The critical importance of epigenetics in autoimmune-related skin diseases

Lingyu Gao , Qianjin Lu

Front. Med. ›› 2023, Vol. 17 ›› Issue (1) : 43 -57.

PDF (1203KB)
Front. Med. ›› 2023, Vol. 17 ›› Issue (1) : 43 -57. DOI: 10.1007/s11684-022-0980-8
REVIEW
REVIEW

The critical importance of epigenetics in autoimmune-related skin diseases

Author information +
History +
PDF (1203KB)

Abstract

Autoimmune-related skin diseases are a group of disorders with diverse etiology and pathophysiology involved in autoimmunity. Genetics and environmental factors may contribute to the development of these autoimmune disorders. Although the etiology and pathogenesis of these disorders are poorly understood, environmental variables that induce aberrant epigenetic regulations may provide some insights. Epigenetics is the study of heritable mechanisms that regulate gene expression without changing DNA sequences. The most important epigenetic mechanisms are DNA methylation, histone modification, and noncoding RNAs. In this review, we discuss the most recent findings regarding the function of epigenetic mechanisms in autoimmune-related skin disorders, including systemic lupus erythematosus, bullous skin diseases, psoriasis, and systemic sclerosis. These findings will expand our understanding and highlight the possible clinical applications of precision epigenetics approaches.

Keywords

epigenetics / autoimmune-related skin diseases / DNA methylation / histone modifications / noncoding RNAs

Cite this article

Download citation ▾
Lingyu Gao, Qianjin Lu. The critical importance of epigenetics in autoimmune-related skin diseases. Front. Med., 2023, 17(1): 43-57 DOI:10.1007/s11684-022-0980-8

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Zhang L, Lu Q, Chang C. Epigenetics in health and disease. Adv Exp Med Biol 2020; 1253: 3–55

[2]

Lander ES. Initial impact of the sequencing of the human genome. Nature 2011; 470(7333): 187–197

[3]

Bird A. Perceptions of epigenetics. Nature 2007; 447(7143): 396–398

[4]

Lu Q. The critical importance of epigenetics in autoimmunity. J Autoimmun 2013; 41: 1–5

[5]

Wu H, Chang C, Lu Q. The epigenetics of lupus erythematosus. Adv Exp Med Biol 2020; 1253: 185–207

[6]

Lu Q, Wu R, Zhao M, Garcia-Gomez A, Ballestar E. miRNAs as therapeutic targets in inflammatory disease. Trends Pharmacol Sci 2019; 40(11): 853–865

[7]

Dolcino M, Friso S, Selmi C, Lunardi C. Editorial: Role of epigenetics in autoimmune diseases. Front Immunol 2020; 11: 1284

[8]

Selmi C, Lu Q, Humble MC. Heritability versus the role of the environment in autoimmunity. J Autoimmun 2012; 39(4): 249–252

[9]

Meda F, Folci M, Baccarelli A, Selmi C. The epigenetics of autoimmunity. Cell Mol Immunol 2011; 8(3): 226–236

[10]

Hedrich CM, Mäbert K, Rauen T, Tsokos GC. DNA methylation in systemic lupus erythematosus. Epigenomics 2017; 9(4): 505–525

[11]

Kaul A, Gordon C, Crow MK, Touma Z, Urowitz MB, van Vollenhoven R, Ruiz-Irastorza G, Hughes G. Systemic lupus erythematosus. Nat Rev Dis Primers 2016; 2(1): 16039

[12]

Ha E, Bae SC, Kim K. Recent advances in understanding the genetic basis of systemic lupus erythematosus. Semin Immunopathol 2022; 44(1): 29–46

[13]

Xiang Z, Yang Y, Chang C, Lu Q. The epigenetic mechanism for discordance of autoimmunity in monozygotic twins. J Autoimmun 2017; 83: 43–50

[14]

Deng Q, Luo Y, Chang C, Wu H, Ding Y, Xiao R. The emerging epigenetic role of CD8+ T cells in autoimmune diseases: a systematic review. Front Immunol 2019; 10: 856

[15]

Richardson B, Scheinbart L, Strahler J, Gross L, Hanash S, Johnson M. Evidence for impaired T cell DNA methylation in systemic lupus erythematosus and rheumatoid arthritis. Arthritis Rheum 1990; 33(11): 1665–1673

[16]

Lu Q, Kaplan M, Ray D, Ray D, Zacharek S, Gutsch D, Richardson B. Demethylation of ITGAL (CD11a) regulatory sequences in systemic lupus erythematosus. Arthritis Rheum 2002; 46(5): 1282–1291

[17]

Lu Q, Wu A, Ray D, Deng C, Attwood J, Hanash S, Pipkin M, Lichtenheld M, Richardson B. DNA methylation and chromatin structure regulate T cell perforin gene expression. J Immunol 2003; 170(10): 5124–5132

[18]

Lu Q, Wu A, Richardson BC. Demethylation of the same promoter sequence increases CD70 expression in lupus T cells and T cells treated with lupus-inducing drugs. J Immunol 2005; 174(10): 6212–6219

[19]

Lu Q, Wu A, Tesmer L, Ray D, Yousif N, Richardson B. Demethylation of CD40LG on the inactive X in T cells from women with lupus. J Immunol 2007; 179(9): 6352–6358

[20]

Zhao M, Sun Y, Gao F, Wu X, Tang J, Yin H, Luo Y, Richardson B, Lu Q. Epigenetics and SLE: RFX1 downregulation causes CD11a and CD70 overexpression by altering epigenetic modifications in lupus CD4+ T cells. J Autoimmun 2010; 35(1): 58–69

[21]

Liao W, Li M, Wu H, Jia S, Zhang N, Dai Y, Zhao M, Lu Q. Down-regulation of MBD4 contributes to hypomethylation and overexpression of CD70 in CD4+ T cells in systemic lupus erythematosus. Clin Epigenetics 2017; 9(1): 104

[22]

Li Y, Zhao M, Yin H, Gao F, Wu X, Luo Y, Zhao S, Zhang X, Su Y, Hu N, Long H, Richardson B, Lu Q. Overexpression of the growth arrest and DNA damage-induced 45α gene contributes to autoimmunity by promoting DNA demethylation in lupus T cells. Arthritis Rheum 2010; 62(5): 1438–1447

[23]

Zhang P, Lu Q. Genetic and epigenetic influences on the loss of tolerance in autoimmunity. Cell Mol Immunol 2018; 15(6): 575–585

[24]

Zhao M, Wang J, Liao W, Li D, Li M, Wu H, Zhang Y, Gershwin ME, Lu Q. Increased 5-hydroxymethylcytosine in CD4+ T cells in systemic lupus erythematosus. J Autoimmun 2016; 69: 64–73

[25]

Coit P, Jeffries M, Altorok N, Dozmorov MG, Koelsch KA, Wren JD, Merrill JT, McCune WJ, Sawalha AH. Genome-wide DNA methylation study suggests epigenetic accessibility and transcriptional poising of interferon-regulated genes in naïve CD4+ T cells from lupus patients. J Autoimmun 2013; 43: 78–84

[26]

Coit P, Yalavarthi S, Ognenovski M, Zhao W, Hasni S, Wren JD, Kaplan MJ, Sawalha AH. Epigenome profiling reveals significant DNA demethylation of interferon signature genes in lupus neutrophils. J Autoimmun 2015; 58: 59–66

[27]

Absher DM, Li X, Waite LL, Gibson A, Roberts K, Edberg J, Chatham WW, Kimberly RP. Genome-wide DNA methylation analysis of systemic lupus erythematosus reveals persistent hypomethylation of interferon genes and compositional changes to CD4+ T-cell populations. PLoS Genet 2013; 9(8): e1003678

[28]

Crow MK, Olferiev M, Kirou KA. Type I interferons in autoimmune disease. Annu Rev Pathol 2019; 14(1): 369–393

[29]

Zhao M, Zhou Y, Zhu B, Wan M, Jiang T, Tan Q, Liu Y, Jiang J, Luo S, Tan Y, Wu H, Renauer P, Del Mar Ayala Gutiérrez M, Castillo Palma MJ, Ortega Castro R, Fernández-Roldán C, Raya E, Faria R, Carvalho C, Alarcón-Riquelme ME, Xiang Z, Chen J, Li F, Ling G, Zhao H, Liao X, Lin Y, Sawalha AH, Lu Q. IFI44L promoter methylation as a blood biomarker for systemic lupus erythematosus. Ann Rheum Dis 2016; 75(11): 1998–2006

[30]

Liu X, Lu H, Chen T, Nallaparaju KC, Yan X, Tanaka S, Ichiyama K, Zhang X, Zhang L, Wen X, Tian Q, Bian XW, Jin W, Wei L, Dong C. Genome-wide analysis identifies Bcl6-controlled regulatory networks during T follicular helper cell differentiation. Cell Rep 2016; 14(7): 1735–1747

[31]

Huang X, Wu H, Qiu H, Yang H, Deng Y, Zhao M, Luo H, Zhou X, Xie Y, Chan V, Lau CS, Lu Q. The expression of Bcl-6 in circulating follicular helper-like T cells positively correlates with the disease activity in systemic lupus erythematosus. Clin Immunol 2016; 173: 161–170

[32]

Wu H, Deng Y, Long D, Yang M, Li Q, Feng Y, Chen Y, Qiu H, Huang X, He Z, Hu L, Yin H, Li G, Guo Y, Du W, Zhao M, Lu L, Lu Q. The IL-21-TET2-AIM2-c-MAF pathway drives the T follicular helper cell response in lupus-like disease. Clin Transl Med 2022; 12(3): e781

[33]

Gao X, Song Y, Du P, Yang S, Cui H, Lu S, Hu L, Liu L, Jia S, Zhao M. Administration of a microRNA-21 inhibitor improves the lupus-like phenotype in MRL/lpr mice by repressing Tfh cell-mediated autoimmune responses. Int Immunopharmacol 2022; 106: 108578

[34]

Wu H, Deng Y, Feng Y, Long D, Ma K, Wang X, Zhao M, Lu L, Lu Q. Epigenetic regulation in B-cell maturation and its dysregulation in autoimmunity. Cell Mol Immunol 2018; 15(7): 676–684

[35]

Yang M, Long D, Hu L, Zhao Z, Li Q, Guo Y, He Z, Zhao M, Lu L, Li F, Long H, Wu H, Lu Q. AIM2 deficiency in B cells ameliorates systemic lupus erythematosus by regulating Blimp-1-Bcl-6 axis-mediated B-cell differentiation. Signal Transduct Target Ther 2021; 6(1): 341

[36]

Johnson DG, Dent SY. Chromatin: receiver and quarterback for cellular signals. Cell 2013; 152(4): 685–689

[37]

Zhao S, Yue Y, Li Y, Li H. Identification and characterization of ‘readers’ for novel histone modifications. Curr Opin Chem Biol 2019; 51: 57–65

[38]

Black JC, Van Rechem C, Whetstine JR. Histone lysine methylation dynamics: establishment, regulation, and biological impact. Mol Cell 2012; 48(4): 491–507

[39]

Hu N, Qiu X, Luo Y, Yuan J, Li Y, Lei W, Zhang G, Zhou Y, Su Y, Lu Q. Abnormal histone modification patterns in lupus CD4+ T cells. J Rheumatol 2008; 35(5): 804–810

[40]

Zhang Q, Long H, Liao J, Zhao M, Liang G, Wu X, Zhang P, Ding S, Luo S, Lu Q. Inhibited expression of hematopoietic progenitor kinase 1 associated with loss of jumonji domain containing 3 promoter binding contributes to autoimmunity in systemic lupus erythematosus. J Autoimmun 2011; 37(3): 180–189

[41]

Yin H, Wu H, Zhao M, Zhang Q, Long H, Fu S, Lu Q. Histone demethylase JMJD3 regulates CD11a expression through changes in histone H3K27 tri-methylation levels in CD4+ T cells of patients with systemic lupus erythematosus. Oncotarget 2017; 8(30): 48938–48947

[42]

Liu Z, Cao W, Xu L, Chen X, Zhan Y, Yang Q, Liu S, Chen P, Jiang Y, Sun X, Tao Y, Hu Y, Li C, Wang Q, Wang Y, Chen CD, Shi Y, Zhang X. The histone H3 lysine-27 demethylase Jmjd3 plays a critical role in specific regulation of Th17 cell differentiation. J Mol Cell Biol 2015; 7(6): 505–516

[43]

Zhao M, Li MY, Gao XF, Jia SJ, Gao KQ, Zhou Y, Zhang HH, Huang Y, Wang J, Wu HJ, Lu QJ. Downregulation of BDH2 modulates iron homeostasis and promotes DNA demethylation in CD4+ T cells of systemic lupus erythematosus. Clin Immunol 2018; 187: 113–121

[44]

Guo Y, Zhao M, Lu Q. Transcription factor RFX1 is ubiquitinated by E3 ligase STUB1 in systemic lupus erythematosus. Clin Immunol 2016; 169: 1–7

[45]

Zhao M, Tan Y, Peng Q, Huang C, Guo Y, Liang G, Zhu B, Huang Y, Liu A, Wang Z, Li M, Gao X, Wu R, Wu H, Long H, Lu Q. IL-6/STAT3 pathway induced deficiency of RFX1 contributes to Th17-dependent autoimmune diseases via epigenetic regulation. Nat Commun 2018; 9(1): 583

[46]

Wang Z, Zhao M, Yin J, Liu L, Hu L, Huang Y, Liu A, Ouyang J, Min X, Rao S, Zhou W, Wu H, Yoshimura A, Lu Q. E4BP4-mediated inhibition of T follicular helper cell differentiation is compromised in autoimmune diseases. J Clin Invest 2020; 130(7): 3717–3733

[47]

Liu L, Hu L, Yang L, Jia S, Du P, Min X, Wu J, Wu H, Long H, Lu Q, Zhao M. UHRF1 downregulation promotes T follicular helper cell differentiation by increasing BCL6 expression in SLE. Clin Epigenetics 2021; 13(1): 31

[48]

Tsai CY, Shen CY, Liu CW, Hsieh SC, Liao HT, Li KJ, Lu CS, Lee HT, Lin CS, Wu CH, Kuo YM, Yu CL. Aberrant non-coding RNA expression in patients with systemic lupus erythematosus: consequences for immune dysfunctions and tissue damage. Biomolecules 2020; 10(12): 1641

[49]

Gao X, Liu L, Min X, Jia S, Zhao M. Non-coding RNAs in CD4+ T cells: new insights into the pathogenesis of systemic lupus erythematosus. Front Immunol 2020; 11: 568

[50]

Dai R, Ahmed SA. MicroRNA, a new paradigm for understanding immunoregulation, inflammation, and autoimmune diseases. Transl Res 2011; 157(4): 163–179

[51]

Ma X, Liu Q. MicroRNAs in the pathogenesis of systemic lupus erythematosus. Int J Rheum Dis 2013; 16(2): 115–121

[52]

Bartel DP. Metazoan microRNAs. Cell 2018; 173(1): 20–51

[53]

Wang R, Wei A, Zhang Y, Xu G, Nong X, Liu C, Zeng Y, Huang H, Pang X, Wei W, Wang C, Huang H. Association between genetic variants of microRNA-21 and microRNA-155 and systemic lupus erythematosus: a case-control study from a Chinese population. J Clin Lab Anal 2022; 36(7): e24518

[54]

Khoshmirsafa M, Kianmehr N, Falak R, Mowla SJ, Seif F, Mirzaei B, Valizadeh M, Shekarabi M. Elevated expression of miR-21 and miR-155 in peripheral blood mononuclear cells as potential biomarkers for lupus nephritis. Int J Rheum Dis 2019; 22(3): 458–467

[55]

Mohammed SR, Shaker OG, Mohammed AA, Fouad NA, Hussein HA, Ahmed NA, Ahmed OM, Ali DY, Mohamed MM, Ibrahim AA. Impact of miR-155 (rs767649 A>T) and miR-146a (rs57095329 A>G) polymorphisms in system lupus erythematosus susceptibility in an Egyptian cohort. Eur Rev Med Pharmacol Sci 2021; 25(3): 1425–1435

[56]

Pan W, Zhu S, Yuan M, Cui H, Wang L, Luo X, Li J, Zhou H, Tang Y, Shen N. MicroRNA-21 and microRNA-148a contribute to DNA hypomethylation in lupus CD4+ T cells by directly and indirectly targeting DNA methyltransferase 1. J Immunol 2010; 184(12): 6773–6781

[57]

Singh RP, Hahn BH, Bischoff DS. Identification and contribution of inflammation-induced novel microRNA in the pathogenesis of systemic lupus erythematosus. Front Immunol 2022; 13: 848149

[58]

Leiss H, Salzberger W, Jacobs B, Gessl I, Kozakowski N, Blüml S, Puchner A, Kiss A, Podesser BK, Smolen JS, Stummvoll GH. MicroRNA 155-deficiency leads to decreased autoantibody levels and reduced severity of nephritis and pneumonitis in pristane-induced lupus. PLoS One 2017; 12(7): e0181015

[59]

Latini A, Ciccacci C, Benedittis G, Novelli L, Ceccarelli F, Conti F, Novelli G, Perricone C, Borgiani P. Altered expression of miR-142, miR-155, miR-499a and of their putative common target MDM2 in systemic lupus erythematosus. Epigenomics 2021; 13(1): 5–13

[60]

Qin H, Zhu X, Liang J, Wu J, Yang Y, Wang S, Shi W, Xu J. MicroRNA-29b contributes to DNA hypomethylation of CD4+ T cells in systemic lupus erythematosus by indirectly targeting DNA methyltransferase 1. J Dermatol Sci 2013; 69(1): 61–67

[61]

Qin HH, Zhu XH, Liang J, Wu JF, Yang YS, Xu JH. The expression and significance of miR-17-92 cluster miRs in CD4+ T cells from patients with systemic lupus erythematosus. Clin Exp Rheumatol 2013; 31(3): 472–473

[62]

Hou G, Harley ITW, Lu X, Zhou T, Xu N, Yao C, Qin Y, Ouyang Y, Ma J, Zhu X, Yu X, Xu H, Dai D, Ding H, Yin Z, Ye Z, Deng J, Zhou M, Tang Y, Namjou B, Guo Y, Weirauch MT, Kottyan LC, Harley JB, Shen N. SLE non-coding genetic risk variant determines the epigenetic dysfunction of an immune cell specific enhancer that controls disease-critical microRNA expression. Nat Commun 2021; 12(1): 135

[63]

Sarhan RA, Aboelenein HR, Sourour SK, Fawzy IO, Salah S, Abdelaziz AI. Targeting E2F1 and c-Myc expression by microRNA-17-5p represses interferon-stimulated gene MxA in peripheral blood mononuclear cells of pediatric systemic lupus erythematosus patients. Discov Med 2015; 19(107): 419–425

[64]

Huang J, Xu X, Wang X, Yang J, Xue M, Yang Y, Zhang R, Yang X, Yang J. MicroRNA-590-3p inhibits T helper 17 cells and ameliorates inflammation in lupus mice. Immunology 2022; 165(2): 260–273

[65]

Ding S, Liang Y, Zhao M, Liang G, Long H, Zhao S, Wang Y, Yin H, Zhang P, Zhang Q, Lu Q. Decreased microRNA-142-3p/5p expression causes CD4+ T cell activation and B cell hyperstimulation in systemic lupus erythematosus. Arthritis Rheum 2012; 64(9): 2953–2963

[66]

Ding S, Zhang Q, Luo S, Gao L, Huang J, Lu J, Chen J, Zeng Q, Guo A, Zeng J, Lu Q. BCL-6 suppresses miR-142-3p/5p expression in SLE CD4+ T cells by modulating histone methylation and acetylation of the miR-142 promoter. Cell Mol Immunol 2020; 17(5): 474–482

[67]

Zhao J, Sun BK, Erwin JA, Song JJ, Lee JT. Polycomb proteins targeted by a short repeat RNA to the mouse X chromosome. Science 2008; 322(5902): 750–756

[68]

Syrett CM, Paneru B, Sandoval-Heglund D, Wang J, Banerjee S, Sindhava V, Behrens EM, Atchison M, Anguera MC. Altered X-chromosome inactivation in T cells may promote sex-biased autoimmune diseases. JCI Insight 2019; 4(7): e126751

[69]

Yu B, Qi Y, Li R, Shi Q, Satpathy AT, Chang HY. B cell-specific XIST complex enforces X-inactivation and restrains atypical B cells. Cell 2021; 184(7): 1790–1803.e17

[70]

You Y, Zhao X, Wu Y, Mao J, Ge L, Guo J, Zhao C, Chen D, Song Z. Integrated transcriptome profiling revealed that elevated long non-coding RNA-AC007278.2 expression repressed CCR7 transcription in systemic lupus erythematosus. Front Immunol 2021; 12: 615859

[71]

Egami S, Yamagami J, Amagai M. Autoimmune bullous skin diseases, pemphigus and pemphigoid. J Allergy Clin Immunol 2020; 145(4): 1031–1047

[72]

Schmidt E, Zillikens D. Pemphigoid diseases. Lancet 2013; 381(9863): 320–332

[73]

Pollmann R, Schmidt T, Eming R, Hertl M. Pemphigus: a comprehensive review on pathogenesis, clinical presentation and novel therapeutic approaches. Clin Rev Allergy Immunol 2018; 54(1): 1–25

[74]

Tavakolpour S. Pemphigus trigger factors: special focus on pemphigus vulgaris and pemphigus foliaceus. Arch Dermatol Res 2018; 310(2): 95–106

[75]

Zhao M, Huang W, Zhang Q, Gao F, Wang L, Zhang G, Su Y, Xiao R, Zhang J, Tang M, Cheng W, Tan Y, Lu Q. Aberrant epigenetic modifications in peripheral blood mononuclear cells from patients with pemphigus vulgaris. Br J Dermatol 2012; 167(3): 523–531

[76]

Papara C, Zillikens D, Sadik CD, Baican A. MicroRNAs in pemphigus and pemphigoid diseases. Autoimmun Rev 2021; 20(7): 102852

[77]

Wang M, Liang L, Li L, Han K, Li Q, Peng Y, Peng X, Zeng K. Increased miR-424-5p expression in peripheral blood mononuclear cells from patients with pemphigus. Mol Med Rep 2017; 15(6): 3479–3484

[78]

Lin N, Liu Q, Wang M, Wang Q, Zeng K. Usefulness of miRNA-338-3p in the diagnosis of pemphigus and its correlation with disease severity. PeerJ 2018; 6: e5388

[79]

Liu Q, Cui F, Wang M, Xiong H, Peng X, Liang L, Li L, Zhang J, Peng X, Zeng K. Increased expression of microRNA-338-3p contributes to production of Dsg3 antibody in pemphigus vulgaris patients. Mol Med Rep 2018; 18(1): 550–556

[80]

Cipolla GA, Park JK, de Oliveira LA, Lobo-Alves SC, de Almeida RC, Farias TD, Lemos DS, Malheiros D, Lavker RM, Petzl-Erler MLA. A 3'UTR polymorphism marks differential KLRG1 mRNA levels through disruption of a miR-584-5p binding site and associates with pemphigus foliaceus susceptibility. Biochim Biophys Acta 2016; 1859(10): 1306–1313

[81]

Daniel BS, Murrell DF. Review of autoimmune blistering diseases: the pemphigoid diseases. J Eur Acad Dermatol Venereol 2019; 33(9): 1685–1694

[82]

Qiu L, Zhang L, Qi R, Gao X, Chen H, Xiao T. miR-1291 functions as a potential serum biomarker for bullous pemphigoid. Dis Markers 2020; 2020: 9505312

[83]

Deng Y, Chang C, Lu Q. The inflammatory response in psoriasis: a comprehensive review. Clin Rev Allergy Immunol 2016; 50(3): 377–389

[84]

Dopytalska K, Ciechanowicz P, Wiszniewski K, Szymańska E, Walecka I. The role of epigenetic factors in psoriasis. Int J Mol Sci 2021; 22(17): 9294

[85]

Shao S, Gudjonsson JE. Epigenetics of psoriasis. Adv Exp Med Biol 2020; 1253: 209–221

[86]

Zhang P, Su Y, Chen H, Zhao M, Lu Q. Abnormal DNA methylation in skin lesions and PBMCs of patients with psoriasis vulgaris. J Dermatol Sci 2010; 60(1): 40–42

[87]

Zhang P, Zhao M, Liang G, Yin G, Huang D, Su F, Zhai H, Wang L, Su Y, Lu Q. Whole-genome DNA methylation in skin lesions from patients with psoriasis vulgaris. J Autoimmun 2013; 41: 17–24

[88]

Roberson ED, Liu Y, Ryan C, Joyce CE, Duan S, Cao L, Martin A, Liao W, Menter A, Bowcock AM. A subset of methylated CpG sites differentiate psoriatic from normal skin. J Invest Dermatol 2012; 132(3): 583–592

[89]

Verma D, Ekman AK, Bivik Eding C, Enerbäck C. Genome-wide DNA methylation profiling identifies differential methylation in uninvolved psoriatic epidermis. J Invest Dermatol 2018; 138(5): 1088–1093

[90]

Chen M, Chen ZQ, Cui PG, Yao X, Li YM, Li AS, Gong JQ, Cao YH. The methylation pattern of p16INK4a gene promoter in psoriatic epidermis and its clinical significance. Br J Dermatol 2008; 158(5): 987–993

[91]

Bai J, Liu Z, Xu Z, Ke F, Zhang L, Zhu H, Lou F, Wang H, Fei Y, Shi YL, Wang H. Epigenetic downregulation of SFRP4 contributes to epidermal hyperplasia in psoriasis. J Immunol 2015; 194(9): 4185–4198

[92]

Zhang K, Zhang R, Li X, Yin G, Niu X. Promoter methylation status of p15 and p21 genes in HPP-CFCs of bone marrow of patients with psoriasis. Eur J Dermatol 2009; 19(2): 141–146

[93]

Yooyongsatit S, Ruchusatsawat K, Noppakun N, Hirankarn N, Mutirangura A, Wongpiyabovorn J. Patterns and functional roles of LINE-1 and Alu methylation in the keratinocyte from patients with psoriasis vulgaris. J Hum Genet 2015; 60(7): 349–355

[94]

Zhou F, Wang W, Shen C, Li H, Zuo X, Zheng X, Yue M, Zhang C, Yu L, Chen M, Zhu C, Yin X, Tang M, Li Y, Chen G, Wang Z, Liu S, Zhou Y, Zhang F, Zhang W, Li C, Yang S, Sun L, Zhang X. Epigenome-wide association analysis identified nine skin DNA methylation loci for psoriasis. J Invest Dermatol 2016; 136(4): 779–787

[95]

Zhou F, Shen C, Hsu YH, Gao J, Dou J, Ko R, Zheng X, Sun L, Cui Y, Zhang X. DNA methylation-based subclassification of psoriasis in the Chinese Han population. Front Med 2018; 12(6): 717–725

[96]

Chandra A, Senapati S, Roy S, Chatterjee G, Chatterjee R. Epigenome-wide DNA methylation regulates cardinal pathological features of psoriasis. Clin Epigenetics 2018; 10(1): 108

[97]

Henri P, Prevel C, Pellerano M, Lacotte J, Stoebner PE, Morris MC, Meunier L. Psoriatic epidermis is associated with upregulation of CDK2 and inhibition of CDK4 activity. Br J Dermatol 2020; 182(3): 678–689

[98]

Ling S, Xu B, Luo Y, Fang X, Liu X, Wang A, Zhou Y, Zhang S, Zong W, Li W, Yao X. Transglutaminase 3 attenuates skin inflammation in psoriasis by inhibiting NF-κB activation through phosphorylated STAT3–TET3 signaling. J Invest Dermatol 2022; 142(11): 2968–2977.e10

[99]

Rando OJ. Combinatorial complexity in chromatin structure and function: revisiting the histone code. Curr Opin Genet Dev 2012; 22(2): 148–155

[100]

Zhang P, Su Y, Zhao M, Huang W, Lu Q. Abnormal histone modifications in PBMCs from patients with psoriasis vulgaris. Eur J Dermatol 2011; 21(4): 552–557

[101]

Ovejero-Benito MC, Reolid A, Sánchez-Jiménez P, Saiz-Rodríguez M, Muñoz-Aceituno E, Llamas-Velasco M, Martín-Vilchez S, Cabaleiro T, Román M, Ochoa D, Daudén E, Abad-Santos F. Histone modifications associated with biological drug response in moderate-to-severe psoriasis. Exp Dermatol 2018; 27(12): 1361–1371

[102]

Clop A, Bertoni A, Spain SL, Simpson MA, Pullabhatla V, Tonda R, Hundhausen C, Di Meglio P, De Jong P, Hayday AC, Nestle FO, Barker JN, Bell RJ, Capon F, Trembath RC. An in-depth characterization of the major psoriasis susceptibility locus identifies candidate susceptibility alleles within an HLA-C enhancer element. PLoS One 2013; 8(8): e71690

[103]

Tovar-Castillo LE, Cancino-Díaz JC, García-Vázquez F, Cancino-Gómez FG, León-Dorantes G, Blancas-González F, Jiménez-Zamudio L, García-Latorre E, Cancino-Díaz ME. Under-expression of VHL and over-expression of HDAC-1, HIF-1α, LL-37, and IAP-2 in affected skin biopsies of patients with psoriasis. Int J Dermatol 2007; 46(3): 239–246

[104]

Blander G, Bhimavarapu A, Mammone T, Maes D, Elliston K, Reich C, Matsui MS, Guarente L, Loureiro JJ. SIRT1 promotes differentiation of normal human keratinocytes. J Invest Dermatol 2009; 129(1): 41–49

[105]

Lowes MA, Bowcock AM, Krueger JG. Pathogenesis and therapy of psoriasis. Nature 2007; 445(7130): 866–873

[106]

Becher B, Pantelyushin S. Hiding under the skin: interleukin-17-producing γδ T cells go under the skin?. Nat Med 2012; 18(12): 1748–1750

[107]

Xia X, Cao G, Sun G, Zhu L, Tian Y, Song Y, Guo C, Wang X, Zhong J, Zhou W, Li P, Zhang H, Hao J, Li Z, Deng L, Yin Z, Gao Y. GLS1-mediated glutaminolysis unbridled by MALT1 protease promotes psoriasis pathogenesis. J Clin Invest 2020; 130(10): 5180–5196

[108]

Zhang T, Yang L, Ke Y, Lei J, Shen S, Shao S, Zhang C, Zhu Z, Dang E, Wang G. EZH2-dependent epigenetic modulation of histone H3 lysine-27 contributes to psoriasis by promoting keratinocyte proliferation. Cell Death Dis 2020; 11(10): 826

[109]

Sonkoly E, Bata-Csorgo Z, Pivarcsi A, Polyanka H, Kenderessy-Szabo A, Molnar G, Szentpali K, Bari L, Megyeri K, Mandi Y, Dobozy A, Kemeny L, Szell M. Identification and characterization of a novel, psoriasis susceptibility-related noncoding RNA gene, PRINS. J Biol Chem 2005; 280(25): 24159–24167

[110]

Hawkes JE, Nguyen GH, Fujita M, Florell SR, Callis Duffin K, Krueger GG, O’Connell RM. MicroRNAs in psoriasis. J Invest Dermatol 2016; 136(2): 365–371

[111]

Wu R, Zeng J, Yuan J, Deng X, Huang Y, Chen L, Zhang P, Feng H, Liu Z, Wang Z, Gao X, Wu H, Wang H, Su Y, Zhao M, Lu Q. MicroRNA-210 overexpression promotes psoriasis-like inflammation by inducing Th1 and Th17 cell differentiation. J Clin Invest 2018; 128(6): 2551–2568

[112]

Feng H, Wu R, Zhang S, Kong Y, Liu Z, Wu H, Wang H, Su Y, Zhao M, Lu Q. Topical administration of nanocarrier miRNA-210 antisense ameliorates imiquimod-induced psoriasis-like dermatitis in mice. J Dermatol 2020; 47(2): 147–154

[113]

Bian J, Liu R, Fan T, Liao L, Wang S, Geng W, Wang T, Shi W, Ruan Q. miR-340 alleviates psoriasis in mice through direct targeting of IL-17A. J Immunol 2018; 201(5): 1412–1420

[114]

Jiang M, Fang H, Dang E, Zhang J, Qiao P, Yu C, Yang A, Wang G. Small extracellular vesicles containing miR-381-3p from keratinocytes promote T helper type 1 and T helper type 17 polarization in psoriasis. J Invest Dermatol 2021; 141(3): 563–574

[115]

Sonkoly E, Wei T, Janson PC, Sääf A, Lundeberg L, Tengvall-Linder M, Norstedt G, Alenius H, Homey B, Scheynius A, Ståhle M, Pivarcsi A. MicroRNAs: novel regulators involved in the pathogenesis of psoriasis?. PLoS One 2007; 2(7): e610

[116]

Sonkoly E, Wei T, Pavez Loriè E, Suzuki H, Kato M, Törmä H, Ståhle M, Pivarcsi A. Protein kinase C-dependent upregulation of miR-203 induces the differentiation of human keratinocytes. J Invest Dermatol 2010; 130(1): 124–134

[117]

Leal B, Carvalho C, Ferreira AM, Nogueira M, Brás S, Silva BM, Selores M, Costa PP, Torres T. Serum levels of miR-146a in patients with psoriasis. Mol Diagn Ther 2021; 25(4): 475–485

[118]

Srivastava A, Nikamo P, Lohcharoenkal W, Li D, Meisgen F, Xu Landén N, Ståhle M, Pivarcsi A, Sonkoly E. MicroRNA-146a suppresses IL-17-mediated skin inflammation and is genetically associated with psoriasis. J Allergy Clin Immunol 2017; 139(2): 550–561

[119]

Hermann H, Runnel T, Aab A, Baurecht H, Rodriguez E, Magilnick N, Urgard E, Šahmatova L, Prans E, Maslovskaja J, Abram K, Karelson M, Kaldvee B, Reemann P, Haljasorg U, Rückert B, Wawrzyniak P, Weichenthal M, Mrowietz U, Franke A, Gieger C, Barker J, Trembath R, Tsoi LC, Elder JT, Tkaczyk ER, Kisand K, Peterson P, Kingo K, Boldin M, Weidinger S, Akdis CA, Rebane A. miR-146b probably assists miRNA-146a in the suppression of keratinocyte proliferation and inflammatory responses in psoriasis. J Invest Dermatol 2017; 137(9): 1945–1954

[120]

Vaher H, Kivihall A, Runnel T, Raam L, Prans E, Maslovskaja J, Abram K, Kaldvee B, Mrowietz U, Weidinger S, Kingo K, Rebane A. SERPINB2 and miR-146a/b are coordinately regulated and act in the suppression of psoriasis-associated inflammatory responses in keratinocytes. Exp Dermatol 2020; 29(1): 51–60

[121]

Wang Q, Chang W, Yang X, Cheng Y, Zhao X, Zhou L, Li J, Li J, Zhang K. Levels of miR-31 and its target genes in dermal mesenchymal cells of patients with psoriasis. Int J Dermatol 2019; 58(2): 198–204

[122]

Yan S, Xu Z, Lou F, Zhang L, Ke F, Bai J, Liu Z, Liu J, Wang H, Zhu H, Sun Y, Cai W, Gao Y, Su B, Li Q, Yang X, Yu J, Lai Y, Yu XZ, Zheng Y, Shen N, Chin YE, Wang H. NF-κB-induced microRNA-31 promotes epidermal hyperplasia by repressing protein phosphatase 6 in psoriasis. Nat Commun 2015; 6(1): 7652

[123]

Meisgen F, Xu N, Wei T, Janson PC, Obad S, Broom O, Nagy N, Kauppinen S, Kemény L, Ståhle M, Pivarcsi A, Sonkoly E. miR-21 is up-regulated in psoriasis and suppresses T cell apoptosis. Exp Dermatol 2012; 21(4): 312–314

[124]

Abdallah F, Henriet E, Suet A, Arar A, Clemençon R, Malinge JM, Lecellier G, Baril P, Pichon C. miR-21-3p/IL-22 axes are major drivers of psoriasis pathogenesis by modulating keratinocytes proliferation-survival balance and inflammatory response. Cells 2021; 10(10): 2547

[125]

Løvendorf MB, Zibert JR, Gyldenløve M, Røpke MA, Skov L. MicroRNA-223 and miR-143 are important systemic biomarkers for disease activity in psoriasis. J Dermatol Sci 2014; 75(2): 133–139

[126]

Rida MA, Chandran V. Challenges in the clinical diagnosis of psoriatic arthritis. Clin Immunol 2020; 214: 108390

[127]

Seifeldin NS, El Sayed SB, Asaad MK. Increased microRNA-1266 levels as a biomarker for disease activity in psoriasis vulgaris. Int J Dermatol 2016; 55(11): 1242–1247

[128]

Sonkoly E. The expanding microRNA world in psoriasis. Exp Dermatol 2017; 26(4): 375–376

[129]

Meng Z, Qiu J, Zhang H. miR-221-3p as a potential biomarker for patients with psoriasis and its role in inflammatory responses in keratinocytes. Skin Pharmacol Physiol 2021; 34(5): 300–306

[130]

Huang C, Zhong W, Ren X, Huang X, Li Z, Chen C, Jiang B, Chen Z, Jian X, Yang L, Liu X, Huang H, Shen C, Chen X, Dou X, Yu B. miR-193b-3p-ERBB4 axis regulates psoriasis pathogenesis via modulating cellular proliferation and inflammatory-mediator production of keratinocytes. Cell Death Dis 2021; 12(11): 963

[131]

Denton CP, Khanna D. Systemic sclerosis. Lancet 2017; 390(10103): 1685–1699

[132]

Tsou PS, Varga J, O’Reilly S. Advances in epigenetics in systemic sclerosis: molecular mechanisms and therapeutic potential. Nat Rev Rheumatol 2021; 17(10): 596–607

[133]

Lei W, Luo Y, Lei W, Luo Y, Yan K, Zhao S, Li Y, Qiu X, Zhou Y, Long H, Zhao M, Liang Y, Su Y, Lu Q. Abnormal DNA methylation in CD4+ T cells from patients with systemic lupus erythematosus, systemic sclerosis, and dermatomyositis. Scand J Rheumatol 2009; 38(5): 369–374

[134]

Jiang H, Xiao R, Lian X, Kanekura T, Luo Y, Yin Y, Zhang G, Yang Y, Wang Y, Zhao M, Lu Q. Demethylation of TNFSF7 contributes to CD70 overexpression in CD4+ T cells from patients with systemic sclerosis. Clin Immunol 2012; 143(1): 39–44

[135]

Wang Y, Shu Y, Xiao Y, Wang Q, Kanekura T, Li Y, Wang J, Zhao M, Lu Q, Xiao R. Hypomethylation and overexpression of ITGAL (CD11a) in CD4+ T cells in systemic sclerosis. Clin Epigenetics 2014; 6(1): 25

[136]

Christmann RB, Hayes E, Pendergrass S, Padilla C, Farina G, Affandi AJ, Whitfield ML, Farber HW, Lafyatis R. Interferon and alternative activation of monocyte/macrophages in systemic sclerosis-associated pulmonary arterial hypertension. Arthritis Rheum 2011; 63(6): 1718–1728

[137]

Li T, Ortiz-Fernández L, Andrés-León E, Ciudad L, Javierre BM, López-Isac E, Guillén-Del-Castillo A, Simeón-Aznar CP, Ballestar E, Martin J. Epigenomics and transcriptomics of systemic sclerosis CD4+ T cells reveal long-range dysregulation of key inflammatory pathways mediated by disease-associated susceptibility loci. Genome Med 2020; 12(1): 81

[138]

Ding W, Pu W, Wang L, Jiang S, Zhou X, Tu W, Yu L, Zhang J, Guo S, Liu Q, Ma Y, Chen S, Wu W, Reveille J, Zou H, Jin L, Wang J. Genome-wide DNA methylation analysis in systemic sclerosis reveals hypomethylation of IFN-associated genes in CD4+ and CD8+ T cells. J Invest Dermatol 2018; 138(5): 1069–1077

[139]

Wang Y, Kahaleh B. Epigenetic repression of bone morphogenetic protein receptor II expression in scleroderma. J Cell Mol Med 2013; 17(10): 1291–1299

[140]

Henderson J, Brown M, Horsburgh S, Duffy L, Wilkinson S, Worrell J, Stratton R, O’Reilly S. Methyl cap binding protein 2: a key epigenetic protein in systemic sclerosis. Rheumatology (Oxford) 2019; 58(3): 527–535

[141]

Dees C, Pötter S, Zhang Y, Bergmann C, Zhou X, Luber M, Wohlfahrt T, Karouzakis E, Ramming A, Gelse K, Yoshimura A, Jaenisch R, Distler O, Schett G, Distler JH. TGF-β-induced epigenetic deregulation of SOCS3 facilitates STAT3 signaling to promote fibrosis. J Clin Invest 2020; 130(5): 2347–2363

[142]

Ernst J, Kheradpour P, Mikkelsen TS, Shoresh N, Ward LD, Epstein CB, Zhang X, Wang L, Issner R, Coyne M, Ku M, Durham T, Kellis M, Bernstein BE. Mapping and analysis of chromatin state dynamics in nine human cell types. Nature 2011; 473(7345): 43–49

[143]

van der Kroef M, Castellucci M, Mokry M, Cossu M, Garonzi M, Bossini-Castillo LM, Chouri E, Wichers CGK, Beretta L, Trombetta E, Silva-Cardoso S, Vazirpanah N, Carvalheiro T, Angiolilli C, Bekker CPJ, Affandi AJ, Reedquist KA, Bonte-Mineur F, Zirkzee EJM, Bazzoni F, Radstake TRDJ, Rossato M. Histone modifications underlie monocyte dysregulation in patients with systemic sclerosis, underlining the treatment potential of epigenetic targeting. Ann Rheum Dis 2019; 78(4): 529–538

[144]

Ciechomska M, O’Reilly S, Przyborski S, Oakley F, Bogunia-Kubik K, van Laar JM. Histone demethylation and Toll-like receptor 8-dependent cross-talk in monocytes promotes transdifferentiation of fibroblasts in systemic sclerosis via Fra-2. Arthritis Rheumatol 2016; 68(6): 1493–1504

[145]

Tsou PS, Wren JD, Amin MA, Schiopu E, Fox DA, Khanna D, Sawalha AH. Histone deacetylase 5 is overexpressed in scleroderma endothelial cells and impairs angiogenesis via repression of proangiogenic factors. Arthritis Rheumatol 2016; 68(12): 2975–2985

[146]

Tsou PS, Campbell P, Amin MA, Coit P, Miller S, Fox DA, Khanna D, Sawalha AH. Inhibition of EZH2 prevents fibrosis and restores normal angiogenesis in scleroderma. Proc Natl Acad Sci USA 2019; 116(9): 3695–3702

[147]

Wasson CW, Abignano G, Hermes H, Malaab M, Ross RL, Jimenez SA, Chang HY, Feghali-Bostwick CA, Del Galdo F. Long non-coding RNA HOTAIR drives EZH2-dependent myofibroblast activation in systemic sclerosis through miRNA 34a-dependent activation of NOTCH. Ann Rheum Dis 2020; 79(4): 507–517

[148]

Ciechomska M, Wojtas B, Swacha M, Olesinska M, Benes V, Maslinski W. Global miRNA and mRNA expression profiles identify miRNA-26a-2-3p-dependent repression of IFN signature in systemic sclerosis human monocytes. Eur J Immunol 2020; 50(7): 1057–1066

[149]

Rossato M, Affandi AJ, Thordardottir S, Wichers CGK, Cossu M, Broen JCA, Moret FM, Bossini-Castillo L, Chouri E, van Bon L, Wolters F, Marut W, van der Kroef M, Silva-Cardoso S, Bekker CPJ, Dolstra H, van Laar JM, Martin J, van Roon JAG, Reedquist KA, Beretta L, Radstake TRDJ. Association of microRNA-618 expression with altered frequency and activation of plasmacytoid dendritic cells in patients with systemic sclerosis. Arthritis Rheumatol 2017; 69(9): 1891–1902

[150]

Chouri E, Wang M, Hillen MR, Angiolilli C, Silva-Cardoso SC, Wichers CGK, van der Kroef M, Bekker CPJ, Cossu M, van Bon L, Affandi AJ, Carvalheiro T, Pandit A, van Roon JAG, Beretta L, Burgering BMT, Radstake TRDJ, Rossato M. Implication of miR-126 and miR-139-5p in plasmacytoid dendritic cell dysregulation in systemic sclerosis. J Clin Med 2021; 10(3): 491

[151]

Henderson J, Wilkinson S, Przyborski S, Stratton R, O’Reilly S. MicroRNA27a-3p mediates reduction of the Wnt antagonist sFRP-1 in systemic sclerosis. Epigenetics 2021; 16(7): 808–817

[152]

Yaseen B, Lopez H, Taki Z, Zafar S, Rosario H, Abdi BA, Vigneswaran S, Xing F, Arumalla N, Black S, Ahmad S, Kumar K, Gul R, Scolamiero L, Morris S, Bowman A, Stainer A, Rice A, Stock C, Renzoni E, Denton CP, Venturini C, Brown M, O’Reilly S, Stratton R. Interleukin-31 promotes pathogenic mechanisms underlying skin and lung fibrosis in scleroderma. Rheumatology (Oxford) 2020; 59(9): 2625–2636

[153]

Yao Q, Xing Y, Wang Z, Liang J, Lin Q, Huang M, Chen Y, Lin B, Xu X, Chen W. miR-16-5p suppresses myofibroblast activation in systemic sclerosis by inhibiting NOTCH signaling. Aging (Albany NY) 2020; 13(2): 2640–2654

[154]

Latini A, Ciccacci C, Benedittis G, Novelli L, Ceccarelli F, Conti F, Novelli G, Perricone C, Borgiani P. Altered expression of miR-142, miR-155, miR-499a and of their putative common target MDM2 in systemic lupus erythematosus. Epigenomics 2021; 13(1): 5–13

[155]

Mariotti B, Servaas NH, Rossato M, Tamassia N, Cassatella MA, Cossu M, Beretta L, van der Kroef M, Radstake TRDJ, Bazzoni F. The long non-coding RNA NRIR drives IFN-response in monocytes: implication for systemic sclerosis. Front Immunol 2019; 10: 100

[156]

Pachera E, Assassi S, Salazar GA, Stellato M, Renoux F, Wunderlin A, Blyszczuk P, Lafyatis R, Kurreeman F, de Vries-Bouwstra J, Messemaker T, Feghali-Bostwick CA, Rogler G, van Haaften WT, Dijkstra G, Oakley F, Calcagni M, Schniering J, Maurer B, Distler JH, Kania G, Frank-Bertoncelj M, Distler O. Long noncoding RNA H19X is a key mediator of TGF-β-driven fibrosis. J Clin Invest 2020; 130(9): 4888–4905

[157]

Wu H, Zeng J, Yin J, Peng Q, Zhao M, Lu Q. Organ-specific biomarkers in lupus. Autoimmun Rev 2017; 16(4): 391–397

[158]

Horwitz DA. Regulatory T cells in systemic lupus erythematosus: past, present and future. Arthritis Res Ther 2008; 10(6): 227

[159]

Fan Y, Ji Y, Wang X, Hu J, Zhang Q, Xu J, Liu W, Wang A. Relationship of miRNA-146a to systemic lupus erythematosus: a PRISMA-compliant meta-analysis. Medicine (Baltimore) 2020; 99(40): e22444

RIGHTS & PERMISSIONS

Higher Education Press

AI Summary AI Mindmap
PDF (1203KB)

2923

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/