5′-tiRNA-Gln inhibits hepatocellular carcinoma progression by repressing translation through the interaction with eukaryotic initiation factor 4A-I
Chengdong Wu, Dekai Liu, Lufei Zhang, Jingjie Wang, Yuan Ding, Zhongquan Sun, Weilin Wang
5′-tiRNA-Gln inhibits hepatocellular carcinoma progression by repressing translation through the interaction with eukaryotic initiation factor 4A-I
tRNA-derived small RNAs (tsRNAs) are novel non-coding RNAs that are involved in the occurrence and progression of diverse diseases. However, their exact presence and function in hepatocellular carcinoma (HCC) remain unclear. Here, differentially expressed tsRNAs in HCC were profiled. A novel tsRNA, tRNAGln-TTG derived 5′-tiRNA-Gln, is significantly downregulated, and its expression level is correlated with progression in patients. In HCC cells, 5′-tiRNA-Gln overexpression impaired the proliferation, migration, and invasion in vitro and in vivo, while 5′-tiRNA-Gln knockdown yielded opposite results. 5′-tiRNA-Gln exerted its function by binding eukaryotic initiation factor 4A-I (EIF4A1), which unwinds complex RNA secondary structures during translation initiation, causing the partial inhibition of translation. The suppressed downregulated proteins include ARAF, MEK1/2 and STAT3, causing the impaired signaling pathway related to HCC progression. Furthermore, based on the construction of a mutant 5′-tiRNA-Gln, the sequence of forming intramolecular G-quadruplex structure is crucial for 5′-tiRNA-Gln to strongly bind EIF4A1 and repress translation. Clinically, 5′-tiRNA-Gln expression level is negatively correlated with ARAF, MEK1/2, and STAT3 in HCC tissues. Collectively, these findings reveal that 5′-tiRNA-Gln interacts with EIF4A1 to reduce related mRNA binding through the intramolecular G-quadruplex structure, and this process partially inhibits translation and HCC progression.
EIF4A1 / G-quadruplex / hepatocellular carcinoma / tRNA-derived small RNA / translation initiation
Chengdong Wu et al.
[1] |
Zhou M, Wang H, Zeng X, Yin P, Zhu J, Chen W, Li X, Wang L, Wang L, Liu Y, Liu J, Zhang M, Qi J, Yu S, Afshin A, Gakidou E, Glenn S, Krish VS, Miller-Petrie MK, Mountjoy-Venning WC, Mullany EC, Redford SB, Liu H, Naghavi M, Hay SI, Wang L, Murray CJL, Liang X. Mortality, morbidity, and risk factors in China and its provinces, 1990–2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet 2019; 394(10204): 1145–1158
CrossRef
Pubmed
Google scholar
|
[2] |
Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, Bray F. Global Cancer Statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 2021; 71(3): 209–249
CrossRef
Pubmed
Google scholar
|
[3] |
Yang JD, Hainaut P, Gores GJ, Amadou A, Plymoth A, Roberts LR. A global view of hepatocellular carcinoma: trends, risk, prevention and management. Nat Rev Gastroenterol Hepatol 2019; 16(10): 589–604
CrossRef
Pubmed
Google scholar
|
[4] |
Kobayashi T, Aikata H, Kobayashi T, Ohdan H, Arihiro K, Chayama K. Patients with early recurrence of hepatocellular carcinoma have poor prognosis. Hepatobiliary Pancreat Dis Int 2017; 16(3): 279–288
CrossRef
Pubmed
Google scholar
|
[5] |
Wang J, Zhu S, Meng N, He Y, Lu R, Yan GR. ncRNA-encoded peptides or proteins and cancer. Mol Ther 2019; 27(10): 1718–1725
CrossRef
Pubmed
Google scholar
|
[6] |
Wong CM, Tsang FHC, Ng IOL. Non-coding RNAs in hepatocellular carcinoma: molecular functions and pathological implications. Nat Rev Gastroenterol Hepatol 2018; 15(3): 137–151
CrossRef
Pubmed
Google scholar
|
[7] |
Klingenberg M, Matsuda A, Diederichs S, Patel T. Non-coding RNA in hepatocellular carcinoma: mechanisms, biomarkers and therapeutic targets. J Hepatol 2017; 67(3): 603–618
CrossRef
Pubmed
Google scholar
|
[8] |
Su Z, Wilson B, Kumar P, Dutta A. Noncanonical roles of tRNAs: tRNA fragments and beyond. Annu Rev Genet 2020; 54(1): 47–69
CrossRef
Pubmed
Google scholar
|
[9] |
Kim HK, Yeom JH, Kay MA. Transfer RNA-derived small RNAs: another layer of gene regulation and novel targets for disease therapeutics. Mol Ther 2020; 28(11): 2340–2357
CrossRef
Pubmed
Google scholar
|
[10] |
Ivanov P, Emara MM, Villen J, Gygi SP, Anderson P. Angiogenin-induced tRNA fragments inhibit translation initiation. Mol Cell 2011; 43(4): 613–623
CrossRef
Pubmed
Google scholar
|
[11] |
Yamasaki S, Ivanov P, Hu GF, Anderson P. Angiogenin cleaves tRNA and promotes stress-induced translational repression. J Cell Biol 2009; 185(1): 35–42
CrossRef
Pubmed
Google scholar
|
[12] |
Li S, Hu GF. Emerging role of angiogenin in stress response and cell survival under adverse conditions. J Cell Physiol 2012; 227(7): 2822–2826
CrossRef
Pubmed
Google scholar
|
[13] |
Lee YS, Shibata Y, Malhotra A, Dutta A. A novel class of small RNAs: tRNA-derived RNA fragments (tRFs). Genes Dev 2009; 23(22): 2639–2649
CrossRef
Pubmed
Google scholar
|
[14] |
Goodarzi H, Liu X, Nguyen HC, Zhang S, Fish L, Tavazoie SF. Endogenous tRNA-derived fragments suppress breast cancer progression via YBX1 displacement. Cell 2015; 161(4): 790–802
CrossRef
Pubmed
Google scholar
|
[15] |
Zheng LL, Xu WL, Liu S, Sun WJ, Li JH, Wu J, Yang JH, Qu LH. tRF2Cancer: a web server to detect tRNA-derived small RNA fragments (tRFs) and their expression in multiple cancers. Nucleic Acids Res 2016; 44(W1): W185–93
CrossRef
Pubmed
Google scholar
|
[16] |
Zeng T, Hua Y, Sun C, Zhang Y, Yang F, Yang M, Yang Y, Li J, Huang X, Wu H, Fu Z, Li W, Yin Y. Relationship between tRNA-derived fragments and human cancers. Int J Cancer 2020; 147(11): 3007–3018
CrossRef
Pubmed
Google scholar
|
[17] |
Zhu L, Ge J, Li T, Shen Y, Guo J. tRNA-derived fragments and tRNA halves: the new players in cancers. Cancer Lett 2019; 452: 31–37
CrossRef
Pubmed
Google scholar
|
[18] |
Magee R, Rigoutsos I. On the expanding roles of tRNA fragments in modulating cell behavior. Nucleic Acids Res 2020; 48(17): 9433–9448
CrossRef
Pubmed
Google scholar
|
[19] |
Chen Q, Zhang X, Shi J, Yan M, Zhou T. Origins and evolving functionalities of tRNA-derived small RNAs. Trends Biochem Sci 2021; 46(10): 790–804
CrossRef
Pubmed
Google scholar
|
[20] |
Emara MM, Ivanov P, Hickman T, Dawra N, Tisdale S, Kedersha N, Hu GF, Anderson P. Angiogenin-induced tRNA-derived stress-induced RNAs promote stress-induced stress granule assembly. J Biol Chem 2010; 285(14): 10959–10968
CrossRef
Pubmed
Google scholar
|
[21] |
Lyons SM, Achorn C, Kedersha NL, Anderson PJ, Ivanov P. YB-1 regulates tiRNA-induced stress granule formation but not translational repression. Nucleic Acids Res 2016; 44(14): 6949–6960
CrossRef
Pubmed
Google scholar
|
[22] |
Kim HK, Fuchs G, Wang S, Wei W, Zhang Y, Park H, Roy-Chaudhuri B, Li P, Xu J, Chu K, Zhang F, Chua MS, So S, Zhang QC, Sarnow P, Kay MA. A transfer-RNA-derived small RNA regulates ribosome biogenesis. Nature 2017; 552(7683): 57–62
CrossRef
Pubmed
Google scholar
|
[23] |
Geslain R, Pan T. Functional analysis of human tRNA isodecoders. J Mol Biol 2010; 396(3): 821–831
CrossRef
Pubmed
Google scholar
|
[24] |
Goodenbour JM, Pan T. Diversity of tRNA genes in eukaryotes. Nucleic Acids Res 2006; 34(21): 6137–6146
CrossRef
Pubmed
Google scholar
|
[25] |
Kumar P, Mudunuri SB, Anaya J, Dutta A. tRFdb: a database for transfer RNA fragments. Nucleic Acids Res 2015; 43(D1): D141–D145
CrossRef
Pubmed
Google scholar
|
[26] |
Pliatsika V, Loher P, Magee R, Telonis AG, Londin E, Shigematsu M, Kirino Y, Rigoutsos I. MINTbase v2.0: a comprehensive database for tRNA-derived fragments that includes nuclear and mitochondrial fragments from all The Cancer Genome Atlas projects. Nucleic Acids Res 2018; 46(D1): D152–D159
CrossRef
Pubmed
Google scholar
|
[27] |
Hinnebusch AG. The scanning mechanism of eukaryotic translation initiation. Annu Rev Biochem 2014; 83(1): 779–812
CrossRef
Pubmed
Google scholar
|
[28] |
Jackson RJ, Hellen CUT, Pestova TV. The mechanism of eukaryotic translation initiation and principles of its regulation. Nat Rev Mol Cell Biol 2010; 11(2): 113–127
CrossRef
Pubmed
Google scholar
|
[29] |
Wolfe AL, Singh K, Zhong Y, Drewe P, Rajasekhar VK, Sanghvi VR, Mavrakis KJ, Jiang M, Roderick JE, Van der Meulen J, Schatz JH, Rodrigo CM, Zhao C, Rondou P, de Stanchina E, Teruya-Feldstein J, Kelliher MA, Speleman F, Porco JA Jr, Pelletier J, Rätsch G, Wendel HG. RNA G-quadruplexes cause eIF4A-dependent oncogene translation in cancer. Nature 2014; 513(7516): 65–70
CrossRef
Pubmed
Google scholar
|
[30] |
Modelska A, Turro E, Russell R, Beaton J, Sbarrato T, Spriggs K, Miller J, Gräf S, Provenzano E, Blows F, Pharoah P, Caldas C, Le Quesne J. The malignant phenotype in breast cancer is driven by eIF4A1-mediated changes in the translational landscape. Cell Death Dis 2015; 6(1): e1603
CrossRef
Pubmed
Google scholar
|
[31] |
Singh K, Lin J, Lecomte N, Mohan P, Gokce A, Sanghvi VR, Jiang M, Grbovic-Huezo O, Burčul A, Stark SG, Romesser PB, Chang Q, Melchor JP, Beyer RK, Duggan M, Fukase Y, Yang G, Ouerfelli O, Viale A, de Stanchina E, Stamford AW, Meinke PT, Rätsch G, Leach SD, Ouyang Z, Wendel HG. Targeting eIF4A-dependent translation of KRAS signaling molecules. Cancer Res 2021; 81(8): 2002–2014
CrossRef
Pubmed
Google scholar
|
[32] |
Iwasaki S, Iwasaki W, Takahashi M, Sakamoto A, Watanabe C, Shichino Y, Floor SN, Fujiwara K, Mito M, Dodo K, Sodeoka M, Imataka H, Honma T, Fukuzawa K, Ito T, Ingolia NT. The translation inhibitor rocaglamide targets a bimolecular cavity between eIF4A and polypurine RNA. Mol Cell 2019; 73(4): 738–748.e9
CrossRef
Pubmed
Google scholar
|
[33] |
Kikin O, D’Antonio L, Bagga PS. QGRS Mapper: a web-based server for predicting G-quadruplexes in nucleotide sequences. Nucleic Acids Res 2006; 34(suppl_2): W676–W682
CrossRef
Pubmed
Google scholar
|
[34] |
Calvisi DF, Ladu S, Gorden A, Farina M, Conner EA, Lee JS, Factor VM, Thorgeirsson SS. Ubiquitous activation of Ras and Jak/Stat pathways in human HCC. Gastroenterology 2006; 130(4): 1117–1128
CrossRef
Pubmed
Google scholar
|
[35] |
Delire B, Stärkel P. The Ras/MAPK pathway and hepatocarcinoma: pathogenesis and therapeutic implications. Eur J Clin Invest 2015; 45(6): 609–623
CrossRef
Pubmed
Google scholar
|
[36] |
Ranjpour M, Wajid S, Jain SK. Elevated expression of A-Raf and FA2H in hepatocellular carcinoma is associated with lipid metabolism dysregulation and cancer progression. Anticancer Agents Med Chem 2019; 19(2): 236–247
CrossRef
Pubmed
Google scholar
|
[37] |
Yu M, Lu B, Zhang J, Ding J, Liu P, Lu Y. tRNA-derived RNA fragments in cancer: current status and future perspectives. J Hematol Oncol 2020; 13(1): 121
CrossRef
Pubmed
Google scholar
|
[38] |
Han L, Lai H, Yang Y, Hu J, Li Z, Ma B, Xu W, Liu W, Wei W, Li D, Wang Y, Zhai Q, Ji Q, Liao T. A 5′-tRNA halve, tiRNA-Gly promotes cell proliferation and migration via binding to RBM17 and inducing alternative splicing in papillary thyroid cancer. J Exp Clin Cancer Res 2021; 40(1): 222
CrossRef
Pubmed
Google scholar
|
[39] |
Saikia M, Jobava R, Parisien M, Putnam A, Krokowski D, Gao XH, Guan BJ, Yuan Y, Jankowsky E, Feng Z, Hu GF, Pusztai-Carey M, Gorla M, Sepuri NB, Pan T, Hatzoglou M. Angiogenin-cleaved tRNA halves interact with cytochrome c, protecting cells from apoptosis during osmotic stress. Mol Cell Biol 2014; 34(13): 2450–2463
CrossRef
Pubmed
Google scholar
|
[40] |
Kumar P, Anaya J, Mudunuri SB, Dutta A. Meta-analysis of tRNA derived RNA fragments reveals that they are evolutionarily conserved and associate with AGO proteins to recognize specific RNA targets. BMC Biol 2014; 12(1): 78
CrossRef
Pubmed
Google scholar
|
[41] |
Kumar P, Kuscu C, Dutta A. Biogenesis and function of transfer RNA-related fragments (tRFs). Trends Biochem Sci 2016; 41(8): 679–689
CrossRef
Pubmed
Google scholar
|
[42] |
Guan L, Karaiskos S, Grigoriev A. Inferring targeting modes of Argonaute-loaded tRNA fragments. RNA Biol 2020; 17(8): 1070–1080
CrossRef
Pubmed
Google scholar
|
[43] |
Venkatesh T, Suresh PS, Tsutsumi R. tRFs: miRNAs in disguise. Gene 2016; 579(2): 133–138
CrossRef
Pubmed
Google scholar
|
[44] |
Lyons SM, Kharel P, Akiyama Y, Ojha S, Dave D, Tsvetkov V, Merrick W, Ivanov P, Anderson P. eIF4G has intrinsic G-quadruplex binding activity that is required for tiRNA function. Nucleic Acids Res 2020; 48(11): 6223–6233
CrossRef
Pubmed
Google scholar
|
[45] |
Ivanov P, O’Day E, Emara MM, Wagner G, Lieberman J, Anderson P. G-quadruplex structures contribute to the neuroprotective effects of angiogenin-induced tRNA fragments. Proc Natl Acad Sci USA 2014; 111(51): 18201–18206
CrossRef
Pubmed
Google scholar
|
[46] |
Lyons SM, Gudanis D, Coyne SM, Gdaniec Z, Ivanov P. Identification of functional tetramolecular RNA G-quadruplexes derived from transfer RNAs. Nat Commun 2017; 8(1): 1127
CrossRef
Pubmed
Google scholar
|
[47] |
Nguyen TM, Kabotyanski EB, Dou Y, Reineke LC, Zhang P, Zhang XHF, Malovannaya A, Jung SY, Mo Q, Roarty KP, Chen Y, Zhang B, Neilson JR, Lloyd RE, Perou CM, Ellis MJ, Rosen JM. FGFR1-activated translation of WNT pathway components with structured 5′ UTRs is vulnerable to inhibition of EIF4A-dependent translation initiation. Cancer Res 2018; 78(15): 4229–4240
CrossRef
Pubmed
Google scholar
|
[48] |
Raza F, Waldron JA, Quesne JL. Translational dysregulation in cancer: eIF4A isoforms and sequence determinants of eIF4A dependence. Biochem Soc Trans 2015; 43(6): 1227–1233
CrossRef
Pubmed
Google scholar
|
[49] |
Biffi G, Di Antonio M, Tannahill D, Balasubramanian S. Visualization and selective chemical targeting of RNA G-quadruplex structures in the cytoplasm of human cells. Nat Chem 2014; 6(1): 75–80
CrossRef
Pubmed
Google scholar
|
[50] |
Kwok CK, Merrick CJ. G-Quadruplexes: prediction, characterization, and biological application. Trends Biotechnol 2017; 35(10): 997–1013
CrossRef
Pubmed
Google scholar
|
[51] |
Zhan S, Yang P, Zhou S, Xu Y, Xu R, Liang G, Zhang C, Chen X, Yang L, Jin F, Wang Y. Serum mitochondrial tsRNA serves as a novel biomarker for hepatocarcinoma diagnosis. Front Med 2022; 16(2): 216–226
CrossRef
Pubmed
Google scholar
|
[52] |
Zhu L, Li J, Gong Y, Wu Q, Tan S, Sun D, Xu X, Zuo Y, Zhao Y, Wei YQ, Wei XW, Peng Y. Exosomal tRNA-derived small RNA as a promising biomarker for cancer diagnosis. Mol Cancer 2019; 18(1): 74
CrossRef
Pubmed
Google scholar
|
[53] |
Mo D, Jiang P, Yang Y, Mao X, Tan X, Tang X, Wei D, Li B, Wang X, Tang L, Yan F. A tRNA fragment, 5′-tiRNAVal, suppresses the Wnt/β-catenin signaling pathway by targeting FZD3 in breast cancer. Cancer Lett 2019; 457: 60–73
CrossRef
Pubmed
Google scholar
|
[54] |
Wu Y, Yang X, Jiang G, Zhang H, Ge L, Chen F, Li J, Liu H, Wang H. 5′-tRF-GlyGCC: a tRNA-derived small RNA as a novel biomarker for colorectal cancer diagnosis. Genome Med 2021; 13(1): 20
CrossRef
Pubmed
Google scholar
|
[55] |
Yu M, Lu B, Zhang J, Ding J, Liu P, Lu Y. tRNA-derived RNA fragments in cancer: current status and future perspectives. J Hematol Oncol 2020; 13(1): 121
CrossRef
Pubmed
Google scholar
|
/
〈 | 〉 |