A systematic survey of LU domain-containing proteins reveals a novel human gene, LY6A, which encodes the candidate ortholog of mouse Ly-6A/Sca-1 and is aberrantly expressed in pituitary tumors

Dan Liu, Chunhui Xu, Yanting Liu, Wen Ouyang, Shaojian Lin, Aining Xu, Yuanliang Zhang, Yinyin Xie, Qiuhua Huang, Weili Zhao, Zhu Chen, Lan Wang, Saijuan Chen, Jinyan Huang, Zhe Bao Wu, Xiaojian Sun

PDF(11888 KB)
PDF(11888 KB)
Front. Med. ›› 2023, Vol. 17 ›› Issue (3) : 458-475. DOI: 10.1007/s11684-022-0968-4
RESEARCH ARTICLE
RESEARCH ARTICLE

A systematic survey of LU domain-containing proteins reveals a novel human gene, LY6A, which encodes the candidate ortholog of mouse Ly-6A/Sca-1 and is aberrantly expressed in pituitary tumors

Author information +
History +

Abstract

The Ly-6 and uPAR (LU) domain-containing proteins represent a large family of cell-surface markers. In particular, mouse Ly-6A/Sca-1 is a widely used marker for various stem cells; however, its human ortholog is missing. In this study, based on a systematic survey and comparative genomic study of mouse and human LU domain-containing proteins, we identified a previously unannotated human gene encoding the candidate ortholog of mouse Ly-6A/Sca-1. This gene, hereby named LY6A, reversely overlaps with a lncRNA gene in the majority of exonic sequences. We found that LY6A is aberrantly expressed in pituitary tumors, but not in normal pituitary tissues, and may contribute to tumorigenesis. Similar to mouse Ly-6A/Sca-1, human LY6A is also upregulated by interferon, suggesting a conserved transcriptional regulatory mechanism between humans and mice. We cloned the full-length LY6A cDNA, whose encoded protein sequence, domain architecture, and exon‒intron structures are all well conserved with mouse Ly-6A/Sca-1. Ectopic expression of the LY6A protein in cells demonstrates that it acts the same as mouse Ly-6A/Sca-1 in their processing and glycosylphosphatidylinositol anchoring to the cell membrane. Collectively, these studies unveil a novel human gene encoding a candidate biomarker and provide an interesting model gene for studying gene regulatory and evolutionary mechanisms.

Keywords

LU domain-containing protein family / novel human gene / LY6A / pituitary tumor / biomarker / nonsynonymous SNP / GPI-anchored protein

Cite this article

Download citation ▾
Dan Liu, Chunhui Xu, Yanting Liu, Wen Ouyang, Shaojian Lin, Aining Xu, Yuanliang Zhang, Yinyin Xie, Qiuhua Huang, Weili Zhao, Zhu Chen, Lan Wang, Saijuan Chen, Jinyan Huang, Zhe Bao Wu, Xiaojian Sun. A systematic survey of LU domain-containing proteins reveals a novel human gene, LY6A, which encodes the candidate ortholog of mouse Ly-6A/Sca-1 and is aberrantly expressed in pituitary tumors. Front. Med., 2023, 17(3): 458‒475 https://doi.org/10.1007/s11684-022-0968-4

References

[1]
Feeney AJ, Hämmerling U. Ala-1: a murine alloantigen of activated lymphocytes. Immunogenetics 1976; 3(1): 369–379
CrossRef Google scholar
[2]
Woody JN, Feldmann M, Beverley PC, McKenzie IF. Expression of alloantigens LY-5 and LY-6 on cytotoxic effector cells. J Immunol 1977; 118(5): 1739–1743
CrossRef Pubmed Google scholar
[3]
Boyse EA, Old LJ. Some aspects of normal and abnormal cell surface genetics. Annu Rev Genet 1969; 3(1): 269–290
CrossRef Google scholar
[4]
Houlden BA, Hogarth PM, McKenzie IF. Interrelationships of the “Ly-6 complex” antigens. Immunogenetics 1986; 23(4): 226–232
CrossRef Pubmed Google scholar
[5]
LeClair KP, Palfree RG, Flood PM, Hammerling U, Bothwell A. Isolation of a murine Ly-6 cDNA reveals a new multigene family. EMBO J 1986; 5(12): 3227–3234
CrossRef Pubmed Google scholar
[6]
Loughner CL, Bruford EA, McAndrews MS, Delp EE, Swamynathan S, Swamynathan SK. Organization, evolution and functions of the human and mouse Ly6/uPAR family genes. Hum Genomics 2016; 10(1): 10
CrossRef Pubmed Google scholar
[7]
Gumley TP, McKenzie IF, Sandrin MS. Tissue expression, structure and function of the murine Ly-6 family of molecules. Immunol Cell Biol 1995; 73(4): 277–296
CrossRef Pubmed Google scholar
[8]
Reiser H, Oettgen H, Yeh ET, Terhorst C, Low MG, Benacerraf B, Rock KL. Structural characterization of the TAP molecule: a phosphatidylinositol-linked glycoprotein distinct from the T cell receptor/T3 complex and Thy-1. Cell 1986; 47(3): 365–370
CrossRef Pubmed Google scholar
[9]
Spangrude GJ, Heimfeld S, Weissman IL. Purification and characterization of mouse hematopoietic stem cells. Science 1988; 241(4861): 58–62
CrossRef Pubmed Google scholar
[10]
Welm BE, Tepera SB, Venezia T, Graubert TA, Rosen JM, Goodell MA. Sca-1(pos) cells in the mouse mammary gland represent an enriched progenitor cell population. Dev Biol 2002; 245(1): 42–56
CrossRef Pubmed Google scholar
[11]
Xin L, Lawson DA, Witte ON. The Sca-1 cell surface marker enriches for a prostate-regenerating cell subpopulation that can initiate prostate tumorigenesis. Proc Natl Acad Sci USA 2005; 102(19): 6942–6947
CrossRef Pubmed Google scholar
[12]
Kim CF, Jackson EL, Woolfenden AE, Lawrence S, Babar I, Vogel S, Crowley D, Bronson RT, Jacks T. Identification of bronchioalveolar stem cells in normal lung and lung cancer. Cell 2005; 121(6): 823–835
CrossRef Pubmed Google scholar
[13]
Holmes C, Stanford WL. Concise review: stem cell antigen-1: expression, function, and enigma. Stem Cells 2007; 25(6): 1339–1347
CrossRef Pubmed Google scholar
[14]
Stanford WL, Haque S, Alexander R, Liu X, Latour AM, Snodgrass HR, Koller BH, Flood PM. Altered proliferative response by T lymphocytes of Ly-6A (Sca-1) null mice. J Exp Med 1997; 186(5): 705–717
CrossRef Pubmed Google scholar
[15]
Hanson P, Mathews V, Marrus SH, Graubert TA. Enhanced green fluorescent protein targeted to the Sca-1 (Ly-6A) locus in transgenic mice results in efficient marking of hematopoietic stem cells in vivo. Exp Hematol 2003; 31(2): 159–167
CrossRef Pubmed Google scholar
[16]
Ito CY, Li CY, Bernstein A, Dick JE, Stanford WL. Hematopoietic stem cell and progenitor defects in Sca-1/Ly-6A-null mice. Blood 2003; 101(2): 517–523
CrossRef Pubmed Google scholar
[17]
Bradfute SB, Graubert TA, Goodell MA. Roles of Sca-1 in hematopoietic stem/progenitor cell function. Exp Hematol 2005; 33(7): 836–843
CrossRef Pubmed Google scholar
[18]
Whitmire JK, Eam B, Whitton JL. Mice deficient in stem cell antigen-1 (Sca1, Ly-6A/E) develop normal primary and memory CD4+ and CD8+ T-cell responses to virus infection. Eur J Immunol 2009; 39(6): 1494–1504
CrossRef Pubmed Google scholar
[19]
Zhang ZX, Stanford WL, Zhang L. Ly-6A is critical for the function of double negative regulatory T cells. Eur J Immunol 2002; 32(6): 1584–1592
CrossRef Pubmed Google scholar
[20]
Jones MA, DeWolf S, Vacharathit V, Yim M, Spencer S, Bamezai AK. Investigating B cell development, natural and primary antibody responses in Ly-6A/Sca-1 deficient mice. PLoS One 2016; 11(6): e0157271
CrossRef Pubmed Google scholar
[21]
Bonyadi M, Waldman SD, Liu D, Aubin JE, Grynpas MD, Stanford WL. Mesenchymal progenitor self-renewal deficiency leads to age-dependent osteoporosis in Sca-1/Ly-6A null mice. Proc Natl Acad Sci USA 2003; 100(10): 5840–5845
CrossRef Pubmed Google scholar
[22]
Mitchell PO, Mills T, O’Connor RS, Kline ER, Graubert T, Dzierzak E, Pavlath GK. Sca-1 negatively regulates proliferation and differentiation of muscle cells. Dev Biol 2005; 283(1): 240–252
CrossRef Pubmed Google scholar
[23]
Epting CL, López JE, Pedersen A, Brown C, Spitz P, Ursell PC, Bernstein HS. Stem cell antigen-1 regulates the tempo of muscle repair through effects on proliferation of alpha7 integrin-expressing myoblasts. Exp Cell Res 2008; 314(5): 1125–1135
CrossRef Pubmed Google scholar
[24]
Upadhyay G, Yin Y, Yuan H, Li X, Derynck R, Glazer RI. Stem cell antigen-1 enhances tumorigenicity by disruption of growth differentiation factor-10 (GDF10)-dependent TGF-β signaling. Proc Natl Acad Sci USA 2011; 108(19): 7820–7825
CrossRef Pubmed Google scholar
[25]
Long KK, Montano M, Pavlath GK. Sca-1 is negatively regulated by TGF-β1 in myogenic cells. FASEB J 2011; 25(4): 1156–1165
CrossRef Pubmed Google scholar
[26]
Song HD, Sun XJ, Deng M, Zhang GW, Zhou Y, Wu XY, Sheng Y, Chen Y, Ruan Z, Jiang CL, Fan HY, Zon LI, Kanki JP, Liu TX, Look AT, Chen Z. Hematopoietic gene expression profile in zebrafish kidney marrow. Proc Natl Acad Sci USA 2004; 101(46): 16240–16245
CrossRef Pubmed Google scholar
[27]
Sun XJ, Xu PF, Zhou T, Hu M, Fu CT, Zhang Y, Jin Y, Chen Y, Chen SJ, Huang QH, Liu TX, Chen Z. Genome-wide survey and developmental expression mapping of zebrafish SET domain-containing genes. PLoS One 2008; 3(1): e1499
CrossRef Pubmed Google scholar
[28]
Burge C, Karlin S. Prediction of complete gene structures in human genomic DNA. J Mol Biol 1997; 268(1): 78–94
CrossRef Pubmed Google scholar
[29]
Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H, Valentin F, Wallace IM, Wilm A, Lopez R, Thompson JD, Gibson TJ, Higgins DG. Clustal W and Clustal X version 2.0. Bioinformatics 2007; 23(21): 2947–2948
CrossRef Pubmed Google scholar
[30]
Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. MEGA6: Molecular Evolutionary Genetics Analysis version 6.0. Mol Biol Evol 2013; 30(12): 2725–2729
CrossRef Pubmed Google scholar
[31]
Yao H, Xie W, Dai Y, Liu Y, Gu W, Li J, Wu L, Xie J, Rui W, Ren B, Xue L, Cheng Y, Lin S, Li C, Tang H, Wang Y, Lou M, Zhang X, Hu R, Shang H, Huang J, Wu ZB. TRIM65 determines the fate of a novel subtype of pituitary neuroendocrine tumors via ubiquitination and degradation of TPIT. Neuro-oncol 2022; 24(8): 1286–1297
CrossRef Pubmed Google scholar
[32]
Sun XJ, Wang Z, Wang L, Jiang Y, Kost N, Soong TD, Chen WY, Tang Z, Nakadai T, Elemento O, Fischle W, Melnick A, Patel DJ, Nimer SD, Roeder RG. A stable transcription factor complex nucleated by oligomeric AML1-ETO controls leukaemogenesis. Nature 2013; 500(7460): 93–97
CrossRef Pubmed Google scholar
[33]
Liu N, Song J, Xie Y, Wang XL, Rong B, Man N, Zhang MM, Zhang Q, Gao FF, Du MR, Zhang Y, Shen J, Xu CH, Hu CL, Wu JC, Liu P, Zhang YL, Xie YY, Liu P, Huang JY, Huang QH, Lan F, Shen S, Nimer SD, Chen Z, Chen SJ, Roeder RG, Wang L, Sun XJ. Different roles of E proteins in t(8;21) leukemia: E2-2 compromises the function of AETFC and negatively regulates leukemogenesis. Proc Natl Acad Sci USA 2019; 116(3): 890–899
CrossRef Pubmed Google scholar
[34]
Zhang MM, Liu N, Zhang YL, Rong B, Wang XL, Xu CH, Xie YY, Shen S, Zhu J, Nimer SD, Chen Z, Chen SJ, Roeder RG, Lan F, Wang L, Huang QH, Sun XJ. Destabilization of AETFC through C/EBPα-mediated repression of LYL1 contributes to t(8;21) leukemic cell differentiation. Leukemia 2019; 33(7): 1822–1827
CrossRef Pubmed Google scholar
[35]
Zhang YF, Wang XL, Xu CH, Liu N, Zhang L, Zhang YM, Xie YY, Zhang YL, Huang QH, Wang L, Chen Z, Chen SJ, Roeder RG, Shen S, Xue K, Sun XJ. A direct comparison between AML1-ETO and ETO2-GLIS2 leukemia fusion proteins reveals context-dependent binding and regulation of target genes and opposite functions in cell differentiation. Front Cell Dev Biol 2022; 10: 992714
CrossRef Pubmed Google scholar
[36]
Zhang F, Zeng QY, Xu H, Xu AN, Liu DJ, Li NZ, Chen Y, Jin Y, Xu CH, Feng CZ, Zhang YL, Liu D, Liu N, Xie YY, Yu SH, Yuan H, Xue K, Shi JY, Liu TX, Xu PF, Zhao WL, Zhou Y, Wang L, Huang QH, Chen Z, Chen SJ, Zhou XL, Sun XJ. Selective and competitive functions of the AAR and UPR pathways in stress-induced angiogenesis. Cell Discov 2021; 7(1): 98
CrossRef Pubmed Google scholar
[37]
Rinn JL, Chang HY. Genome regulation by long noncoding RNAs. Annu Rev Biochem 2012; 81(1): 145–166
CrossRef Pubmed Google scholar
[38]
Koonin EV. Orthologs, paralogs, and evolutionary genomics. Annu Rev Genet 2005; 39(1): 309–338
CrossRef Pubmed Google scholar
[39]
Dumont FJ, Coker LZ. Interferon-α/β enhances the expression of Ly-6 antigens on T cells in vivo and in vitro. Eur J Immunol 1986; 16(7): 735–740
CrossRef Pubmed Google scholar
[40]
Dumont FJ, Boltz RC. The augmentation of surface Ly-6A/E molecules in activated T cells is mediated by endogenous interferon-gamma. J Immunol 1987; 139(12): 4088–4095
CrossRef Pubmed Google scholar
[41]
Luo Y, Hitz BC, Gabdank I, Hilton JA, Kagda MS, Lam B, Myers Z, Sud P, Jou J, Lin K, Baymuradov UK, Graham K, Litton C, Miyasato SR, Strattan JS, Jolanki O, Lee JW, Tanaka FY, Adenekan P, O’Neill E, Cherry JM. New developments on the Encyclopedia of DNA Elements (ENCODE) data portal. Nucleic Acids Res 2020; 48(D1): D882–D889
CrossRef Pubmed Google scholar
[42]
GTEx Consortium. The GTEx Consortium atlas of genetic regulatory effects across human tissues. Science 2020; 369(6509): 1318–1330
CrossRef Pubmed Google scholar
[43]
Lorenzi L, Chiu HS, Avila Cobos F, Gross S, Volders PJ, Cannoodt R, Nuytens J, Vanderheyden K, Anckaert J, Lefever S, Tay AP, de Bony EJ, Trypsteen W, Gysens F, Vromman M, Goovaerts T, Hansen TB, Kuersten S, Nijs N, Taghon T, Vermaelen K, Bracke KR, Saeys Y, De Meyer T, Deshpande NP, Anande G, Chen TW, Wilkins MR, Unnikrishnan A, De Preter K, Kjems J, Koster J, Schroth GP, Vandesompele J, Sumazin P, Mestdagh P. The RNA Atlas expands the catalog of human non-coding RNAs. Nat Biotechnol 2021; 39(11): 1453–1465
CrossRef Pubmed Google scholar
[44]
Donangelo I, Ren SG, Eigler T, Svendsen C, Melmed S. Sca1+ murine pituitary adenoma cells show tumor-growth advantage. Endocr Relat Cancer 2014; 21(2): 203–216
CrossRef Pubmed Google scholar
[45]
Lander ES, Linton LM, Birren B, Nusbaum C, Zody MC, Baldwin J, Devon K, Dewar K, Doyle M, FitzHugh W, Funke R, Gage D, Harris K, Heaford A, Howland J, Kann L, Lehoczky J, LeVine R, McEwan P, McKernan K, Meldrim J, Mesirov JP, Miranda C, Morris W, Naylor J, Raymond C, Rosetti M, Santos R, Sheridan A, Sougnez C, Stange-Thomann Y, Stojanovic N, Subramanian A, Wyman D, Rogers J, Sulston J, Ainscough R, Beck S, Bentley D, Burton J, Clee C, Carter N, Coulson A, Deadman R, Deloukas P, Dunham A, Dunham I, Durbin R, French L, Grafham D, Gregory S, Hubbard T, Humphray S, Hunt A, Jones M, Lloyd C, McMurray A, Matthews L, Mercer S, Milne S, Mullikin JC, Mungall A, Plumb R, Ross M, Shownkeen R, Sims S, Waterston RH, Wilson RK, Hillier LW, McPherson JD, Marra MA, Mardis ER, Fulton LA, Chinwalla AT, Pepin KH, Gish WR, Chissoe SL, Wendl MC, Delehaunty KD, Miner TL, Delehaunty A, Kramer JB, Cook LL, Fulton RS, Johnson DL, Minx PJ, Clifton SW, Hawkins T, Branscomb E, Predki P, Richardson P, Wenning S, Slezak T, Doggett N, Cheng JF, Olsen A, Lucas S, Elkin C, Uberbacher E, Frazier M, Gibbs RA, Muzny DM, Scherer SE, Bouck JB, Sodergren EJ, Worley KC, Rives CM, Gorrell JH, Metzker ML, Naylor SL, Kucherlapati RS, Nelson DL, Weinstock GM, Sakaki Y, Fujiyama A, Hattori M, Yada T, Toyoda A, Itoh T, Kawagoe C, Watanabe H, Totoki Y, Taylor T, Weissenbach J, Heilig R, Saurin W, Artiguenave F, Brottier P, Bruls T, Pelletier E, Robert C, Wincker P, Smith DR, Doucette-Stamm L, Rubenfield M, Weinstock K, Lee HM, Dubois J, Rosenthal A, Platzer M, Nyakatura G, Taudien S, Rump A, Yang H, Yu J, Wang J, Huang G, Gu J, Hood L, Rowen L, Madan A, Qin S, Davis RW, Federspiel NA, Abola AP, Proctor MJ, Myers RM, Schmutz J, Dickson M, Grimwood J, Cox DR, Olson MV, Kaul R, Raymond C, Shimizu N, Kawasaki K, Minoshima S, Evans GA, Athanasiou M, Schultz R, Roe BA, Chen F, Pan H, Ramser J, Lehrach H, Reinhardt R, McCombie WR, de la Bastide M, Dedhia N, Blöcker H, Hornischer K, Nordsiek G, Agarwala R, Aravind L, Bailey JA, Bateman A, Batzoglou S, Birney E, Bork P, Brown DG, Burge CB, Cerutti L, Chen HC, Church D, Clamp M, Copley RR, Doerks T, Eddy SR, Eichler EE, Furey TS, Galagan J, Gilbert JG, Harmon C, Hayashizaki Y, Haussler D, Hermjakob H, Hokamp K, Jang W, Johnson LS, Jones TA, Kasif S, Kaspryzk A, Kennedy S, Kent WJ, Kitts P, Koonin EV, Korf I, Kulp D, Lancet D, Lowe TM, McLysaght A, Mikkelsen T, Moran JV, Mulder N, Pollara VJ, Ponting CP, Schuler G, Schultz J, Slater G, Smit AF, Stupka E, Szustakowki J, Thierry-Mieg D, Thierry-Mieg J, Wagner L, Wallis J, Wheeler R, Williams A, Wolf YI, Wolfe KH, Yang SP, Yeh RF, Collins F, Guyer MS, Peterson J, Felsenfeld A, Wetterstrand KA, Patrinos A, Morgan MJ, de Jong P, Catanese JJ, Osoegawa K, Shizuya H, Choi S, Chen YJ, Szustakowki J; International Human Genome Sequencing Consortium. Initial sequencing and analysis of the human genome. Nature 2001; 409(6822): 860–921
CrossRef Pubmed Google scholar
[46]
Venter JC, Adams MD, Myers EW, Li PW, Mural RJ, Sutton GG, Smith HO, Yandell M, Evans CA, Holt RA, Gocayne JD, Amanatides P, Ballew RM, Huson DH, Wortman JR, Zhang Q, Kodira CD, Zheng XH, Chen L, Skupski M, Subramanian G, Thomas PD, Zhang J, Gabor Miklos GL, Nelson C, Broder S, Clark AG, Nadeau J, McKusick VA, Zinder N, Levine AJ, Roberts RJ, Simon M, Slayman C, Hunkapiller M, Bolanos R, Delcher A, Dew I, Fasulo D, Flanigan M, Florea L, Halpern A, Hannenhalli S, Kravitz S, Levy S, Mobarry C, Reinert K, Remington K, Abu-Threideh J, Beasley E, Biddick K, Bonazzi V, Brandon R, Cargill M, Chandramouliswaran I, Charlab R, Chaturvedi K, Deng Z, Di Francesco V, Dunn P, Eilbeck K, Evangelista C, Gabrielian AE, Gan W, Ge W, Gong F, Gu Z, Guan P, Heiman TJ, Higgins ME, Ji RR, Ke Z, Ketchum KA, Lai Z, Lei Y, Li Z, Li J, Liang Y, Lin X, Lu F, Merkulov GV, Milshina N, Moore HM, Naik AK, Narayan VA, Neelam B, Nusskern D, Rusch DB, Salzberg S, Shao W, Shue B, Sun J, Wang Z, Wang A, Wang X, Wang J, Wei M, Wides R, Xiao C, Yan C, Yao A, Ye J, Zhan M, Zhang W, Zhang H, Zhao Q, Zheng L, Zhong F, Zhong W, Zhu S, Zhao S, Gilbert D, Baumhueter S, Spier G, Carter C, Cravchik A, Woodage T, Ali F, An H, Awe A, Baldwin D, Baden H, Barnstead M, Barrow I, Beeson K, Busam D, Carver A, Center A, Cheng ML, Curry L, Danaher S, Davenport L, Desilets R, Dietz S, Dodson K, Doup L, Ferriera S, Garg N, Gluecksmann A, Hart B, Haynes J, Haynes C, Heiner C, Hladun S, Hostin D, Houck J, Howland T, Ibegwam C, Johnson J, Kalush F, Kline L, Koduru S, Love A, Mann F, May D, McCawley S, McIntosh T, McMullen I, Moy M, Moy L, Murphy B, Nelson K, Pfannkoch C, Pratts E, Puri V, Qureshi H, Reardon M, Rodriguez R, Rogers YH, Romblad D, Ruhfel B, Scott R, Sitter C, Smallwood M, Stewart E, Strong R, Suh E, Thomas R, Tint NN, Tse S, Vech C, Wang G, Wetter J, Williams S, Williams M, Windsor S, Winn-Deen E, Wolfe K, Zaveri J, Zaveri K, Abril JF, Guigó R, Campbell MJ, Sjolander KV, Karlak B, Kejariwal A, Mi H, Lazareva B, Hatton T, Narechania A, Diemer K, Muruganujan A, Guo N, Sato S, Bafna V, Istrail S, Lippert R, Schwartz R, Walenz B, Yooseph S, Allen D, Basu A, Baxendale J, Blick L, Caminha M, Carnes-Stine J, Caulk P, Chiang YH, Coyne M, Dahlke C, Deslattes Mays A, Dombroski M, Donnelly M, Ely D, Esparham S, Fosler C, Gire H, Glanowski S, Glasser K, Glodek A, Gorokhov M, Graham K, Gropman B, Harris M, Heil J, Henderson S, Hoover J, Jennings D, Jordan C, Jordan J, Kasha J, Kagan L, Kraft C, Levitsky A, Lewis M, Liu X, Lopez J, Ma D, Majoros W, McDaniel J, Murphy S, Newman M, Nguyen T, Nguyen N, Nodell M, Pan S, Peck J, Peterson M, Rowe W, Sanders R, Scott J, Simpson M, Smith T, Sprague A, Stockwell T, Turner R, Venter E, Wang M, Wen M, Wu D, Wu M, Xia A, Zandieh A, Zhu X. The sequence of the human genome. Science 2001; 291(5507): 1304–1351
CrossRef Pubmed Google scholar
[47]
Raff RA. Evo-devo: the evolution of a new discipline. Nat Rev Genet 2000; 1(1): 74–79
CrossRef Pubmed Google scholar
[48]
Sinclair AM, Dzierzak EA. Cloning of the complete Ly-6E.1 gene and identification of DNase I hypersensitive sites corresponding to expression in hematopoietic cells. Blood 1993; 82(10): 3052–3062
CrossRef Pubmed Google scholar
[49]
McLysaght A, Guerzoni D. New genes from non-coding sequence: the role of de novo protein-coding genes in eukaryotic evolutionary innovation. Philos Trans R Soc Lond B Biol Sci 2015; 370(1678): 20140332
CrossRef Google scholar
[50]
Adelman JP, Bond CT, Douglass J, Herbert E. Two mammalian genes transcribed from opposite strands of the same DNA locus. Science 1987; 235(4795): 1514–1517
CrossRef Pubmed Google scholar
[51]
Katayama S, Tomaru Y, Kasukawa T, Waki K, Nakanishi M, Nakamura M, Nishida H, Yap CC, Suzuki M, Kawai J, Suzuki H, Carninci P, Hayashizaki Y, Wells C, Frith M, Ravasi T, Pang KC, Hallinan J, Mattick J, Hume DA, Lipovich L, Batalov S, Engström PG, Mizuno Y, Faghihi MA, Sandelin A, Chalk AM, Mottagui-Tabar S, Liang Z, Lenhard B, Wahlestedt C; RIKEN Genome Exploration Research Group; Genome Science Group (Genome Network Project Core Group); FANTOM Consortium. Antisense transcription in the mammalian transcriptome. Science 2005; 309(5740): 1564–1566
CrossRef Pubmed Google scholar
[52]
Strobel EJ, Yu AM, Lucks JB. High-throughput determination of RNA structures. Nat Rev Genet 2018; 19(10): 615–634
CrossRef Pubmed Google scholar
[53]
Hu JF, Yim D, Ma D, Huber SM, Davis N, Bacusmo JM, Vermeulen S, Zhou J, Begley TJ, DeMott MS, Levine SS, de Crécy-Lagard V, Dedon PC, Cao B. Quantitative mapping of the cellular small RNA landscape with AQRNA-seq. Nat Biotechnol 2021; 39(8): 978–988
CrossRef Pubmed Google scholar
[54]
Kong Y, Hu H, Shan Y, Zhou Z, Zen K, Sun Y, Yang R, Fu Z, Chen X. Accurate quantification of 3′-terminal 2′-O-methylated small RNAs by utilizing oxidative deep sequencing and stem-loop RT-qPCR. Front Med 2022; 16(2): 240–250
CrossRef Pubmed Google scholar
[55]
Upadhyay G. Emerging role of lymphocyte antigen-6 family of genes in cancer and immune cells. Front Immunol 2019; 10: 819
CrossRef Pubmed Google scholar

Acknowledgements

This work was supported by the National Key Research and Development Plan of China (No. 2018YFA0107802 to Xiaojian Sun, Nos. 2018YFA0107200 and 2018YFA0800203 to Lan Wang), the General Program of the National Natural Science Foundation of China (Nos. 81470316 and 81670094 to Xiaojian Sun, No. 81972339 to Zhe Bao Wu, Nos. 81570122 and 81770205 to Jinyan Huang, Nos. 81670122 and 81970150 to Lan Wang), the National Research Center for Translational Medicine (Shanghai) grant (No. NRCTM (SH)-2019-05 to Zhe Bao Wu), the Shanghai Municipal Education Commission-Gaofeng Clinical Medicine Grant (No. 20152506 to Xiaojian Sun), Shanghai Collaborative Innovation Program on Regenerative Medicine and Stem Cell Research (No. 2019CXJQ01 to Saijuan Chen and Xiaojian Sun), Innovative Research Team of High-level Local Universities in Shanghai (to Weili Zhao and Xiaojian Sun), the Samuel Waxman Cancer Research Foundation, and the Shanghai Guangci Translational Medical Research Development Foundation.

Compliance with ethics guidelines

Dan Liu, Chunhui Xu, Yanting Liu, Wen Ouyang, Shaojian Lin, Aining Xu, Yuanliang Zhang, Yinyin Xie, Qiuhua Huang, Weili Zhao, Zhu Chen, Lan Wang, Saijuan Chen, Jinyan Huang, Zhe Bao Wu, and Xiaojian Sun declare no potential conflicts of interest. All the procedure of this study was approved by the Institutional Review Board of the Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine.

RIGHTS & PERMISSIONS

2022 Higher Education Press
AI Summary AI Mindmap
PDF(11888 KB)

Accesses

Citations

Detail

Sections
Recommended

/