Application of StrucGP in medical immunology: site-specific N-glycoproteomic analysis of macrophages

Pengfei Li , Zexuan Chen , Shanshan You , Yintai Xu , Zhifang Hao , Didi Liu , Jiechen Shen , Bojing Zhu , Wei Dan , Shisheng Sun

Front. Med. ›› 2023, Vol. 17 ›› Issue (2) : 304 -316.

PDF (4438KB)
Front. Med. ›› 2023, Vol. 17 ›› Issue (2) : 304 -316. DOI: 10.1007/s11684-022-0964-8
RESEARCH ARTICLE
RESEARCH ARTICLE

Application of StrucGP in medical immunology: site-specific N-glycoproteomic analysis of macrophages

Author information +
History +
PDF (4438KB)

Abstract

The structure of N-glycans on specific proteins can regulate innate and adaptive immunity via sensing environmental signals. Meanwhile, the structural diversity of N-glycans poses analytical challenges that limit the exploration of specific glycosylation functions. In this work, we used THP-1-derived macrophages as examples to show the vast potential of a N-glycan structural interpretation tool StrucGP in N-glycoproteomic analysis. The intact glycopeptides of macrophages were enriched and analyzed using mass spectrometry (MS)-based glycoproteomic approaches, followed by the large-scale mapping of site-specific glycan structures via StrucGP. Results revealed that bisected GlcNAc, core fucosylated, and sialylated glycans (e.g., HexNAc4Hex5Fuc1Neu5Ac1, N4H5F1S1) were increased in M1 and M2 macrophages, especially in the latter. The findings indicated that these structures may be closely related to macrophage polarization. In addition, a high level of glycosylated PD-L1 was observed in M1 macrophages, and the LacNAc moiety was detected at Asn-192 and Asn-200 of PD-L1, and Asn-200 contained Lewis epitopes. The precision structural interpretation of site-specific glycans and subsequent intervention of target glycoproteins and related glycosyltransferases are of great value for the development of new diagnostic and therapeutic approaches for different diseases.

Keywords

macrophage / glycoproteome / glycopeptides / N-glycan structures / PD-L1

Cite this article

Download citation ▾
Pengfei Li, Zexuan Chen, Shanshan You, Yintai Xu, Zhifang Hao, Didi Liu, Jiechen Shen, Bojing Zhu, Wei Dan, Shisheng Sun. Application of StrucGP in medical immunology: site-specific N-glycoproteomic analysis of macrophages. Front. Med., 2023, 17(2): 304-316 DOI:10.1007/s11684-022-0964-8

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Reily C, Stewart TJ, Renfrow MB, Novak J. Glycosylation in health and disease. Nat Rev Nephrol 2019; 15(6): 346–366

[2]

Silva MC, FernandesÂ, Oliveira M, Resende C, Correia A, de-Freitas-Junior JC, Lavelle A, Andrade-da-Costa J, Leander M, Xavier-Ferreira H, Bessa J, Pereira C, Henrique RM, Carneiro F, Dinis-Ribeiro M, Marcos-Pinto R, Lima M, Lepenies B, Sokol H, Machado JC, Vilanova M, Pinho SS. Glycans as immune checkpoints: removal of branched N-glycans enhances immune recognition preventing cancer progression. Cancer Immunol Res 2020; 8(11): 1407–1425

[3]

Mikolajczyk K, Kaczmarek R, Czerwinski M. How glycosylation affects glycosylation: the role of N-glycans in glycosyltransferase activity. Glycobiology 2020; 30(12): 941–969

[4]

Schjoldager KT, Narimatsu Y, Joshi HJ, Clausen H. Global view of human protein glycosylation pathways and functions. Nat Rev Mol Cell Biol 2020; 21(12): 729–749

[5]

Xiao H, Suttapitugsakul S, Sun F, Wu R. Mass spectrometry-based chemical and enzymatic methods for global analysis of protein glycosylation. Acc Chem Res 2018; 51(8): 1796–1806

[6]

Rojas-Macias MA, Mariethoz J, Andersson P, Jin C, Venkatakrishnan V, Aoki NP, Shinmachi D, Ashwood C, Madunic K, Zhang T, Miller RL, Horlacher O, Struwe WB, Watanabe Y, Okuda S, Levander F, Kolarich D, Rudd PM, Wuhrer M, Kettner C, Packer NH, Aoki-Kinoshita KF, Lisacek F, Karlsson NG. Towards a standardized bioinformatics infrastructure for N- and O-glycomics. Nat Commun 2019; 10(1): 3275

[7]

Jensen PH, Karlsson NG, Kolarich D, Packer NH. Structural analysis of N- and O-glycans released from glycoproteins. Nat Protoc 2012; 7(7): 1299–1310

[8]

Zhu Z, Desaire H. Carbohydrates on proteins: site-specific glycosylation analysis by mass spectrometry. Annu Rev Anal Chem (Palo Alto, Calif) 2015; 8(1): 463–483

[9]

Shen J, Jia L, Dang L, Su Y, Zhang J, Xu Y, Zhu B, Chen Z, Wu J, Lan R, Hao Z, Ma C, Zhao T, Gao N, Bai J, Zhi Y, Li J, Zhang J, Sun S. StrucGP: de novo structural sequencing of site-specific N-glycan on glycoproteins using a modularization strategy. Nat Methods 2021; 18(8): 921–929

[10]

Xin M, You S, Xu Y, Shi W, Zhu B, Shen J, Wu J, Li C, Chen Z, Su Y, Shi J, Sun S. Precision glycoproteomics reveals distinctive N-glycosylation in human spermatozoa. Mol Cell Proteomics 2022; 21(4): 100214

[11]

Li J, Zhao T, Li J, Shen J, Jia L, Zhu B, Dang L, Ma C, Liu D, Mu F, Hu L, Sun S. Precision N-glycoproteomics reveals elevated LacdiNAc as a novel signature of intrahepatic cholangiocarcinoma. Mol Oncol 2022; 16(11): 2135–2152

[12]

Murray PJ. Macrophage polarization. Annu Rev Physiol 2017; 79(1): 541–566

[13]

Zarif JC, Yang W, Hernandez JR, Zhang H, Pienta KJ. The Identification of macrophage-enriched glycoproteins using glycoproteomics. Mol Cell Proteomics 2017; 16(6): 1029–1037

[14]

Hinneburg H, Pedersen JL, Bokil NJ, Pralow A, Schirmeister F, Kawahara R, Rapp E, Saunders BM, Thaysen-Andersen M. High-resolution longitudinal N- and O-glycoprofiling of human monocyte-to-macrophage transition. Glycobiology 2020; 30(9): 679–694

[15]

Chanput W, Mes JJ, Wichers HJ. THP-1 cell line: an in vitro cell model for immune modulation approach. Int Immunopharmacol 2014; 23(1): 37–45

[16]

Delannoy CP, Rombouts Y, Groux-Degroote S, Holst S, Coddeville B, Harduin-Lepers A, Wuhrer M, Elass-Rochard E, Guérardel Y. Glycosylation changes triggered by the differentiation of monocytic THP-1 cell line into macrophages. J Proteome Res 2017; 16(1): 156–169

[17]

Kalxdorf M, Gade S, Eberl HC, Bantscheff M. Monitoring cell-surface N-Glycoproteome dynamics by quantitative proteomics reveals mechanistic insights into macrophage differentiation. Mol Cell Proteomics 2017; 16(5): 770–785

[18]

Suttapitugsakul S, Tong M, Wu R. Time-resolved and comprehensive analysis of surface glycoproteins reveals distinct responses of monocytes and macrophages to bacterial infection. Angew Chem Int Ed Engl 2021; 60(20): 11494–11503

[19]

Li P, Hao Z, Wu J, Ma C, Xu Y, Li J, Lan R, Zhu B, Ren P, Fan D, Sun S. Comparative proteomic analysis of polarized human THP-1 and mouse RAW264.7 macrophages. Front Immunol 2021; 12: 700009

[20]

Hägglund P, Bunkenborg J, Elortza F, Jensen ON, Roepstorff P. A new strategy for identification of N-glycosylated proteins and unambiguous assignment of their glycosylation sites using HILIC enrichment and partial deglycosylation. J Proteome Res 2004; 3(3): 556–566

[21]

Deutsch EW, Mendoza L, Shteynberg D, Slagel J, Sun Z, Moritz RL. Trans-Proteomic Pipeline, a standardized data processing pipeline for large-scale reproducible proteomics informatics. Proteomics Clin Appl 2015; 9(7–8): 745–754

[22]

Sanda M, Benicky J, Goldman R. Low collision energy fragmentation in structure-specific glycoproteomics analysis. Anal Chem 2020; 92(12): 8262–8267

[23]

Pettersen EF, Goddard TD, Huang CC, Meng EC, Couch GS, Croll TI, Morris JH, Ferrin TE. UCSF ChimeraX: structure visualization for researchers, educators, and developers. Protein Sci 2021; 30(1): 70–82

[24]

Szklarczyk D, Gable AL, Lyon D, Junge A, Wyder S, Huerta-Cepas J, Simonovic M, Doncheva NT, Morris JH, Bork P, Jensen LJ, Mering CV. STRING v11: protein-protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Res 2019; 47(D1): D607–D613

[25]

Lyons JJ, Milner JD, Rosenzweig SD. Glycans instructing immunity: the emerging role of altered glycosylation in clinical immunology. Front Pediatr 2015; 3: 54

[26]

Marth JD, Grewal PK. Mammalian glycosylation in immunity. Nat Rev Immunol 2008; 8(11): 874–887

[27]

Moremen KW, Tiemeyer M, Nairn AV. Vertebrate protein glycosylation: diversity, synthesis and function. Nat Rev Mol Cell Biol 2012; 13(7): 448–462

[28]

Peng W, Gutierrez Reyes CD, Gautam S, Yu A, Cho BG, Goli M, Donohoo K, Mondello S, Kobeissy F, Mechref Y. MS-based glycomics and glycoproteomics methods enabling isomeric characterization. Mass Spectrom Rev 2021; 22: mas.21713

[29]

Gao C, Stavenhagen K, Eckmair B, McKitrick TR, Mehta AY, Matsumoto Y, McQuillan AM, Hanes MS, Eris D, Baker KJ, Jia N, Wei M, Heimburg-Molinaro J, Ernst B, Cummings RD. Differential recognition of oligomannose isomers by glycan-binding proteins involved in innate and adaptive immunity. Sci Adv 2021; 7(24): eabf6834

[30]

Yang L, Zhang Q, Lin L, Xu Y, Huang Y, Hu Z, Wang K, Zhang C, Yang P, Yu H. Microarray investigation of glycan remodeling during macrophage polarization reveals α2,6 sialic acid as an anti-inflammatory indicator. Mol Omics 2021; 17(4): 565–571

[31]

Li J, Hsu HC, Mountz JD, Allen JG. Unmasking fucosylation: from cell adhesion to immune system regulation and diseases. Cell Chem Biol 2018; 25(5): 499–512

[32]

Li J, Hsu HC, Ding Y, Li H, Wu Q, Yang P, Luo B, Rowse AL, Spalding DM, Bridges SL Jr, Mountz JD. Inhibition of fucosylation reshapes inflammatory macrophages and suppresses type II collagen-induced arthritis. Arthritis Rheumatol 2014; 66(9): 2368–2379

[33]

Zhao Y, Mahajan G, Kothapalli CR, Sun XL. Sialylation status and mechanical properties of THP-1 macrophages upon LPS stimulation. Biochem Biophys Res Commun 2019; 518(3): 573–578

[34]

Cai H, Zhang Y, Wang J, Gu J. Defects in macrophage reprogramming in cancer therapy: the negative impact of PD-L1/PD-1. Front Immunol 2021; 12: 690869

[35]

Hsu JM, Li CW, Lai YJ, Hung MC. Posttranslational modifications of PD-L1 and their applications in cancer therapy. Cancer Res 2018; 78(22): 6349–6353

[36]

Li CW, Lim SO, Chung EM, Kim YS, Park AH, Yao J, Cha JH, Xia W, Chan LC, Kim T, Chang SS, Lee HH, Chou CK, Liu YL, Yeh HC, Perillo EP, Dunn AK, Kuo CW, Khoo KH, Hsu JL, Wu Y, Hsu JM, Yamaguchi H, Huang TH, Sahin AA, Hortobagyi GN, Yoo SS, Hung MC. Eradication of triple-negative breast cancer cells by targeting glycosylated PD-L1. Cancer Cell 2018; 33(2): 187–201.e10

RIGHTS & PERMISSIONS

Higher Education Press

AI Summary AI Mindmap
PDF (4438KB)

Supplementary files

FMD-22041-OF-SSS_suppl_3

3046

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/