAG, Reedquist KA, Beretta L, Radstake TRDJ. Association of microRNA-618 expression with altered frequency and activation of plasmacytoid dendritic cells in patients with systemic sclerosis. Arthritis Rheumatol 2017; 69(9): 1891–1902
CrossRef Pubmed Google scholar
[150]
Chouri E, Wang M, Hillen MR, Angiolilli C, Silva-Cardoso SC, Wichers CGK, van der Kroef M, Bekker CPJ, Cossu M, van Bon L, Affandi AJ, Carvalheiro T, Pandit A, van Roon JAG, Beretta L, Burgering BMT, Radstake TRDJ, Rossato M. Implication of miR-126 and miR-139-5p in plasmacytoid dendritic cell dysregulation in systemic sclerosis. J Clin Med 2021; 10(3): 491
CrossRef Pubmed Google scholar
[151]
Henderson J, Wilkinson S, Przyborski S, Stratton R, O’Reilly S. MicroRNA27a-3p mediates reduction of the Wnt antagonist sFRP-1 in systemic sclerosis. Epigenetics 2021; 16(7): 808–817
CrossRef Pubmed Google scholar
[152]
Yaseen B, Lopez H, Taki Z, Zafar S, Rosario H, Abdi BA, Vigneswaran S, Xing F, Arumalla N, Black S, Ahmad S, Kumar K, Gul R, Scolamiero L, Morris S, Bowman A, Stainer A, Rice A, Stock C, Renzoni E, Denton CP, Venturini C, Brown M, O’Reilly S, Stratton R. Interleukin-31 promotes pathogenic mechanisms underlying skin and lung fibrosis in scleroderma. Rheumatology (Oxford) 2020; 59(9): 2625–2636
CrossRef Pubmed Google scholar
[153]
Yao Q, Xing Y, Wang Z, Liang J, Lin Q, Huang M, Chen Y, Lin B, Xu X, Chen W. miR-16-5p suppresses myofibroblast activation in systemic sclerosis by inhibiting NOTCH signaling. Aging (Albany NY) 2020; 13(2): 2640–2654
CrossRef Pubmed Google scholar
[154]
Latini A, Ciccacci C, Benedittis G, Novelli L, Ceccarelli F, Conti F, Novelli G, Perricone C, Borgiani P. Altered expression of miR-142, miR-155, miR-499a and of their putative common target MDM2 in systemic lupus erythematosus. Epigenomics 2021; 13(1): 5–13
CrossRef Pubmed Google scholar
[155]
Mariotti B, Servaas NH, Rossato M, Tamassia N, Cassatella MA, Cossu M, Beretta L, van der Kroef M, Radstake TRDJ, Bazzoni F. The long non-coding RNA NRIR drives IFN-response in monocytes: implication for systemic sclerosis. Front Immunol 2019; 10: 100
CrossRef Pubmed Google scholar
[156]
Pachera E, Assassi S, Salazar GA, Stellato M, Renoux F, Wunderlin A, Blyszczuk P, Lafyatis R, Kurreeman F, de Vries-Bouwstra J, Messemaker T, Feghali-Bostwick CA, Rogler G, van Haaften WT, Dijkstra G, Oakley F, Calcagni M, Schniering J, Maurer B, Distler JH, Kania G, Frank-Bertoncelj M, Distler O. Long noncoding RNA H19X is a key mediator of TGF-β-driven fibrosis. J Clin Invest 2020; 130(9): 4888–4905
CrossRef Pubmed Google scholar
[157]
Wu H, Zeng J, Yin J, Peng Q, Zhao M, Lu Q. Organ-specific biomarkers in lupus. Autoimmun Rev 2017; 16(4): 391–397
CrossRef Pubmed Google scholar
[158]
Horwitz DA. Regulatory T cells in systemic lupus erythematosus: past, present and future. Arthritis Res Ther 2008; 10(6): 227
CrossRef Pubmed Google scholar
[159]
Fan Y, Ji Y, Wang X, Hu J, Zhang Q, Xu J, Liu W, Wang A. Relationship of miRNA-146a to systemic lupus erythematosus: a PRISMA-compliant meta-analysis. Medicine (Baltimore) 2020; 99(40): e22444
CrossRef Pubmed Google scholar

Acknowledgements

This study was supported by CAMS Innovation Fund for Medical Sciences (CIFMS) (No. 2021-I2M-1-059), the Non-profit Central Research Institute Fund of Chinese Academy of Medical Sciences (No. 2020-RC320-003), the National Natural Science Foundation of China (No. 81830097) and Special Program of National Natural Science Foundation of China (No. 32141004).

Compliance with ethics guidelines

Lingyu Gao and Qianjin Lu declared no potential conflicts of interest for the research, authorship, and/or publication of this article. This manuscript is a review article and does not involve a research protocol requiring approval by the relevant institutional review board or ethics committee.

RIGHTS & PERMISSIONS

2023 Higher Education Press
AI Summary AI Mindmap
PDF(1203 KB)

Accesses

Citations

Detail

Sections
Recommended

/