Treatment of advanced non-small cell lung cancer with driver mutations: current applications and future directions

Jia Zhong, Hua Bai, Zhijie Wang, Jianchun Duan, Wei Zhuang, Di Wang, Rui Wan, Jiachen Xu, Kailun Fei, Zixiao Ma, Xue Zhang, Jie Wang

PDF(1728 KB)
PDF(1728 KB)
Front. Med. ›› 2023, Vol. 17 ›› Issue (1) : 18-42. DOI: 10.1007/s11684-022-0976-4
REVIEW
REVIEW

Treatment of advanced non-small cell lung cancer with driver mutations: current applications and future directions

Author information +
History +

Abstract

With the improved understanding of driver mutations in non-small cell lung cancer (NSCLC), expanding the targeted therapeutic options improved the survival and safety. However, responses to these agents are commonly temporary and incomplete. Moreover, even patients with the same oncogenic driver gene can respond diversely to the same agent. Furthermore, the therapeutic role of immune-checkpoint inhibitors (ICIs) in oncogene-driven NSCLC remains unclear. Therefore, this review aimed to classify the management of NSCLC with driver mutations based on the gene subtype, concomitant mutation, and dynamic alternation. Then, we provide an overview of the resistant mechanism of target therapy occurring in targeted alternations (“target-dependent resistance”) and in the parallel and downstream pathways (“target-independent resistance”). Thirdly, we discuss the effectiveness of ICIs for NSCLC with driver mutations and the combined therapeutic approaches that might reverse the immunosuppressive tumor immune microenvironment. Finally, we listed the emerging treatment strategies for the new oncogenic alternations, and proposed the perspective of NSCLC with driver mutations. This review will guide clinicians to design tailored treatments for NSCLC with driver mutations.

Keywords

non-small cell lung cancer / driver mutations / treatment strategy / resistant mechanism / immune-checkpoint inhibitors

Cite this article

Download citation ▾
Jia Zhong, Hua Bai, Zhijie Wang, Jianchun Duan, Wei Zhuang, Di Wang, Rui Wan, Jiachen Xu, Kailun Fei, Zixiao Ma, Xue Zhang, Jie Wang. Treatment of advanced non-small cell lung cancer with driver mutations: current applications and future directions. Front. Med., 2023, 17(1): 18‒42 https://doi.org/10.1007/s11684-022-0976-4

References

[1]
Zhou C, Wu YL, Chen G, Feng J, Liu XQ, Wang C, Zhang S, Wang J, Zhou S, Ren S, Lu S, Zhang L, Hu C, Hu C, Luo Y, Chen L, Ye M, Huang J, Zhi X, Zhang Y, Xiu Q, Ma J, Zhang L, You C. Erlotinib versus chemotherapy as first-line treatment for patients with advanced EGFR mutation-positive non-small-cell lung cancer (OPTIMAL, CTONG-0802): a multicentre, open-label, randomised, phase 3 study. Lancet Oncol 2011; 12(8): 735–742
CrossRef Pubmed Google scholar
[2]
Sequist LV, Yang JCH, Yamamoto N, O’Byrne K, Hirsh V, Mok T, Geater SL, Orlov S, Tsai CM, Boyer M, Su WC, Bennouna J, Kato T, Gorbunova V, Lee KH, Shah R, Massey D, Zazulina V, Shahidi M, Schuler M. Phase III study of afatinib or cisplatin plus pemetrexed in patients with metastatic lung adenocarcinoma with EGFR mutations. J Clin Oncol 2013; 31(27): 3327–3334
CrossRef Pubmed Google scholar
[3]
Mok TS, Wu YL, Ahn MJ, Garassino MC, Kim HR, Ramalingam SS, Shepherd FA, He Y, Akamatsu H, Theelen WS, Lee CK, Sebastian M, Templeton A, Mann H, Marotti M, Ghiorghiu S, Papadimitrakopoulou VA; AURA3 Investigators. Osimertinib or platinum-pemetrexed in EGFR T790M-positive lung cancer. N Engl J Med 2017; 376(7): 629–640
CrossRef Pubmed Google scholar
[4]
Friboulet L, Li N, Katayama R, Lee CC, Gainor JF, Crystal AS, Michellys PY, Awad MM, Yanagitani N, Kim S, Pferdekamper AC, Li J, Kasibhatla S, Sun F, Sun X, Hua S, McNamara P, Mahmood S, Lockerman EL, Fujita N, Nishio M, Harris JL, Shaw AT, Engelman JA. The ALK inhibitor ceritinib overcomes crizotinib resistance in non-small cell lung cancer. Cancer Discov 2014; 4(6): 662–673
CrossRef Pubmed Google scholar
[5]
Gainor JF, Dardaei L, Yoda S, Friboulet L, Leshchiner I, Katayama R, Dagogo-Jack I, Gadgeel S, Schultz K, Singh M, Chin E, Parks M, Lee D, DiCecca RH, Lockerman E, Huynh T, Logan J, Ritterhouse LL, Le LP, Muniappan A, Digumarthy S, Channick C, Keyes C, Getz G, Dias-Santagata D, Heist RS, Lennerz J, Sequist LV, Benes CH, Iafrate AJ, Mino-Kenudson M, Engelman JA, Shaw AT. Molecular mechanisms of resistance to first- and second-generation ALK inhibitors in ALK-rearranged lung cancer. Cancer Discov 2016; 6(10): 1118–1133
CrossRef Pubmed Google scholar
[6]
Zhang S, Anjum R, Squillace R, Nadworny S, Zhou T, Keats J, Ning Y, Wardwell SD, Miller D, Song Y, Eichinger L, Moran L, Huang WS, Liu S, Zou D, Wang Y, Mohemmad Q, Jang HG, Ye E, Narasimhan N, Wang F, Miret J, Zhu X, Clackson T, Dalgarno D, Shakespeare WC, Rivera VM. The potent ALK inhibitor brigatinib (AP26113) overcomes mechanisms of resistance to first- and second-generation ALK inhibitors in preclinical models. Clin Cancer Res 2016; 22(22): 5527–5538
CrossRef Pubmed Google scholar
[7]
Peters S, Camidge DR, Shaw AT, Gadgeel S, Ahn JS, Kim DW, Ou SI, Pérol M, Dziadziuszko R, Rosell R, Zeaiter A, Mitry E, Golding S, Balas B, Noe J, Morcos PN, Mok T; ALEX Trial Investigators. Alectinib versus crizotinib in untreated ALK-positive non-small-cell lung cancer. N Engl J Med 2017; 377(9): 829–838
CrossRef Pubmed Google scholar
[8]
Shaw AT, Bauer TM, de Marinis F, Felip E, Goto Y, Liu G, Mazieres J, Kim DW, Mok T, Polli A, Thurm H, Calella AM, Peltz G, Solomon BJ; CROWN Trial Investigators. First-line lorlatinib or crizotinib in advanced ALK-positive lung cancer. N Engl J Med 2020; 383(21): 2018–2029
CrossRef Pubmed Google scholar
[9]
Camidge DR, Kim HR, Ahn MJ, Yang JCH, Han JY, Hochmair MJ, Lee KH, Delmonte A, Garcia Campelo MR, Kim DW, Griesinger F, Felip E, Califano R, Spira AI, Gettinger SN, Tiseo M, Lin HM, Liu Y, Vranceanu F, Niu H, Zhang P, Popat S. Brigatinib versus crizotinib in ALK inhibitor-naive advanced ALK-positive NSCLC: final results of phase 3 ALTA-1L trial. J Thorac Oncol 2021; 16(12): 2091–2108
CrossRef Pubmed Google scholar
[10]
Solomon BJ, Mok T, Kim DW, Wu YL, Nakagawa K, Mekhail T, Felip E, Cappuzzo F, Paolini J, Usari T, Iyer S, Reisman A, Wilner KD, Tursi J, Blackhall F; PROFILE 1014 Investigators. First-line crizotinib versus chemotherapy in ALK-positive lung cancer. N Engl J Med 2014; 371(23): 2167–2177
CrossRef Pubmed Google scholar
[11]
Shaw AT, Ou SHI, Bang YJ, Camidge DR, Solomon BJ, Salgia R, Riely GJ, Varella-Garcia M, Shapiro GI, Costa DB, Doebele RC, Le LP, Zheng Z, Tan W, Stephenson P, Shreeve SM, Tye LM, Christensen JG, Wilner KD, Clark JW, Iafrate AJ. Crizotinib in ROS1-rearranged non-small-cell lung cancer. N Engl J Med 2014; 371(21): 1963–1971
CrossRef Pubmed Google scholar
[12]
Planchard D, Besse B, Groen HJM, Souquet PJ, Quoix E, Baik CS, Barlesi F, Kim TM, Mazieres J, Novello S, Rigas JR, Upalawanna A, D’Amelio AM Jr, Zhang P, Mookerjee B, Johnson BE. Dabrafenib plus trametinib in patients with previously treated BRAF (V600E)-mutant metastatic non-small cell lung cancer: an open-label, multicentre phase 2 trial. Lancet Oncol 2016; 17(7): 984–993
CrossRef Pubmed Google scholar
[13]
Haratake N, Seto T. NTRK fusion-positive non-small-cell lung cancer: the diagnosis and targeted therapy. Clin Lung Cancer 2021; 22(1): 1–5
CrossRef Pubmed Google scholar
[14]
Uprety D, Adjei AA. KRAS: from undruggable to a druggable cancer target. Cancer Treat Rev 2020; 89: 102070
CrossRef Pubmed Google scholar
[15]
da Cunha Santos G, Shepherd FA, Tsao MS. EGFR mutations and lung cancer. Annu Rev Pathol 2011; 6(1): 49–69
CrossRef Pubmed Google scholar
[16]
He Q, Xin P, Zhang M, Jiang S, Zhang J, Zhong S, Liu Y, Guo M, Chen X, Xia X, Pan Z, Guo C, Cai X, Liang W, He J. The impact of epidermal growth factor receptor mutations on the prognosis of resected non-small cell lung cancer: a meta-analysis of literatures. Transl Lung Cancer Res 2019; 8(2): 124–134
CrossRef Pubmed Google scholar
[17]
Lee CK, Wu YL, Ding PN, Lord SJ, Inoue A, Zhou C, Mitsudomi T, Rosell R, Pavlakis N, Links M, Gebski V, Gralla RJ, Yang JC. Impact of specific epidermal growth factor receptor (EGFR) mutations and clinical characteristics on outcomes after treatment with EGFR tyrosine kinase inhibitors versus chemotherapy in EGFR-mutant lung cancer: a meta-analysis. J Clin Oncol 2015; 33(17): 1958–1965
CrossRef Pubmed Google scholar
[18]
Yang JCH, Wu YL, Schuler M, Sebastian M, Popat S, Yamamoto N, Zhou C, Hu CP, O’Byrne K, Feng J, Lu S, Huang Y, Geater SL, Lee KY, Tsai CM, Gorbunova V, Hirsh V, Bennouna J, Orlov S, Mok T, Boyer M, Su WC, Lee KH, Kato T, Massey D, Shahidi M, Zazulina V, Sequist LV. Afatinib versus cisplatin-based chemotherapy for EGFR mutation-positive lung adenocarcinoma (LUX-Lung 3 and LUX-Lung 6): analysis of overall survival data from two randomised, phase 3 trials. Lancet Oncol 2015; 16(2): 141–151
CrossRef Pubmed Google scholar
[19]
Ramalingam SS, Vansteenkiste J, Planchard D, Cho BC, Gray JE, Ohe Y, Zhou C, Reungwetwattana T, Cheng Y, Chewaskulyong B, Shah R, Cobo M, Lee KH, Cheema P, Tiseo M, John T, Lin MC, Imamura F, Kurata T, Todd A, Hodge R, Saggese M, Rukazenkov Y, Soria JC; FLAURA Investigators. Overall survival with osimertinib in untreated, EGFR-mutated advanced NSCLC. N Engl J Med 2020; 382(1): 41–50
CrossRef Pubmed Google scholar
[20]
Saito H, Fukuhara T, Furuya N, Watanabe K, Sugawara S, Iwasawa S, Tsunezuka Y, Yamaguchi O, Okada M, Yoshimori K, Nakachi I, Gemma A, Azuma K, Kurimoto F, Tsubata Y, Fujita Y, Nagashima H, Asai G, Watanabe S, Miyazaki M, Hagiwara K, Nukiwa T, Morita S, Kobayashi K, Maemondo M. Erlotinib plus bevacizumab versus erlotinib alone in patients with EGFR-positive advanced non-squamous non-small-cell lung cancer (NEJ026): interim analysis of an open-label, randomised, multicentre, phase 3 trial. Lancet Oncol 2019; 20(5): 625–635
CrossRef Pubmed Google scholar
[21]
Zhou Q, Xu CR, Cheng Y, Liu YP, Chen GY, Cui JW, Yang N, Song Y, Li XL, Lu S, Zhou JY, Ma ZY, Yu SY, Huang C, Shu YQ, Wang Z, Yang JJ, Tu HY, Zhong WZ, Wu YL. Bevacizumab plus erlotinib in Chinese patients with untreated, EGFR-mutated, advanced NSCLC (ARTEMIS-CTONG1509): a multicenter phase 3 study. Cancer Cell 2021; 39(9): 1279–1291.e3
CrossRef Pubmed Google scholar
[22]
Li X, Zhang L, Jiang D, Wang Y, Zang A, Ding C, Zhao M, Su W, Zhang Y, Zhong D, Wu J, Zhang C, An G, Hu X, Cheng G, Wang H, Li Y, He X, Liu J, Liang L, Ding L, Mao L, Zhang S. Routine-dose and high-dose icotinib in patients with advanced non-small cell lung cancer harboring EGFR exon 21-L858R mutation: the randomized, phase II, INCREASE trial. Clin Cancer Res 2020; 26(13): 3162–3171
CrossRef Pubmed Google scholar
[23]
Passaro A, Mok T, Peters S, Popat S, Ahn MJ, de Marinis F. Recent advances on the role of EGFR tyrosine kinase inhibitors in the management of NSCLC with uncommon, non exon 20 insertions, EGFR mutations. J Thorac Oncol 2021; 16(5): 764–773
CrossRef Pubmed Google scholar
[24]
Yang JCH, Sequist LV, Geater SL, Tsai CM, Mok TS, Schuler M, Yamamoto N, Yu CJ, Ou SH, Zhou C, Massey D, Zazulina V, Wu YL. Clinical activity of afatinib in patients with advanced non-small-cell lung cancer harbouring uncommon EGFR mutations: a combined post-hoc analysis of LUX-Lung 2, LUX-Lung 3, and LUX-Lung 6. Lancet Oncol 2015; 16(7): 830–838
CrossRef Pubmed Google scholar
[25]
Masood A, Kancha RK, Subramanian J. Epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors in non-small cell lung cancer harboring uncommon EGFR mutations: focus on afatinib. Semin Oncol 2019; 46(3): 271–283
CrossRef Pubmed Google scholar
[26]
Vyse S, Huang PH. Amivantamab for the treatment of EGFR exon 20 insertion mutant non-small cell lung cancer. Expert Rev Anticancer Ther 2022; 22(1): 3–16
CrossRef Pubmed Google scholar
[27]
Park K, Haura EB, Leighl NB, Mitchell P, Shu CA, Girard N, Viteri S, Han JY, Kim SW, Lee CK, Sabari JK, Spira AI, Yang TY, Kim DW, Lee KH, Sanborn RE, Trigo J, Goto K, Lee JS, Yang JC, Govindan R, Bauml JM, Garrido P, Krebs MG, Reckamp KL, Xie J, Curtin JC, Haddish-Berhane N, Roshak A, Millington D, Lorenzini P, Thayu M, Knoblauch RE, Cho BC. Amivantamab in EGFR exon 20 insertion-mutated non-small-cell lung cancer progressing on platinum chemotherapy: initial results from the CHRYSALIS phase I study. J Clin Oncol 2021; 39(30): 3391–3402
CrossRef Pubmed Google scholar
[28]
Yang S, Mao S, Li X, Zhao C, Liu Q, Yu X, Wang Y, Liu Y, Pan Y, Wang C, Gao G, Li W, Xiong A, Chen B, Sun H, He Y, Wu F, Chen X, Su C, Ren S, Zhou C. Uncommon EGFR mutations associate with lower incidence of T790M mutation after EGFR-TKI treatment in patients with advanced NSCLC. Lung Cancer 2020; 139: 133–139
CrossRef Pubmed Google scholar
[29]
Wang H, Zhang M, Tang W, Ma J, Wei B, Niu Y, Zhang G, Li P, Yan X, Ma Z. Mutation abundance affects the therapeutic efficacy of EGFR-TKI in patients with advanced lung adenocarcinoma: a retrospective analysis. Cancer Biol Ther 2018; 19(8): 687–694
CrossRef Pubmed Google scholar
[30]
Wang X, Liu Y, Meng Z, Wu Y, Wang S, Jin G, Qin Y, Wang F, Wang J, Zhou H, Su X, Fu X, Wang X, Shi X, Wen Z, Jia X, Qin Q, Gao Y, Guo W, Lu S. Plasma EGFR mutation abundance affects clinical response to first-line EGFR-TKIs in patients with advanced non-small cell lung cancer. Ann Transl Med 2021; 9(8): 635
CrossRef Pubmed Google scholar
[31]
Pan G, Chen K, Yu X, Sheng J, Fan Y. The correlation between the abundance of EGFR T790M mutation and osimertinib response in advanced non-small cell lung cancer. Transl Cancer Res 2021; 10(6): 2895–2905
CrossRef Pubmed Google scholar
[32]
Furugaki K, Harada N, Yoshimura Y. Sensitivity of eight types of ALK fusion variant to alectinib in ALK-transformed cells. Anticancer Drugs 2022; 33(2): 124–131
CrossRef Pubmed Google scholar
[33]
Wang S, Luo R, Shi Y, Han X. The impact of the ALK fusion variant on clinical outcomes in EML4-ALK patients with NSCLC: a systematic review and meta-analysis. Future Oncol 2022; 18(3): 385–402
CrossRef Pubmed Google scholar
[34]
Zhang SS, Nagasaka M, Zhu VW, Ou SI. Going beneath the tip of the iceberg. Identifying and understanding EML4-ALK variants and TP53 mutations to optimize treatment of ALK fusion positive (ALK+) NSCLC. Lung Cancer 2021; 158: 126–136
CrossRef Pubmed Google scholar
[35]
Yaeger R, Corcoran RB. Targeting alterations in the RAF-MEK pathway. Cancer Discov 2019; 9(3): 329–341
CrossRef Pubmed Google scholar
[36]
Dankner M, Lajoie M, Moldoveanu D, Nguyen TT, Savage P, Rajkumar S, Huang X, Lvova M, Protopopov A, Vuzman D, Hogg D, Park M, Guiot MC, Petrecca K, Mihalcioiu C, Watson IR, Siegel PM, Rose AAN. Dual MAPK inhibition is an effective therapeutic strategy for a subset of class II BRAF mutant melanomas. Clin Cancer Res 2018; 24(24): 6483–6494
CrossRef Pubmed Google scholar
[37]
Negrao MV, Raymond VM, Lanman RB, Robichaux JP, He J, Nilsson MB, Ng PKS, Amador BE, Roarty EB, Nagy RJ, Banks KC, Zhu VW, Ng C, Chae YK, Clarke JM, Crawford JA, Meric-Bernstam F, Ignatius Ou SH, Gandara DR, Heymach JV, Bivona TG, McCoach CE. Molecular landscape of BRAF-mutant NSCLC reveals an association between clonality and driver mutations and identifies targetable non-V600 driver mutations. J Thorac Oncol 2020; 15(10): 1611–1623
CrossRef Pubmed Google scholar
[38]
Tan AC, Seet AOL, Lai GGY, Lim TH, Lim AST, Tan GS, Takano A, Tai DWM, Tan TJY, Lam JYC, Ng MCH, Tan WL, Ang MK, Kanesvaran R, Ng QS, Jain A, Rajasekaran T, Lim WT, Tan EH, Lim TKH, Tan DSW. Molecular characterization and clinical outcomes in RET-rearranged NSCLC. J Thorac Oncol 2020; 15(12): 1928–1934
CrossRef Pubmed Google scholar
[39]
Feng J, Li Y, Wei B, Guo L, Li W, Xia Q, Zhao C, Zheng J, Zhao J, Sun R, Guo Y, Brcic L, Hakozaki T, Ying J, Ma J. Clinicopathologic characteristics and diagnostic methods of RET rearrangement in Chinese non-small cell lung cancer patients. Transl Lung Cancer Res 2022; 11(4): 617–631
CrossRef Pubmed Google scholar
[40]
ArtsimovichNGNastoiashchaiaNNLymar’ NPKostrovaAAOsokinaLI. Effect of antibiotics on hematologic indices and enzyme activity of blood lymphocytes in mice. Gematol Transfuziol 1987; 32(4): 58–62 (in Russian)
Pubmed
[41]
Garon EB, Brodrick P. Targeted therapy approaches for MET abnormalities in non-small cell lung cancer. Drugs 2021; 81(5): 547–554
CrossRef Pubmed Google scholar
[42]
Coleman N, Harbery A, Heuss S, Vivanco I, Popat S. Targeting un-MET needs in advanced non-small cell lung cancer. Lung Cancer 2022; 164: 56–68
CrossRef Pubmed Google scholar
[43]
Drusbosky LM, Dawar R, Rodriguez E, Ikpeazu CV. Therapeutic strategies in METex14 skipping mutated non-small cell lung cancer. J Hematol Oncol 2021; 14(1): 129
CrossRef Pubmed Google scholar
[44]
Liu Q, Yu S, Zhao W, Qin S, Chu Q, Wu K. EGFR-TKIs resistance via EGFR-independent signaling pathways. Mol Cancer 2018; 17(1): 53
CrossRef Pubmed Google scholar
[45]
Hong S, Gao F, Fu S, Wang Y, Fang W, Huang Y, Zhang L. Concomitant genetic alterations with response to treatment and epidermal growth factor receptor tyrosine kinase inhibitors in patients with EGFR-mutant advanced non-small cell lung cancer. JAMA Oncol 2018; 4(5): 739–742
CrossRef Pubmed Google scholar
[46]
Zhong J, Li L, Wang Z, Bai H, Gai F, Duan J, Zhao J, Zhuo M, Wang Y, Wang S, Zang W, Wu M, An T, Rao G, Zhu G, Wang J. Potential resistance mechanisms revealed by targeted sequencing from lung adenocarcinoma patients with primary resistance to epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (TKIs). J Thorac Oncol 2017; 12(12): 1766–1778
CrossRef Pubmed Google scholar
[47]
Wang Z, Cheng Y, An T, Gao H, Wang K, Zhou Q, Hu Y, Song Y, Ding C, Peng F, Liang L, Hu Y, Huang C, Zhou C, Shi Y, Zhang L, Ye X, Zhang M, Chuai S, Zhu G, Hu J, Wu YL, Wang J. Detection of EGFR mutations in plasma circulating tumour DNA as a selection criterion for first-line gefitinib treatment in patients with advanced lung adenocarcinoma (BENEFIT): a phase 2, single-arm, multicentre clinical trial. Lancet Respir Med 2018; 6(9): 681–690
CrossRef Pubmed Google scholar
[48]
Duan J, Xu J, Wang Z, Bai H, Cheng Y, An T, Gao H, Wang K, Zhou Q, Hu Y, Song Y, Ding C, Peng F, Liang L, Hu Y, Huang C, Zhou C, Shi Y, Han J, Wang D, Tian Y, Yang Z, Zhang L, Chuai S, Ye J, Zhu G, Zhao J, Wu YL, Wang J. Refined stratification based on baseline concomitant mutations and longitudinal circulating tumor DNA monitoring in advanced EGFR-mutant lung adenocarcinoma under gefitinib treatment. J Thorac Oncol 2020; 15(12): 1857–1870
CrossRef Pubmed Google scholar
[49]
La Monica S, Minari R, Cretella D, Flammini L, Fumarola C, Bonelli M, Cavazzoni A, Digiacomo G, Galetti M, Madeddu D, Falco A, Lagrasta CA, Squadrilli A, Barocelli E, Romanel A, Quaini F, Petronini PG, Tiseo M, Alfieri R. Third generation EGFR inhibitor osimertinib combined with pemetrexed or cisplatin exerts long-lasting anti-tumor effect in EGFR-mutated pre-clinical models of NSCLC. J Exp Clin Cancer Res 2019; 38(1): 222
CrossRef Pubmed Google scholar
[50]
Planchard D, Feng PH, Karaseva N, Kim SW, Kim TM, Lee CK, Poltoratskiy A, Yanagitani N, Marshall R, Huang X, Howarth P, Jänne PA, Kobayashi K. Osimertinib plus platinum-pemetrexed in newly diagnosed epidermal growth factor receptor mutation-positive advanced/metastatic non-small-cell lung cancer: safety run-in results from the FLAURA2 study. ESMO Open 2021; 6(5): 100271
CrossRef Pubmed Google scholar
[51]
Hosomi Y, Morita S, Sugawara S, Kato T, Fukuhara T, Gemma A, Takahashi K, Fujita Y, Harada T, Minato K, Takamura K, Hagiwara K, Kobayashi K, Nukiwa T, Inoue A; North-East Japan Study Group. Gefitinib alone versus gefitinib plus chemotherapy for non-small-cell lung cancer with mutated epidermal growth factor receptor: NEJ009 study. J Clin Oncol 2020; 38(2): 115–123
CrossRef Pubmed Google scholar
[52]
Hsu WH, Yang JCH, Mok TS, Loong HH. Overview of current systemic management of EGFR-mutant NSCLC. Ann Oncol 2018; 29(suppl_1): i3–i9
CrossRef Pubmed Google scholar
[53]
Leonetti A, Sharma S, Minari R, Perego P, Giovannetti E, Tiseo M. Resistance mechanisms to osimertinib in EGFR-mutated non-small cell lung cancer. Br J Cancer 2019; 121(9): 725–737
CrossRef Pubmed Google scholar
[54]
He J, Huang Z, Han L, Gong Y, Xie C. Mechanisms and management of 3rd-generation EGFR-TKI resistance in advanced non-small cell lung cancer (Review). Int J Oncol 2021; 59(5): 90
CrossRef Pubmed Google scholar
[55]
Cho BC, Felip E, Hayashi H, Thomas M, Lu S, Besse B, Sun T, Martinez M, Sethi SN, Shreeve SM, Spira AI. MARIPOSA: phase 3 study of first-line amivantamab + lazertinib versus osimertinib in EGFR-mutant non-small-cell lung cancer. Future Oncol 2022; 18(6): 639–647
CrossRef Pubmed Google scholar
[56]
WuDLiJ YaoMHZheng YHFengCYYangYH. Clinicopathological significance in non-small cell lung cancer with mutations and co-mutations of EGFR, ALK and ROS1. Chin J Pathol (Zhonghua Bing Li Xue Za Zhi) 2021; 50(3): 251–253 (in Chinese)
Pubmed
[57]
Yang X, Zhong J, Yu Z, Zhuo M, Zhang M, Chen R, Xia X, Zhao J. Genetic and treatment profiles of patients with concurrent epidermal growth factor receptor (EGFR) and anaplastic lymphoma kinase (ALK) mutations. BMC Cancer 2021; 21(1): 1107
CrossRef Pubmed Google scholar
[58]
Fan J, Dai X, Wang Z, Huang B, Shi H, Luo D, Zhang J, Cai W, Nie X, Hirsch FR. Concomitant EGFR mutation and EML4-ALK rearrangement in lung adenocarcinoma is more frequent in multifocal lesions. Clin Lung Cancer 2019; 20(4): e517–e530
CrossRef Pubmed Google scholar
[59]
Zhu YJ, Qu X, Zhan DD, Chen HH, Li HP, Liu LR, Chen X, Liu YH, Li Y, Bai JP, Ye S, Zhang HB. Specific gene co-variation acts better than number of concomitant altered genes in predicting EGFR-TKI efficacy in non-small-cell lung cancer. Clin Lung Cancer 2021; 22(1): e98–e111
CrossRef Pubmed Google scholar
[60]
Skoulidis F, Heymach JV. Co-occurring genomic alterations in non-small-cell lung cancer biology and therapy. Nat Rev Cancer 2019; 19(9): 495–509
CrossRef Pubmed Google scholar
[61]
Lou NN, Zhang XC, Chen HJ, Zhou Q, Yan LX, Xie Z, Su J, Chen ZH, Tu HY, Yan HH, Wang Z, Xu CR, Jiang BY, Wang BC, Bai XY, Zhong WZ, Wu YL, Yang JJ. Clinical outcomes of advanced non-small-cell lung cancer patients with EGFR mutation, ALK rearrangement and EGFR/ALK co-alterations. Oncotarget 2016; 7(40): 65185–65195
CrossRef Pubmed Google scholar
[62]
Kunimasa K, Hirotsu Y, Kukita Y, Ueda Y, Sato Y, Kimura M, Otsuka T, Hamamoto Y, Tamiya M, Inoue T, Kawamura T, Nishino K, Amemiya K, Goto T, Mochizuki H, Honma K, Omata M, Kumagai T. EML4-ALK fusion variant.3 and co-occurrent PIK3CA E542K mutation exhibiting primary resistance to three generations of ALK inhibitors. Cancer Genet 2021; 256-257: 131–135
CrossRef Pubmed Google scholar
[63]
Lu C, Dong XR, Zhao J, Zhang XC, Chen HJ, Zhou Q, Tu HY, Ai XH, Chen XF, An GL, Bai J, Shan JL, Wang YN, Yang SY, Liu X, Zhuang W, Wu HT, Zhu B, Xia XF, Chen RR, Gu DJ, Xu HM, Wu YL, Yang JJ. Association of genetic and immuno-characteristics with clinical outcomes in patients with RET-rearranged non-small cell lung cancer: a retrospective multicenter study. J Hematol Oncol 2020; 13(1): 37
CrossRef Pubmed Google scholar
[64]
Skoulidis F, Li BT, Dy GK, Price TJ, Falchook GS, Wolf J, Italiano A, Schuler M, Borghaei H, Barlesi F, Kato T, Curioni-Fontecedro A, Sacher A, Spira A, Ramalingam SS, Takahashi T, Besse B, Anderson A, Ang A, Tran Q, Mather O, Henary H, Ngarmchamnanrith G, Friberg G, Velcheti V, Govindan R. Sotorasib for lung cancers with KRAS p. G12C mutation. N Engl J Med 2021; 384(25): 2371–2381
CrossRef Pubmed Google scholar
[65]
Moiseenko FV, Volkov NM, Zhabina AS, Stepanova ML, Rysev NA, Klimenko VV, Myslik AV, Artemieva EV, Egorenkov VV, Abduloeva NH, Ivantsov AO, Kuligina ES, Imyanitov EN, Moiseyenko VM. Monitoring of the presence of EGFR-mutated DNA during EGFR-targeted therapy may assist in the prediction of treatment outcome. Cancer Treat Res Commun 2022; 31: 100524
CrossRef Pubmed Google scholar
[66]
Buder A, Hochmair MJ, Setinek U, Pirker R, Filipits M. EGFR mutation tracking predicts survival in advanced EGFR-mutated non-small cell lung cancer patients treated with osimertinib. Transl Lung Cancer Res 2020; 9(2): 239–245
CrossRef Pubmed Google scholar
[67]
Provencio M, Serna-Blasco R, Franco F, Calvo V, Royuela A, Auglytė M, Sánchez-Hernández A, de Julián Campayo M, García-Girón C, Dómine M, Blasco A, Sánchez JM, Oramas J, Bosch-Barrera J, Sala MÁ, Sereno M, Ortega AL, Chara L, Hernández B, Padilla A, Coves J, Blanco R, Balsalobre J, Mielgo X, Bueno C, Jantus-Lewintre E, Molina-Vila MÁ, Romero A. Analysis of circulating tumour DNA to identify patients with epidermal growth factor receptor-positive non-small cell lung cancer who might benefit from sequential tyrosine kinase inhibitor treatment. Eur J Cancer 2021; 149: 61–72
CrossRef Pubmed Google scholar
[68]
Wang W, Sun X, Hui Z. Treatment optimization for brain metastasis from anaplastic lymphoma kinase rearrangement non-small-cell lung cancer. Oncol Res Treat 2019; 42(11): 599–606
CrossRef Pubmed Google scholar
[69]
Mazzola R, Jereczek-Fossa BA, Franceschini D, Tubin S, Filippi AR, Tolia M, Lancia A, Minniti G, Corradini S, Arcangeli S, Scorsetti M, Alongi F. Oligometastasis and local ablation in the era of systemic targeted and immunotherapy. Radiat Oncol 2020; 15(1): 92
CrossRef Pubmed Google scholar
[70]
Gomez DR, Blumenschein GR Jr, Lee JJ, Hernandez M, Ye R, Camidge DR, Doebele RC, Skoulidis F, Gaspar LE, Gibbons DL, Karam JA, Kavanagh BD, Tang C, Komaki R, Louie AV, Palma DA, Tsao AS, Sepesi B, William WN, Zhang J, Shi Q, Wang XS, Swisher SG, Heymach JV. Local consolidative therapy versus maintenance therapy or observation for patients with oligometastatic non-small-cell lung cancer without progression after first-line systemic therapy: a multicentre, randomised, controlled, phase 2 study. Lancet Oncol 2016; 17(12): 1672–1682
CrossRef Pubmed Google scholar
[71]
Gomez DR, Tang C, Zhang J, Blumenschein GR Jr, Hernandez M, Lee JJ, Ye R, Palma DA, Louie AV, Camidge DR, Doebele RC, Skoulidis F, Gaspar LE, Welsh JW, Gibbons DL, Karam JA, Kavanagh BD, Tsao AS, Sepesi B, Swisher SG, Heymach JV. Local consolidative therapy vs. maintenance therapy or observation for patients with oligometastatic non-small-cell lung cancer: long-term results of a multi-institutional, phase II, randomized study. J Clin Oncol 2019; 37(18): 1558–1565
CrossRef Pubmed Google scholar
[72]
Weickhardt AJ, Scheier B, Burke JM, Gan G, Lu X, Bunn PA Jr, Aisner DL, Gaspar LE, Kavanagh BD, Doebele RC, Camidge DR. Local ablative therapy of oligoprogressive disease prolongs disease control by tyrosine kinase inhibitors in oncogene-addicted non-small-cell lung cancer. J Thorac Oncol 2012; 7(12): 1807–1814
CrossRef Pubmed Google scholar
[73]
Qiu B, Liang Y, Li Q, Liu G, Wang F, Chen Z, Liu M, Zhao M, Liu H. Local therapy for oligoprogressive disease in patients with advanced stage non-small-cell lung cancer harboring epidermal growth factor receptor mutation. Clin Lung Cancer 2017; 18(6): e369–e373
CrossRef Pubmed Google scholar
[74]
Weir BA, Woo MS, Getz G, Perner S, Ding L, Beroukhim R, Lin WM, Province MA, Kraja A, Johnson LA, Shah K, Sato M, Thomas RK, Barletta JA, Borecki IB, Broderick S, Chang AC, Chiang DY, Chirieac LR, Cho J, Fujii Y, Gazdar AF, Giordano T, Greulich H, Hanna M, Johnson BE, Kris MG, Lash A, Lin L, Lindeman N, Mardis ER, McPherson JD, Minna JD, Morgan MB, Nadel M, Orringer MB, Osborne JR, Ozenberger B, Ramos AH, Robinson J, Roth JA, Rusch V, Sasaki H, Shepherd F, Sougnez C, Spitz MR, Tsao MS, Twomey D, Verhaak RG, Weinstock GM, Wheeler DA, Winckler W, Yoshizawa A, Yu S, Zakowski MF, Zhang Q, Beer DG, Wistuba II, Watson MA, Garraway LA, Ladanyi M, Travis WD, Pao W, Rubin MA, Gabriel SB, Gibbs RA, Varmus HE, Wilson RK, Lander ES, Meyerson M. Characterizing the cancer genome in lung adenocarcinoma. Nature 2007; 450(7171): 893–898
CrossRef Pubmed Google scholar
[75]
Ni X, Zhuo M, Su Z, Duan J, Gao Y, Wang Z, Zong C, Bai H, Chapman AR, Zhao J, Xu L, An T, Ma Q, Wang Y, Wu M, Sun Y, Wang S, Li Z, Yang X, Yong J, Su XD, Lu Y, Bai F, Xie XS, Wang J. Reproducible copy number variation patterns among single circulating tumor cells of lung cancer patients. Proc Natl Acad Sci USA 2013; 110(52): 21083–21088
CrossRef Pubmed Google scholar
[76]
Beaubier N, Bontrager M, Huether R, Igartua C, Lau D, Tell R, Bobe AM, Bush S, Chang AL, Hoskinson DC, Khan AA, Kudalkar E, Leibowitz BD, Lozachmeur A, Michuda J, Parsons J, Perera JF, Salahudeen A, Shah KP, Taxter T, Zhu W, White KP. Integrated genomic profiling expands clinical options for patients with cancer. Nat Biotechnol 2019; 37(11): 1351–1360
CrossRef Pubmed Google scholar
[77]
Testa U, Pelosi E, Castelli G. Molecular charcterization of lung adenocarcinoma combining whole exome sequencing, copy number analysis and gene expression profiling. Expert Rev Mol Diagn 2022; 22(1): 77–100
CrossRef Pubmed Google scholar
[78]
Chen YJ, Roumeliotis TI, Chang YH, Chen CT, Han CL, Lin MH, Chen HW, Chang GC, Chang YL, Wu CT, Lin MW, Hsieh MS, Wang YT, Chen YR, Jonassen I, Ghavidel FZ, Lin ZS, Lin KT, Chen CW, Sheu PY, Hung CT, Huang KC, Yang HC, Lin PY, Yen TC, Lin YW, Wang JH, Raghav L, Lin CY, Chen YS, Wu PS, Lai CT, Weng SH, Su KY, Chang WH, Tsai PY, Robles AI, Rodriguez H, Hsiao YJ, Chang WH, Sung TY, Chen JS, Yu SL, Choudhary JS, Chen HY, Yang PC, Chen YJ. Proteogenomics of non-smoking lung cancer in East Asia delineates molecular signatures of pathogenesis and progression. Cell 2020; 182(1): 226–244.e17
CrossRef Pubmed Google scholar
[79]
Bivona TG, Doebele RC. A framework for understanding and targeting residual disease in oncogene-driven solid cancers. Nat Med 2016; 22(5): 472–478
CrossRef Pubmed Google scholar
[80]
Lee JK, Shin JY, Kim S, Lee S, Park C, Kim JY, Koh Y, Keam B, Min HS, Kim TM, Jeon YK, Kim DW, Chung DH, Heo DS, Lee SH, Kim JI. Primary resistance to epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (TKIs) in patients with non-small-cell lung cancer harboring TKI-sensitive EGFR mutations: an exploratory study. Ann Oncol 2013; 24(8): 2080–2087
CrossRef Pubmed Google scholar
[81]
Jackman D, Pao W, Riely GJ, Engelman JA, Kris MG, Jänne PA, Lynch T, Johnson BE, Miller VA. Clinical definition of acquired resistance to epidermal growth factor receptor tyrosine kinase inhibitors in non-small-cell lung cancer. J Clin Oncol 2010; 28(2): 357–360
CrossRef Pubmed Google scholar
[82]
Yang JJ, Chen HJ, Yan HH, Zhang XC, Zhou Q, Su J, Wang Z, Xu CR, Huang YS, Wang BC, Yang XN, Zhong WZ, Nie Q, Liao RQ, Jiang BY, Dong S, Wu YL. Clinical modes of EGFR tyrosine kinase inhibitor failure and subsequent management in advanced non-small cell lung cancer. Lung Cancer 2013; 79(1): 33–39
CrossRef Pubmed Google scholar
[83]
Yang SR, Schultheis AM, Yu H, Mandelker D, Ladanyi M, Büttner R. Precision medicine in non-small cell lung cancer: current applications and future directions. Semin Cancer Biol 2022; 84: 184–198
CrossRef Pubmed Google scholar
[84]
Robichaux JP, Le X, Vijayan RSK, Hicks JK, Heeke S, Elamin YY, Lin HY, Udagawa H, Skoulidis F, Tran H, Varghese S, He J, Zhang F, Nilsson MB, Hu L, Poteete A, Rinsurongkawong W, Zhang X, Ren C, Liu X, Hong L, Zhang J, Diao L, Madison R, Schrock AB, Saam J, Raymond V, Fang B, Wang J, Ha MJ, Cross JB, Gray JE, Heymach JV. Structure-based classification predicts drug response in EGFR-mutant NSCLC. Nature 2021; 597(7878): 732–737
CrossRef Pubmed Google scholar
[85]
Passaro A, Jänne PA, Mok T, Peters S. Overcoming therapy resistance in EGFR-mutant lung cancer. Nat Can 2021; 2(4): 377–391
CrossRef Pubmed Google scholar
[86]
Shah MP, Neal JW. Targeting acquired and intrinsic resistance mechanisms in epidermal growth factor receptor mutant non-small-cell lung cancer. Drugs 2022; 82(6): 649–662
CrossRef Pubmed Google scholar
[87]
Choi YL, Soda M, Yamashita Y, Ueno T, Takashima J, Nakajima T, Yatabe Y, Takeuchi K, Hamada T, Haruta H, Ishikawa Y, Kimura H, Mitsudomi T, Tanio Y, Mano H; ALK Lung Cancer Study Group. EML4-ALK mutations in lung cancer that confer resistance to ALK inhibitors. N Engl J Med 2010; 363(18): 1734–1739
CrossRef Pubmed Google scholar
[88]
McCoach CE, Le AT, Aisner D, Gowan K, Jones KL, Merrick D, Bunn PA, Purcell WT, Varella-Garcia M, Camidge DR, Doebele RC. Resistance mechanisms to targeted therapies in ROS1+ and ALK+ non-small cell lung cancer. J Clin Oncol 2016; 34(15 suppl): 9065
CrossRef Google scholar
[89]
Lin JJ, Liu SV, McCoach CE, Zhu VW, Tan AC, Yoda S, Peterson J, Do A, Prutisto-Chang K, Dagogo-Jack I, Sequist LV, Wirth LJ, Lennerz JK, Hata AN, Mino-Kenudson M, Nardi V, Ou SI, Tan DS, Gainor JF. Mechanisms of resistance to selective RET tyrosine kinase inhibitors in RET fusion-positive non-small-cell lung cancer. Ann Oncol 2020; 31(12): 1725–1733
CrossRef Pubmed Google scholar
[90]
Tanaka N, Lin JJ, Li C, Ryan MB, Zhang J, Kiedrowski LA, Michel AG, Syed MU, Fella KA, Sakhi M, Baiev I, Juric D, Gainor JF, Klempner SJ, Lennerz JK, Siravegna G, Bar-Peled L, Hata AN, Heist RS, Corcoran RB. Clinical acquired resistance to KRASG12C inhibition through a novel KRAS switch-II pocket mutation and polyclonal alterations converging on RAS-MAPK reactivation. Cancer Discov 2021; 11(8): 1913–1922
CrossRef Pubmed Google scholar
[91]
Awad MM, Liu S, Rybkin II, Arbour KC, Dilly J, Zhu VW, Johnson ML, Heist RS, Patil T, Riely GJ, Jacobson JO, Yang X, Persky NS, Root DE, Lowder KE, Feng H, Zhang SS, Haigis KM, Hung YP, Sholl LM, Wolpin BM, Wiese J, Christiansen J, Lee J, Schrock AB, Lim LP, Garg K, Li M, Engstrom LD, Waters L, Lawson JD, Olson P, Lito P, Ou SI, Christensen JG, Jänne PA, Aguirre AJ. Acquired resistance to KRASG12C inhibition in cancer. N Engl J Med 2021; 384(25): 2382–2393
CrossRef Pubmed Google scholar
[92]
Koga T, Suda K, Fujino T, Ohara S, Hamada A, Nishino M, Chiba M, Shimoji M, Takemoto T, Arita T, Gmachl M, Hofmann MH, Soh J, Mitsudomi T. KRAS secondary mutations that confer acquired resistance to KRAS G12C inhibitors, sotorasib and adagrasib, and overcoming strategies: insights from in vitro experiments. J Thorac Oncol 2021; 16(8): 1321–1332
CrossRef Pubmed Google scholar
[93]
Kim TM, Song A, Kim DW, Kim S, Ahn YO, Keam B, Jeon YK, Lee SH, Chung DH, Heo DS. Mechanisms of acquired resistance to AZD9291: a mutation-selective, irreversible EGFR inhibitor. J Thorac Oncol 2015; 10(12): 1736–1744
CrossRef Pubmed Google scholar
[94]
Doebele RC, Pilling AB, Aisner DL, Kutateladze TG, Le AT, Weickhardt AJ, Kondo KL, Linderman DJ, Heasley LE, Franklin WA, Varella-Garcia M, Camidge DR. Mechanisms of resistance to crizotinib in patients with ALK gene rearranged non-small cell lung cancer. Clin Cancer Res 2012; 18(5): 1472–1482
CrossRef Pubmed Google scholar
[95]
Hua G, Zhang X, Zhang M, Wang Q, Chen X, Yu R, Bao H, Liu J, Wu X, Shao Y, Liang B, Lu K. Real-world circulating tumor DNA analysis depicts resistance mechanism and clonal evolution in ALK inhibitor-treated lung adenocarcinoma patients. ESMO Open 2022; 7(1): 100337
CrossRef Pubmed Google scholar
[96]
Rotow J, Bivona TG. Understanding and targeting resistance mechanisms in NSCLC. Nat Rev Cancer 2017; 17(11): 637–658
CrossRef Pubmed Google scholar
[97]
Zandi R, Larsen AB, Andersen P, Stockhausen MT, Poulsen HS. Mechanisms for oncogenic activation of the epidermal growth factor receptor. Cell Signal 2007; 19(10): 2013–2023
CrossRef Pubmed Google scholar
[98]
Tricker EM, Xu C, Uddin S, Capelletti M, Ercan D, Ogino A, Pratilas CA, Rosen N, Gray NS, Wong KK, Jänne PA. Combined EGFR/MEK inhibition prevents the emergence of resistance in EGFR-mutant lung cancer. Cancer Discov 2015; 5(9): 960–971
CrossRef Pubmed Google scholar
[99]
Ho CC, Liao WY, Lin CA, Shih JY, Yu CJ, Yang JC. Acquired BRAF V600E mutation as resistant mechanism after treatment with osimertinib. J Thorac Oncol 2017; 12(3): 567–572
CrossRef Pubmed Google scholar
[100]
Gold KA, Lee JJ, Harun N, Tang X, Price J, Kawedia JD, Tran HT, Erasmus JJ, Blumenschein GR, William WN, Wistuba II, Johnson FM. A phase I/II study combining erlotinib and dasatinib for non-small cell lung cancer. Oncologist 2014; 19(10): 1040–1041
CrossRef Pubmed Google scholar
[101]
Zhang Z, Lee JC, Lin L, Olivas V, Au V, LaFramboise T, Abdel-Rahman M, Wang X, Levine AD, Rho JK, Choi YJ, Choi CM, Kim SW, Jang SJ, Park YS, Kim WS, Lee DH, Lee JS, Miller VA, Arcila M, Ladanyi M, Moonsamy P, Sawyers C, Boggon TJ, Ma PC, Costa C, Taron M, Rosell R, Halmos B, Bivona TG. Activation of the AXL kinase causes resistance to EGFR-targeted therapy in lung cancer. Nat Genet 2012; 44(8): 852–860
CrossRef Pubmed Google scholar
[102]
Oh DY, Bang YJ. HER2-targeted therapies—a role beyond breast cancer. Nat Rev Clin Oncol 2020; 17(1): 33–48
CrossRef Pubmed Google scholar
[103]
Zhao Y, Murciano-Goroff YR, Xue JY, Ang A, Lucas J, Mai TT, Da Cruz Paula AF, Saiki AY, Mohn D, Achanta P, Sisk AE, Arora KS, Roy RS, Kim D, Li C, Lim LP, Li M, Bahr A, Loomis BR, de Stanchina E, Reis-Filho JS, Weigelt B, Berger M, Riely G, Arbour KC, Lipford JR, Li BT, Lito P. Diverse alterations associated with resistance to KRAS(G12C) inhibition. Nature 2021; 599(7886): 679–683
CrossRef Pubmed Google scholar
[104]
Ho CSL, Tüns AI, Schildhaus HU, Wiesweg M, Grüner BM, Hegedus B, Schuler M, Schramm A, Oeck S. HER2 mediates clinical resistance to the KRASG12C inhibitor sotorasib, which is overcome by co-targeting SHP2. Eur J Cancer 2021; 159: 16–23
CrossRef Pubmed Google scholar
[105]
Suzuki S, Yonesaka K, Teramura T, Takehara T, Kato R, Sakai H, Haratani K, Tanizaki J, Kawakami H, Hayashi H, Sakai K, Nishio K, Nakagawa K. KRAS inhibitor resistance in MET-amplified KRASG12C non-small cell lung cancer induced by RAS- and non-RAS-mediated cell signaling mechanisms. Clin Cancer Res 2021; 27(20): 5697–5707
CrossRef Pubmed Google scholar
[106]
Wang C, Zhang Z, Sun Y, Wang S, Wu M, Ou Q, Xu Y, Chen Z, Shao Y, Liu H, Hou P. RET fusions as primary oncogenic drivers and secondary acquired resistance to EGFR tyrosine kinase inhibitors in patients with non-small-cell lung cancer. J Transl Med 2022; 20(1): 390
CrossRef Pubmed Google scholar
[107]
Gower A, Hsu WH, Hsu ST, Wang Y, Giaccone G. EMT is associated with, but does not drive resistance to ALK inhibitors among EML4-ALK non-small cell lung cancer. Mol Oncol 2016; 10(4): 601–609
CrossRef Pubmed Google scholar
[108]
Offin M, Chan JM, Tenet M, Rizvi HA, Shen R, Riely GJ, Rekhtman N, Daneshbod Y, Quintanal-Villalonga A, Penson A, Hellmann MD, Arcila ME, Ladanyi M, Pe'er D, Kris MG, Rudin CM, Yu HA. Concurrent RB1 and TP53 alterations define a subset of EGFR-mutant lung cancers at risk for histologic transformation and inferior clinical outcomes. J Thorac Oncol 2019; 14(10): 1784–1793
CrossRef Pubmed Google scholar
[109]
Marcoux N, Gettinger SN, O’Kane G, Arbour KC, Neal JW, Husain H, Evans TL, Brahmer JR, Muzikansky A, Bonomi PD, Del Prete S, Wurtz A, Farago AF, Dias-Santagata D, Mino-Kenudson M, Reckamp KL, Yu HA, Wakelee HA, Shepherd FA, Piotrowska Z, Sequist LV. EGFR-mutant adenocarcinomas that transform to small-cell lung cancer and other neuroendocrine carcinomas: clinical outcomes. J Clin Oncol 2019; 37(4): 278–285
CrossRef Pubmed Google scholar
[110]
Adachi Y, Ito K, Hayashi Y, Kimura R, Tan TZ, Yamaguchi R, Ebi H. Epithelial-to-mesenchymal transition is a cause of both intrinsic and acquired resistance to KRAS G12C inhibitor in KRAS G12C-mutant non-small cell lung cancer. Clin Cancer Res 2020; 26(22): 5962–5973
CrossRef Pubmed Google scholar
[111]
Tulchinsky E, Demidov O, Kriajevska M, Barlev NA, Imyanitov E. EMT: a mechanism for escape from EGFR-targeted therapy in lung cancer. Biochim Biophys Acta Rev Cancer 2019; 1871(1): 29–39
CrossRef Pubmed Google scholar
[112]
Soothill JF. UK medical research. Lancet 1988; 332(8593): 1054
CrossRef Pubmed Google scholar
[113]
Huang X. The potential role of HGF-MET signaling and autophagy in the war of alectinib versus crizotinib against ALK-positive NSCLC. J Exp Clin Cancer Res 2018; 37(1): 33
CrossRef Pubmed Google scholar
[114]
Le X, Nilsson M, Goldman J, Reck M, Nakagawa K, Kato T, Ares LP, Frimodt-Moller B, Wolff K, Visseren-Grul C, Heymach JV, Garon EB. Dual EGFR-VEGF pathway inhibition: a promising strategy for patients with EGFR-mutant NSCLC. J Thorac Oncol 2021; 16(2): 205–215
CrossRef Pubmed Google scholar
[115]
Itatani Y, Kawada K, Yamamoto T, Sakai Y. Resistance to anti-angiogenic therapy in cancer-alterations to anti-VEGF pathway. Int J Mol Sci 2018; 19(4): 1232
CrossRef Pubmed Google scholar
[116]
Zhong J, Li ZX, Zhao J, Duan JC, Bai H, An TT, Yang XD, Wang J. Analysis of BIM (BCL-2 like 11 gene) deletion polymorphism in Chinese non-small cell lung cancer patients. Thorac Cancer 2014; 5(6): 509–516
CrossRef Pubmed Google scholar
[117]
Bivona TG, Hieronymus H, Parker J, Chang K, Taron M, Rosell R, Moonsamy P, Dahlman K, Miller VA, Costa C, Hannon G, Sawyers CL. FAS and NF-κB signalling modulate dependence of lung cancers on mutant EGFR. Nature 2011; 471(7339): 523–526
CrossRef Pubmed Google scholar
[118]
Budha NR, Frymoyer A, Smelick GS, Jin JY, Yago MR, Dresser MJ, Holden SN, Benet LZ, Ware JA. Drug absorption interactions between oral targeted anticancer agents and PPIs: is pH-dependent solubility the Achilles heel of targeted therapy?. Clin Pharmacol Ther 2012; 92(2): 203–213
CrossRef Pubmed Google scholar
[119]
Lim ZF, Ma PC. Emerging insights of tumor heterogeneity and drug resistance mechanisms in lung cancer targeted therapy. J Hematol Oncol 2019; 12(1): 134
CrossRef Pubmed Google scholar
[120]
Luo X, Gong X, Su L, Lin H, Yang Z, Yan X, Gao J. Activatable mitochondria-targeting organoarsenic prodrugs for bioenergetic cancer therapy. Angew Chem Int Ed Engl 2021; 60(3): 1403–1410
CrossRef Pubmed Google scholar
[121]
Cross DA, Ashton SE, Ghiorghiu S, Eberlein C, Nebhan CA, Spitzler PJ, Orme JP, Finlay MR, Ward RA, Mellor MJ, Hughes G, Rahi A, Jacobs VN, Red Brewer M, Ichihara E, Sun J, Jin H, Ballard P, Al-Kadhimi K, Rowlinson R, Klinowska T, Richmond GH, Cantarini M, Kim DW, Ranson MR, Pao W. AZD9291, an irreversible EGFR TKI, overcomes T790M-mediated resistance to EGFR inhibitors in lung cancer. Cancer Discov 2014; 4(9): 1046–1061
CrossRef Pubmed Google scholar
[122]
Giroux-Leprieur E, Dumenil C, Chinet T. Combination of crizotinib and osimertinib or erlotinib might overcome MET-mediated resistance to EGFR tyrosine kinase inhibitor in EGFR-mutated adenocarcinoma. J Thorac Oncol 2018; 13(11): e232–e234
CrossRef Pubmed Google scholar
[123]
Piotrowska Z, Isozaki H, Lennerz JK, Gainor JF, Lennes IT, Zhu VW, Marcoux N, Banwait MK, Digumarthy SR, Su W, Yoda S, Riley AK, Nangia V, Lin JJ, Nagy RJ, Lanman RB, Dias-Santagata D, Mino-Kenudson M, Iafrate AJ, Heist RS, Shaw AT, Evans EK, Clifford C, Ou SI, Wolf B, Hata AN, Sequist LV. Landscape of acquired resistance to osimertinib in EGFR-mutant NSCLC and clinical validation of combined EGFR and RET inhibition with osimertinib and BLU-667 for acquired RET fusion. Cancer Discov 2018; 8(12): 1529–1539
CrossRef Pubmed Google scholar
[124]
Wu SG, Shih JY. Management of acquired resistance to EGFR TKI-targeted therapy in advanced non-small cell lung cancer. Mol Cancer 2018; 17(1): 38
CrossRef Pubmed Google scholar
[125]
Yu L, Bazhenova L, Gold K, Tran L, Hilburn V, Vu P, Patel SP. Clinicopathologic and molecular characteristics of EGFR-mutant lung adenocarcinomas that transform to small cell lung cancer after TKI therapy. Transl Lung Cancer Res 2022; 11(3): 452–461
CrossRef Pubmed Google scholar
[126]
Arulananda S, Do H, Musafer A, Mitchell P, Dobrovic A, John T. Combination osimertinib and gefitinib in C797S and T790M EGFR-mutated non-small cell lung cancer. J Thorac Oncol 2017; 12(11): 1728–1732
CrossRef Pubmed Google scholar
[127]
Zhao J, Zou M, Lv J, Han Y, Wang G, Wang G. Effective treatment of pulmonary adenocarcinoma harboring triple EGFR mutations of L858R, T790M, and cis-C797S by osimertinib, bevacizumab, and brigatinib combination therapy: a case report. OncoTargets Ther 2018; 11: 5545–5550
CrossRef Pubmed Google scholar
[128]
Scalvini L, Castelli R, La Monica S, Tiseo M, Alfieri R. Fighting tertiary mutations in EGFR-driven lung-cancers: current advances and future perspectives in medicinal chemistry. Biochem Pharmacol 2021; 190: 114643
CrossRef Pubmed Google scholar
[129]
Neijssen J, Cardoso RMF, Chevalier KM, Wiegman L, Valerius T, Anderson GM, Moores SL, Schuurman J, Parren PWHI, Strohl WR, Chiu ML. Discovery of amivantamab (JNJ-61186372), a bispecific antibody targeting EGFR and MET. J Biol Chem 2021; 296: 100641
CrossRef Pubmed Google scholar
[130]
Sato H, Yamamoto H, Sakaguchi M, Shien K, Tomida S, Shien T, Ikeda H, Hatono M, Torigoe H, Namba K, Yoshioka T, Kurihara E, Ogoshi Y, Takahashi Y, Soh J, Toyooka S. Combined inhibition of MEK and PI3K pathways overcomes acquired resistance to EGFR-TKIs in non-small cell lung cancer. Cancer Sci 2018; 109(10): 3183–3196
CrossRef Pubmed Google scholar
[131]
Zhou C, Li X, Wang Q, Gao G, Zhang Y, Chen J, Shu Y, Hu Y, Fan Y, Fang J, Chen G, Zhao J, He J, Wu F, Zou J, Zhu X, Lin X. Pyrotinib in HER2-mutant advanced lung adenocarcinoma after platinum-based chemotherapy: a multicenter, open-label, single-arm, phase II study. J Clin Oncol 2020; 38(24): 2753–2761
CrossRef Pubmed Google scholar
[132]
Watanabe S, Yoshida T, Kawakami H, Takegawa N, Tanizaki J, Hayashi H, Takeda M, Yonesaka K, Tsurutani J, Nakagawa K. T790M-selective EGFR-TKI combined with dasatinib as an optimal strategy for overcoming EGFR-TKI resistance in T790M-positive non-small cell lung cancer. Mol Cancer Ther 2017; 16(11): 2563–2571
CrossRef Pubmed Google scholar
[133]
Okura N, Nishioka N, Yamada T, Taniguchi H, Tanimura K, Katayama Y, Yoshimura A, Watanabe S, Kikuchi T, Shiotsu S, Kitazaki T, Nishiyama A, Iwasaku M, Kaneko Y, Uchino J, Uehara H, Horinaka M, Sakai T, Tanaka K, Kozaki R, Yano S, Takayama K. ONO-7475, a novel AXL inhibitor, suppresses the adaptive resistance to initial EGFR-TKI treatment in EGFR-mutated non-small cell lung cancer. Clin Cancer Res 2020; 26(9): 2244–2256
CrossRef Pubmed Google scholar
[134]
Ramalingam SS, Cheng Y, Zhou C, Ohe Y, Imamura F, Cho BC, Lin MC, Majem M, Shah R, Rukazenkov Y, Todd A, Markovets A, Barrett JC, Chmielecki J, Gray J. Mechanisms of acquired resistance to first-line osimertinib: preliminary data from the phase III FLAURA study. Ann Oncol 2018; 29(suppl_8): VIII740
CrossRef Google scholar
[135]
Yin X, Li Y, Wang H, Jia T, Wang E, Luo Y, Wei Y, Qin Z, Ma X. Small cell lung cancer transformation: from pathogenesis to treatment. Semin Cancer Biol 2022; 86(Pt 2): 595–606
CrossRef Pubmed Google scholar
[136]
Schoenfeld AJ, Chan JM, Kubota D, Sato H, Rizvi H, Daneshbod Y, Chang JC, Paik PK, Offin M, Arcila ME, Davare MA, Shinde U, Pe′er D, Rekhtman N, Kris MG, Somwar R, Riely GJ, Ladanyi M, Yu HA. Tumor analyses reveal squamous transformation and off-target alterations as early resistance mechanisms to first-line osimertinib in EGFR-mutant lung cancer. Clin Cancer Res 2020; 26(11): 2654–2663
CrossRef Pubmed Google scholar
[137]
Russo A, Cardona AF, Caglevic C, Manca P, Ruiz-Patiño A, Arrieta O, Rolfo C. Overcoming TKI resistance in fusion-driven NSCLC: new generation inhibitors and rationale for combination strategies. Transl Lung Cancer Res 2020; 9(6): 2581–2598
CrossRef Pubmed Google scholar
[138]
Shaw AT, Solomon BJ, Besse B, Bauer TM, Lin CC, Soo RA, Riely GJ, Ou SI, Clancy JS, Li S, Abbattista A, Thurm H, Satouchi M, Camidge DR, Kao S, Chiari R, Gadgeel SM, Felip E, Martini JF. ALK resistance mutations and efficacy of lorlatinib in advanced anaplastic lymphoma kinase-positive non-small-cell lung cancer. J Clin Oncol 2019; 37(16): 1370–1379
CrossRef Pubmed Google scholar
[139]
Murray BW, Zhai D, Deng W, Zhang X, Ung J, Nguyen V, Zhang H, Barrera M, Parra A, Cowell J, Lee DJ, Aloysius H, Rogers E. TPX-0131, a potent CNS-penetrant, next-generation inhibitor of wild-type ALK and ALK-resistant mutations. Mol Cancer Ther 2021; 20(9): 1499–1507
CrossRef Pubmed Google scholar
[140]
Dagogo-Jack I, Yoda S, Lennerz JK, Langenbucher A, Lin JJ, Rooney MM, Prutisto-Chang K, Oh A, Adams NA, Yeap BY, Chin E, Do A, Marble HD, Stevens SE, Digumarthy SR, Saxena A, Nagy RJ, Benes CH, Azzoli CG, Lawrence MS, Gainor JF, Shaw AT, Hata AN. MET alterations are a recurring and actionable resistance mechanism in ALK-positive lung cancer. Clin Cancer Res 2020; 26(11): 2535–2545
CrossRef Pubmed Google scholar
[141]
McCoach CE, Le AT, Gowan K, Jones K, Schubert L, Doak A, Estrada-Bernal A, Davies KD, Merrick DT, Bunn PA Jr, Purcell WT, Dziadziuszko R, Varella-Garcia M, Aisner DL, Camidge DR, Doebele RC. Resistance mechanisms to targeted therapies in ROS1+ and ALK+ non-small cell lung cancer. Clin Cancer Res 2018; 24(14): 3334–3347
CrossRef Pubmed Google scholar
[142]
Facchinetti F, Loriot Y, Kuo MS, Mahjoubi L, Lacroix L, Planchard D, Besse B, Farace F, Auger N, Remon J, Scoazec JY, André F, Soria JC, Friboulet L. Crizotinib-resistant ROS1 mutations reveal a predictive kinase inhibitor sensitivity model for ROS1- and ALK-rearranged lung cancers. Clin Cancer Res 2016; 22(24): 5983–5991
CrossRef Pubmed Google scholar
[143]
Katayama R, Shaw AT, Khan TM, Mino-Kenudson M, Solomon BJ, Halmos B, Jessop NA, Wain JC, Yeo AT, Benes C, Drew L, Saeh JC, Crosby K, Sequist LV, Iafrate AJ, Engelman JA. Mechanisms of acquired crizotinib resistance in ALK-rearranged lung Cancers. Sci Transl Med 2012; 4(120): 120ra17
CrossRef Pubmed Google scholar
[144]
Drilon A, Somwar R, Wagner JP, Vellore NA, Eide CA, Zabriskie MS, Arcila ME, Hechtman JF, Wang L, Smith RS, Kris MG, Riely GJ, Druker BJ, O’Hare T, Ladanyi M, Davare MA. A novel crizotinib-resistant solvent-front mutation responsive to cabozantinib therapy in a patient with ROS1-rearranged lung cancer. Clin Cancer Res 2016; 22(10): 2351–2358
CrossRef Pubmed Google scholar
[145]
Gainor JF, Tseng D, Yoda S, Dagogo-Jack I, Friboulet L, Lin JJ, Hubbeling HG, Dardaei L, Farago AF, Schultz KR, Ferris LA, Piotrowska Z, Hardwick J, Huang D, Mino-Kenudson M, Iafrate AJ, Hata AN, Yeap BY, Shaw AT. Patterns of metastatic spread and mechanisms of resistance to crizotinib in ROS1-positive non-small-cell lung cancer. JCO Precis Oncol 2017; 2017: PO.17.00063
CrossRef Pubmed Google scholar
[146]
Cui M, Han Y, Li P, Zhang J, Ou Q, Tong X, Zhao R, Dong N, Wu X, Li W, Jiang G. Molecular and clinicopathological characteristics of ROS1-rearranged non-small-cell lung cancers identified by next-generation sequencing. Mol Oncol 2020; 14(11): 2787–2795
CrossRef Pubmed Google scholar
[147]
Subbiah V, Shen T, Terzyan SS, Liu X, Hu X, Patel KP, Hu M, Cabanillas M, Behrang A, Meric-Bernstam F, Vo PTT, Mooers BHM, Wu J. Structural basis of acquired resistance to selpercatinib and pralsetinib mediated by non-gatekeeper RET mutations. Ann Oncol 2021; 32(2): 261–268
CrossRef Pubmed Google scholar
[148]
Nelson-Taylor SK, Le AT, Yoo M, Schubert L, Mishall KM, Doak A, Varella-Garcia M, Tan AC, Doebele RC. Resistance to RET-inhibition in RET-rearranged NSCLC is mediated by reactivation of RAS/MAPK signaling. Mol Cancer Ther 2017; 16(8): 1623–1633
CrossRef Pubmed Google scholar
[149]
Drusbosky LM, Rodriguez E, Dawar R, Ikpeazu CV. Therapeutic strategies in RET gene rearranged non-small cell lung cancer. J Hematol Oncol 2021; 14(1): 50
CrossRef Pubmed Google scholar
[150]
Shimizu Y, Maruyama K, Suzuki M, Kawachi H, Low SK, Oh-Hara T, Takeuchi K, Fujita N, Nagayama S, Katayama R. Acquired resistance to BRAF inhibitors is mediated by BRAF splicing variants in BRAF V600E mutation-positive colorectal neuroendocrine carcinoma. Cancer Lett 2022; 543: 215799
CrossRef Pubmed Google scholar
[151]
Kulkarni A, Al-Hraishawi H, Simhadri S, Hirshfield KM, Chen S, Pine S, Jeyamohan C, Sokol L, Ali S, Teo ML, White E, Rodriguez-Rodriguez L, Mehnert JM, Ganesan S. BRAF fusion as a novel mechanism of acquired resistance to vemurafenib in BRAFV600E mutant melanoma. Clin Cancer Res 2017; 23(18): 5631–5638
CrossRef Pubmed Google scholar
[152]
Johnson DB, Menzies AM, Zimmer L, Eroglu Z, Ye F, Zhao S, Rizos H, Sucker A, Scolyer RA, Gutzmer R, Gogas H, Kefford RF, Thompson JF, Becker JC, Berking C, Egberts F, Loquai C, Goldinger SM, Pupo GM, Hugo W, Kong X, Garraway LA, Sosman JA, Ribas A, Lo RS, Long GV, Schadendorf D. Acquired BRAF inhibitor resistance: a multicenter meta-analysis of the spectrum and frequencies, clinical behaviour, and phenotypic associations of resistance mechanisms. Eur J Cancer 2015; 51(18): 2792–2799
CrossRef Pubmed Google scholar
[153]
Proietti I, Skroza N, Bernardini N, Tolino E, Balduzzi V, Marchesiello A, Michelini S, Volpe S, Mambrin A, Mangino G, Romeo G, Maddalena P, Rees C, Potenza C. Mechanisms of acquired BRAF inhibitor resistance in melanoma: a systematic review. Cancers (Basel) 2020; 12(10): 2801
CrossRef Pubmed Google scholar
[154]
Rudin CM, Hong K, Streit M. Molecular characterization of acquired resistance to the BRAF inhibitor dabrafenib in a patient with BRAF-mutant non-small-cell lung cancer. J Thorac Oncol 2013; 8(5): e41–e42
CrossRef Pubmed Google scholar
[155]
Ding G, Wang J, Ding P, Wen Y, Yang L. Case report: HER2 amplification as a resistance mechanism to crizotinib in NSCLC with MET exon 14 skipping. Cancer Biol Ther 2019; 20(6): 837–842
CrossRef Pubmed Google scholar
[156]
Bahcall M, Awad MM, Sholl LM, Wilson FH, Xu M, Wang S, Palakurthi S, Choi J, Ivanova EV, Leonardi GC, Ulrich BC, Paweletz CP, Kirschmeier PT, Watanabe M, Baba H, Nishino M, Nagy RJ, Lanman RB, Capelletti M, Chambers ES, Redig AJ, VanderLaan PA, Costa DB, Imamura Y, Jänne PA. Amplification of wild-type KRAS imparts resistance to crizotinib in MET exon 14 mutant non-small cell lung cancer. Clin Cancer Res 2018; 24(23): 5963–5976
CrossRef Pubmed Google scholar
[157]
Dagogo-Jack I, Fabrizio D, Lennerz J, Schrock AB, Young L, Mino-Kenudson M, Digumarthy SR, Heist RS, Ali SM, Miller VA, Shaw AT. Circulating tumor DNA identifies EGFR coamplification as a mechanism of resistance to crizotinib in a patient with advanced MET-amplified lung adenocarcinoma. J Thorac Oncol 2017; 12(10): e155–e157
CrossRef Pubmed Google scholar
[158]
Yu Y, Ren Y, Fang J, Cao L, Liang Z, Guo Q, Han S, Ji Z, Wang Y, Sun Y, Chen Y, Li X, Xu H, Zhou J, Jiang L, Cheng Y, Han Z, Shi J, Chen G, Ma R, Fan Y, Sun S, Jiao L, Jia X, Wang L, Lu P, Li J, Xu Q, Luo X, Su W, Lu S. ctDNA analysis in the savolitinib phase II study in non-small cell lung cancer (NSCLC) patients (pts) harboring MET exon 14 skipping alterations (METex14). Cancer Res 2021; 81(13_Supplement): CT158
CrossRef Google scholar
[159]
Shen B, Wu F, Ye J, Liang R, Wang R, Yu R, Wu X, Shao YW, Feng J. Crizotinib-resistant MET mutations in gastric cancer patients are sensitive to type II tyrosine kinase inhibitors. Future Oncol 2019; 15(22): 2585–2593
CrossRef Pubmed Google scholar
[160]
Guo R, Offin M, Brannon AR, Chang J, Chow A, Delasos L, Girshman J, Wilkins O, McCarthy CG, Makhnin A, Falcon C, Scott K, Tian Y, Cecchi F, Hembrough T, Alex D, Shen R, Benayed R, Li BT, Rudin CM, Kris MG, Arcila ME, Rekhtman N, Paik P, Zehir A, Drilon A. MET exon 14-altered lung cancers and MET inhibitor resistance. Clin Cancer Res 2021; 27(3): 799–806
CrossRef Pubmed Google scholar
[161]
Koga T, Kobayashi Y, Tomizawa K, Suda K, Kosaka T, Sesumi Y, Fujino T, Nishino M, Ohara S, Chiba M, Shimoji M, Takemoto T, Suzuki M, Jänne PA, Mitsudomi T. Activity of a novel HER2 inhibitor, poziotinib, for HER2 exon 20 mutations in lung cancer and mechanism of acquired resistance: an in vitro study. Lung Cancer 2018; 126: 72–79
CrossRef Pubmed Google scholar
[162]
Chuang JC, Stehr H, Liang Y, Das M, Huang J, Diehn M, Wakelee HA, Neal JW. ERBB2-mutated metastatic non-small cell lung cancer: response and resistance to targeted therapies. J Thorac Oncol 2017; 12(5): 833–842
CrossRef Pubmed Google scholar
[163]
Yu X, Wang T, Lou Y, Li Y. Combination of in silico analysis and in vitro assay to investigate drug response to human epidermal growth factor receptor 2 mutations in lung cancer. Mol Inform 2016; 35(1): 25–35
CrossRef Pubmed Google scholar
[164]
Antonia SJ, Villegas A, Daniel D, Vicente D, Murakami S, Hui R, Yokoi T, Chiappori A, Lee KH, de Wit M, Cho BC, Bourhaba M, Quantin X, Tokito T, Mekhail T, Planchard D, Kim YC, Karapetis CS, Hiret S, Ostoros G, Kubota K, Gray JE, Paz-Ares L, de Castro Carpeño J, Wadsworth C, Melillo G, Jiang H, Huang Y, Dennis PA, Özgüroğlu M; PACIFIC Investigators. Durvalumab after chemoradiotherapy in stage III non-small-cell lung cancer. N Engl J Med 2017; 377(20): 1919–1929
CrossRef Pubmed Google scholar
[165]
Antonia SJ, Villegas A, Daniel D, Vicente D, Murakami S, Hui R, Kurata T, Chiappori A, Lee KH, de Wit M, Cho BC, Bourhaba M, Quantin X, Tokito T, Mekhail T, Planchard D, Kim YC, Karapetis CS, Hiret S, Ostoros G, Kubota K, Gray JE, Paz-Ares L, de Castro Carpeño J, Faivre-Finn C, Reck M, Vansteenkiste J, Spigel DR, Wadsworth C, Melillo G, Taboada M, Dennis PA, Özgüroğlu M; PACIFIC Investigators. Overall survival with durvalumab after chemoradiotherapy in stage III NSCLC. N Engl J Med 2018; 379(24): 2342–2350
CrossRef Pubmed Google scholar
[166]
Faivre-Finn C, Vicente D, Kurata T, Planchard D, Paz-Ares L, Vansteenkiste JF, Spigel DR, Garassino MC, Reck M, Senan S, Naidoo J, Rimner A, Wu YL, Gray JE, Özgüroğlu M, Lee KH, Cho BC, Kato T, de Wit M, Newton M, Wang L, Thiyagarajah P, Antonia SJ. Four-year survival with durvalumab after chemoradiotherapy in stage III NSCLC—an update from the PACIFIC trial. J Thorac Oncol 2021; 16(5): 860–867
CrossRef Pubmed Google scholar
[167]
Lee CK, Man J, Lord S, Cooper W, Links M, Gebski V, Herbst RS, Gralla RJ, Mok T, Yang JC. Clinical and molecular characteristics associated with survival among patients treated with checkpoint inhibitors for advanced non-small cell lung carcinoma: a systematic review and meta-analysis. JAMA Oncol 2018; 4(2): 210–216
CrossRef Pubmed Google scholar
[168]
Garassino MC, Cho BC, Kim JH, Mazières J, Vansteenkiste J, Lena H, Corral Jaime J, Gray JE, Powderly J, Chouaid C, Bidoli P, Wheatley-Price P, Park K, Soo RA, Huang Y, Wadsworth C, Dennis PA, Rizvi NA; ATLANTIC Investigators. Durvalumab as third-line or later treatment for advanced non-small-cell lung cancer (ATLANTIC): an open-label, single-arm, phase 2 study. Lancet Oncol 2018; 19(4): 521–536
CrossRef Pubmed Google scholar
[169]
Hayashi H, Chiba Y, Sakai K, Fujita T, Yoshioka H, Sakai D, Kitagawa C, Naito T, Takeda K, Okamoto I, Mitsudomi T, Kawakami Y, Nishio K, Nakamura S, Yamamoto N, Nakagawa K. A randomized phase II study comparing nivolumab with carboplatin-pemetrexed for patients with EGFR mutation-positive nonsquamous non-small-cell lung cancer who acquire resistance to tyrosine kinase inhibitors not due to a secondary T790M mutation: rationale and protocol design for the WJOG8515L study. Clin Lung Cancer 2017; 18(6): 719–723
CrossRef Pubmed Google scholar
[170]
Streicher K, Morehouse C, Sebastian Y, Kuziora M, Higgs BW, Ranade K. Gene expression analysis of tumor biopsies from a trial of durvalumab to identify subsets of NSCLC with shared immune pathways. J Clin Oncol 2017; 35(15 suppl): 3041
CrossRef Google scholar
[171]
Martin P, Spitzmueller A, Wu S, Widmaier M, Korn R, Althammer S, Zha J, Higgs BW, Cooper Z, Steele K. Mutually exclusive expression of CD73 and PDL1 in tumors from patients (pt) with NSCLC, gastroesophageal (GE) and urothelial bladder carcinoma (UBC). J Clin Oncol 2017; 35(15 suppl): 3079
CrossRef Google scholar
[172]
Offin M, Rizvi H, Tenet M, Ni A, Sanchez-Vega F, Li BT, Drilon A, Kris MG, Rudin CM, Schultz N, Arcila ME, Ladanyi M, Riely GJ, Yu H, Hellmann MD. Tumor mutation burden and efficacy of EGFR-tyrosine kinase inhibitors in patients with EGFR-mutant lung cancers. Clin Cancer Res 2019; 25(3): 1063–1069
CrossRef Pubmed Google scholar
[173]
Haratani K, Hayashi H, Tanaka T, Kaneda H, Togashi Y, Sakai K, Hayashi K, Tomida S, Chiba Y, Yonesaka K, Nonagase Y, Takahama T, Tanizaki J, Tanaka K, Yoshida T, Tanimura K, Takeda M, Yoshioka H, Ishida T, Mitsudomi T, Nishio K, Nakagawa K. Tumor immune microenvironment and nivolumab efficacy in EGFR mutation-positive non-small-cell lung cancer based on T790M status after disease progression during EGFR-TKI treatment. Ann Oncol 2017; 28(7): 1532–1539
CrossRef Pubmed Google scholar
[174]
Isomoto K, Haratani K, Hayashi H, Shimizu S, Tomida S, Niwa T, Yokoyama T, Fukuda Y, Chiba Y, Kato R, Tanizaki J, Tanaka K, Takeda M, Ogura T, Ishida T, Ito A, Nakagawa K. Impact of EGFR-TKI treatment on the tumor immune microenvironment in EGFR mutation-positive non-small cell lung cancer. Clin Cancer Res 2020; 26(8): 2037–2046
CrossRef Pubmed Google scholar
[175]
Liu S, Wu F, Li X, Zhao C, Jia Y, Jia K, Han R, Qiao M, Li W, Yu J, Zhou F, Xiong A, Chen B, Fan J, Ren S, Zhou C. Patients with short PFS to EGFR-TKIs predicted better response to subsequent anti-PD-1/PD-L1 based immunotherapy in EGFR common mutation NSCLC. Front Oncol 2021; 11: 639947
CrossRef Pubmed Google scholar
[176]
Hastings K, Yu HA, Wei W, Sanchez-Vega F, DeVeaux M, Choi J, Rizvi H, Lisberg A, Truini A, Lydon CA, Liu Z, Henick BS, Wurtz A, Cai G, Plodkowski AJ, Long NM, Halpenny DF, Killam J, Oliva I, Schultz N, Riely GJ, Arcila ME, Ladanyi M, Zelterman D, Herbst RS, Goldberg SB, Awad MM, Garon EB, Gettinger S, Hellmann MD, Politi K. EGFR mutation subtypes and response to immune checkpoint blockade treatment in non-small-cell lung cancer. Ann Oncol 2019; 30(8): 1311–1320
CrossRef Pubmed Google scholar
[177]
Seegobin K, Majeed U, Wiest N, Manochakian R, Lou Y, Zhao Y. Immunotherapy in non-small cell lung cancer with actionable mutations other than EGFR. Front Oncol 2021; 11: 750657
CrossRef Pubmed Google scholar
[178]
Mazieres J, Drilon A, Lusque A, Mhanna L, Cortot AB, Mezquita L, Thai AA, Mascaux C, Couraud S, Veillon R, Van den Heuvel M, Neal J, Peled N, Früh M, Ng TL, Gounant V, Popat S, Diebold J, Sabari J, Zhu VW, Rothschild SI, Bironzo P, Martinez-Marti A, Curioni-Fontecedro A, Rosell R, Lattuca-Truc M, Wiesweg M, Besse B, Solomon B, Barlesi F, Schouten RD, Wakelee H, Camidge DR, Zalcman G, Novello S, Ou SI, Milia J, Gautschi O. Immune checkpoint inhibitors for patients with advanced lung cancer and oncogenic driver alterations: results from the IMMUNOTARGET registry. Ann Oncol 2019; 30(8): 1321–1328
CrossRef Pubmed Google scholar
[179]
Tanaka I, Morise M. Current immunotherapeutic strategies targeting the PD-1/PD-L1 axis in non-small cell lung cancer with oncogenic driver mutations. Int J Mol Sci 2021; 23(1): 245
CrossRef Pubmed Google scholar
[180]
Negrao MV, Skoulidis F, Montesion M, Schulze K, Bara I, Shen V, Xu H, Hu S, Sui D, Elamin YY, Le X, Goldberg ME, Murugesan K, Wu CJ, Zhang J, Barreto DS, Robichaux JP, Reuben A, Cascone T, Gay CM, Mitchell KG, Hong L, Rinsurongkawong W, Roth JA, Swisher SG, Lee J, Tsao A, Papadimitrakopoulou V, Gibbons DL, Glisson BS, Singal G, Miller VA, Alexander B, Frampton G, Albacker LA, Shames D, Zhang J, Heymach JV. Oncogene-specific differences in tumor mutational burden, PD-L1 expression, and outcomes from immunotherapy in non-small cell lung cancer. J Immunother Cancer 2021; 9(8): e002891
CrossRef Pubmed Google scholar
[181]
Ricciuti B, Son J, Okoro JJ, Mira A, Patrucco E, Eum Y, Wang X, Paranal R, Wang H, Lin M, Haikala HM, Li J, Xu Y, Alessi JV, Chhoeu C, Redig AJ, Köhler J, Dholakia KH, Chen Y, Richard E, Nokin MJ, Santamaria D, Gokhale PC, Awad MM, Jänne PA, Ambrogio C. Comparative analysis and isoform-specific therapeutic vulnerabilities of KRAS Mutations in non-small cell lung cancer. Clin Cancer Res 2022; 28(8): 1640–1650
CrossRef Pubmed Google scholar
[182]
Kumagai S, Koyama S, Nishikawa H. Antitumour immunity regulated by aberrant ERBB family signalling. Nat Rev Cancer 2021; 21(3): 181–197
CrossRef Pubmed Google scholar
[183]
Gavralidis A, Gainor JF. Immunotherapy in EGFR-mutant and ALK-positive lung cancer: implications for oncogene-driven lung cancer. Cancer J 2020; 26(6): 517–524
CrossRef Pubmed Google scholar
[184]
To KKW, Fong W, Cho WCS. Immunotherapy in treating EGFR-mutant lung cancer: current challenges and new strategies. Front Oncol 2021; 11: 635007
CrossRef Pubmed Google scholar
[185]
Yang JC, Shepherd FA, Kim DW, Lee GW, Lee JS, Chang GC, Lee SS, Wei YF, Lee YG, Laus G, Collins B, Pisetzky F, Horn L. Osimertinib plus durvalumab versus osimertinib monotherapy in EGFR T790M-positive NSCLC following previous EGFR TKI therapy: CAURAL brief report. J Thorac Oncol 2019; 14(5): 933–939
CrossRef Pubmed Google scholar
[186]
Gettinger S, Hellmann MD, Chow LQM, Borghaei H, Antonia S, Brahmer JR, Goldman JW, Gerber DE, Juergens RA, Shepherd FA, Laurie SA, Young TC, Li X, Geese WJ, Rizvi N. Nivolumab plus erlotinib in patients with EGFR-mutant advanced NSCLC. J Thorac Oncol 2018; 13(9): 1363–1372
CrossRef Pubmed Google scholar
[187]
Oxnard GR, Yang JC, Yu H, Kim SW, Saka H, Horn L, Goto K, Ohe Y, Mann H, Thress KS, Frigault MM, Vishwanathan K, Ghiorghiu D, Ramalingam SS, Ahn MJ. TATTON: a multi-arm, phase Ib trial of osimertinib combined with selumetinib, savolitinib, or durvalumab in EGFR-mutant lung cancer. Ann Oncol 2020; 31(4): 507–516
CrossRef Pubmed Google scholar
[188]
Creelan BC, Yeh TC, Kim SW, Nogami N, Kim DW, Chow LQM, Kanda S, Taylor R, Tang W, Tang M, Angell HK, Roudier MP, Marotti M, Gibbons DL. A Phase 1 study of gefitinib combined with durvalumab in EGFR TKI-naive patients with EGFR mutation-positive locally advanced/metastatic non-small-cell lung cancer. Br J Cancer 2021; 124(2): 383–390
CrossRef Pubmed Google scholar
[189]
Yang JC, Gadgeel SM, Sequist LV, Wu CL, Papadimitrakopoulou VA, Su WC, Fiore J, Saraf S, Raftopoulos H, Patnaik A. Pembrolizumab in combination with erlotinib or gefitinib as first-line therapy for advanced NSCLC with sensitizing EGFR mutation. J Thorac Oncol 2019; 14(3): 553–559
CrossRef Pubmed Google scholar
[190]
AntoniaSJRivzi NAChowLQBorghaeiHBrahmerJR JuergensRShepherd FAShepherdSAGerberDEGerberJ ShenYHarbison CHarbisonACGettingerS. Nivolumab (anti-PD-1; BMS-936558, ONO-4538) in combination with platinumbased doublet chemotherapy (Pt-DC) or erlotinib in advanced non small cell lung cancer (NSCLC). J Thorac Oncol 2014; 32(5s): abstr 8113
[191]
Cocco E, Scaltriti M, Drilon A. NTRK fusion-positive cancers and TRK inhibitor therapy. Nat Rev Clin Oncol 2018; 15(12): 731–747
CrossRef Pubmed Google scholar
[192]
Schoenfeld AJ, Arbour KC, Rizvi H, Iqbal AN, Gadgeel SM, Girshman J, Kris MG, Riely GJ, Yu HA, Hellmann MD. Severe immune-related adverse events are common with sequential PD-(L)1 blockade and osimertinib. Ann Oncol 2019; 30(5): 839–844
CrossRef Pubmed Google scholar
[193]
Latif H, Liu SV. Combining immunotherapy and epidermal growth factor receptor kinase inhibitors: worth the risk?. Ann Transl Med 2019; 7(Suppl 3): S76
CrossRef Pubmed Google scholar
[194]
Reck M, Mok TSK, Nishio M, Jotte RM, Cappuzzo F, Orlandi F, Stroyakovskiy D, Nogami N, Rodríguez-Abreu D, Moro-Sibilot D, Thomas CA, Barlesi F, Finley G, Lee A, Coleman S, Deng Y, Kowanetz M, Shankar G, Lin W, Socinski MA, Reck M, Mok TSK, Nishio M, Jotte RM, Cappuzzo F, Orlandi F, Stroyakovskiy D, Nogami N, Rodríguez-Abreu D, Moro-Sibilot D, Thomas CA, Barlesi F, Finley G, Lee A, Coleman S, Deng Y, Kowanetz M, Shankar G, Lin W, Socinski MA; IMpower150 Study Group. Atezolizumab plus bevacizumab and chemotherapy in non-small-cell lung cancer (IMpower150): key subgroup analyses of patients with EGFR mutations or baseline liver metastases in a randomised, open-label phase 3 trial. Lancet Respir Med 2019; 7(5): 387–401
CrossRef Pubmed Google scholar
[195]
Nagasaka M, Ou SI. ORIENT-31 as the Sakigake “Charging Samurai” born of IMpower150 but will MARIPOSA-2 IMPRESS in the “Meiji Modernization” of post-3G EGFR TKI progression?. Lung Cancer (Auckl) 2022; 13: 13–21
CrossRef Pubmed Google scholar
[196]
Gadgeel S, Dziubek K, Nagasaka M, Braun T, Hassan K, Cheng H, Wozniak A, Halmos B, Stevenson J, Patil P, Pennell N, Fidler MJ, Bonomi P, Qin A, Niu Z, Nagrath S, Kalemkerian G. OA09.03 Pembrolizumab in combination with platinum-based chemotherapy in recurrent EGFR/ALK-positive non-small cell lung cancer (NSCLC). J Thorac Oncol 2021; 16(10): S863
CrossRef Google scholar
[197]
Han B, Tian P, Zhao Y, Yu X, Guo Q, Yu Z, Zhang X, Li Y, Chen L, Shi X, Zhang Y, Wang J. 148P A phase II study of tislelizumab plus chemotherapy in EGFR mutated advanced non-squamous NSCLC patients failed to EGFR TKI therapies: first analysis. Ann Oncol 2021; 32: S1443–S1444
CrossRef Google scholar
[198]
Zhou C, Gao G, Wu F, Chen X, Li W, Xiong A, Su CX, Cai W, Ren S, Jiang T, Wang YN, Kang X, Wang Q. A phase Ib study of SHR-1210 plus apatinib for heavily previously treated advanced non-squamous non-small cell lung cancer (NSCLC) patients. J Clin Oncol 2018; 36(15 suppl): e21017
CrossRef Google scholar
[199]
Lipson EJ, Tawbi H A-H, Schadendorf D, Ascierto PA, Matamala L, Gutiérrez EC, Rutkowski P, Gogas H, Lao CD, de Menezes JJ, Dalle S, Arance AM, Grob J-J, Srivastava S, Abaskharoun M, Simonsen KL, Li B, Long GV, Hodi FS. Relatlimab (RELA) plus nivolumab (NIVO) versus NIVO in first-line advanced melanoma: primary phase III results from RELATIVITY-047 (CA224-047). J Clin Oncol 2021; 39(15_suppl): 9503
CrossRef Google scholar
[200]
Harding JJ, Patnaik A, Moreno V, Stein M, Jankowska AM, de Mendizabal NV, Liu ZT, Koneru M, Calvo E. A phase Ia/Ib study of an anti-TIM-3 antibody (LY3321367) monotherapy or in combination with an anti-PD-L1 antibody (LY3300054): interim safety, efficacy, and pharmacokinetic findings in advanced cancers. J Clin Oncol 2019; 37(8_suppl): 12
CrossRef Google scholar
[201]
Rodriguez-Abreu D, Johnson ML, Hussein MA, Cobo M, Patel AJ, Secen NM, Lee KH, Massuti B, Hiret S, Yang J C-H, Barlesi F, Lee DH, Paz-Ares LG, Hsieh RW, Miller K, Patil N, Twomey P, Kapp AV, Meng R, Cho BC. Primary analysis of a randomized, double-blind, phase II study of the anti-TIGIT antibody tiragolumab (tira) plus atezolizumab (atezo) versus placebo plus atezo as first-line (1L) treatment in patients with PD-L1-selected NSCLC (CITYSCAPE). J Clin Oncol 2020; 38(15_suppl): 9503
CrossRef Google scholar
[202]
Jin R, Liu L, Xing Y, Meng T, Ma L, Pei J, Cong Y, Zhang X, Ren Z, Wang X, Shen J, Yu K. Dual mechanisms of novel CD73-targeted antibody and antibody-drug conjugate in inhibiting lung tumor growth and promoting antitumor immune-effector function. Mol Cancer Ther 2020; 19(11): 2340–2352
CrossRef Pubmed Google scholar
[203]
Passarelli A, Aieta M, Sgambato A, Gridelli C. Targeting immunometabolism mediated by CD73 pathway in EGFR-mutated non-small cell lung cancer: a new hope for overcoming immune resistance. Front Immunol 2020; 11: 1479
CrossRef Pubmed Google scholar
[204]
Genova C, Dellepiane C, Carrega P, Sommariva S, Ferlazzo G, Pronzato P, Gangemi R, Filaci G, Coco S, Croce M. Therapeutic implications of tumor microenvironment in lung cancer: focus on immune checkpoint blockade. Front Immunol 2022; 12: 799455
CrossRef Pubmed Google scholar
[205]
Montisci A, Vietri MT, Palmieri V, Sala S, Donatelli F, Napoli C. Cardiac toxicity associated with cancer immunotherapy and biological drugs. Cancers (Basel) 2021; 13(19): 4797
CrossRef Pubmed Google scholar
[206]
Xia L, Wen L, Wang S. SHP2 inhibition benefits epidermal growth factor receptor-mutated non-small cell lung cancer therapy. Mini Rev Med Chem 2021; 21(11): 1314–1321
CrossRef Pubmed Google scholar
[207]
Song Y, Zhao M, Zhang H, Yu B. Double-edged roles of protein tyrosine phosphatase SHP2 in cancer and its inhibitors in clinical trials. Pharmacol Ther 2022; 230: 107966
CrossRef Pubmed Google scholar
[208]
Laskin J, Liu SV, Tolba K, Heining C, Schlenk RF, Cheema P, Cadranel J, Jones MR, Drilon A, Cseh A, Gyorffy S, Solca F, Duruisseaux M. NRG1 fusion-driven tumors: biology, detection, and the therapeutic role of afatinib and other ErbB-targeting agents. Ann Oncol 2020; 31(12): 1693–1703
CrossRef Pubmed Google scholar
[209]
Rosas D, Raez LE, Russo A, Rolfo C. Neuregulin 1 gene (NRG1). A potentially new targetable alteration for the treatment of lung cancer. Cancers (Basel) 2021; 13(20): 5038
CrossRef Pubmed Google scholar
[210]
Gan HK, Millward M, Jalving M, Garrido-Laguna I, Lickliter JD, Schellens JHM, Lolkema MP, Van Herpen CLM, Hug B, Tang L, O’Connor-Semmes R, Gagnon R, Ellis C, Ganji G, Matheny C, Drilon A. A phase I, first-in-human study of GSK2849330, an anti-HER3 monoclonal antibody, in HER3-expressing solid tumors. Oncologist 2021; 26(10): e1844–e1853
CrossRef Pubmed Google scholar
[211]
Jänne PA, Baik C, Su WC, Johnson ML, Hayashi H, Nishio M, Kim DW, Koczywas M, Gold KA, Steuer CE, Murakami H, Yang JC, Kim SW, Vigliotti M, Shi R, Qi Z, Qiu Y, Zhao L, Sternberg D, Yu C, Yu HA. Efficacy and safety of patritumab deruxtecan (HER3-DXd) in EGFR inhibitor-resistant, EGFR-mutated non-small cell lung cancer. Cancer Discov 2022; 12(1): 74–89
CrossRef Pubmed Google scholar

Acknowledgements

This work was supported by Beijing Natural Science Foundation (No. 7222144), National Key Research and Development Project (No. 2019YFC1315700), CAMS Key Laboratory of Translational Research on Lung Cancer (No. 2018PT31035).

Compliance with ethics guidelines

Jia Zhong, Hua Bai, Zhijie Wang, Jianchun Duan, Wei Zhuang, Di Wang, Rui Wan, Jiachen Xu, Kailun Fei, Zixiao Ma, Xue Zhang, and Jie Wang declare no potential conflicts of interest. This manuscript is a review article and does not involve a research protocol requiring approval by the relevant institutional review board or ethics committee.

RIGHTS & PERMISSIONS

2023 Higher Education Press
AI Summary AI Mindmap
PDF(1728 KB)

Accesses

Citations

Detail

Sections
Recommended

/