Aldolase B attenuates clear cell renal cell carcinoma progression by inhibiting CtBP2

Mingyue Tan, Qi Pan, Qi Wu, Jianfa Li, Jun Wang

PDF(3698 KB)
PDF(3698 KB)
Front. Med. ›› 2023, Vol. 17 ›› Issue (3) : 503-517. DOI: 10.1007/s11684-022-0947-9
RESEARCH ARTICLE
RESEARCH ARTICLE

Aldolase B attenuates clear cell renal cell carcinoma progression by inhibiting CtBP2

Author information +
History +

Abstract

Aldolase B (ALDOB), a glycolytic enzyme, is uniformly depleted in clear cell renal cell carcinoma (ccRCC) tissues. We previously showed that ALDOB inhibited proliferation through a mechanism independent of its enzymatic activity in ccRCC, but the mechanism was not unequivocally identified. We showed that the corepressor C-terminal-binding protein 2 (CtBP2) is a novel ALDOB-interacting protein in ccRCC. The CtBP2-to-ALDOB expression ratio in clinical samples was correlated with the expression of CtBP2 target genes and was associated with shorter survival. ALDOB inhibited CtBP2-mediated repression of multiple cell cycle inhibitor, proapoptotic, and epithelial marker genes. Furthermore, ALDOB overexpression decreased the proliferation and migration of ccRCC cells in an ALDOB-CtBP2 interaction-dependent manner. Mechanistically, our findings showed that ALDOB recruited acireductone dioxygenase 1, which catalyzes the synthesis of an endogenous inhibitor of CtBP2, 4-methylthio 2-oxobutyric acid. ALDOB functions as a scaffold to bring acireductone dioxygenase and CtBP2 in close proximity to potentiate acireductone dioxygenase-mediated inhibition of CtBP2, and this scaffolding effect was independent of ALDOB enzymatic activity. Moreover, increased ALDOB expression inhibited tumor growth in a xenograft model and decreased lung metastasis in vivo. Our findings reveal that ALDOB is a negative regulator of CtBP2 and inhibits tumor growth and metastasis in ccRCC.

Keywords

ALDOB / kidney cancer / cell proliferation

Cite this article

Download citation ▾
Mingyue Tan, Qi Pan, Qi Wu, Jianfa Li, Jun Wang. Aldolase B attenuates clear cell renal cell carcinoma progression by inhibiting CtBP2. Front. Med., 2023, 17(3): 503‒517 https://doi.org/10.1007/s11684-022-0947-9

References

[1]
Siegel RL, Miller KD, Jemal A. Cancer statistics, 2020. CA Cancer J Clin 2020; 70(1): 7–30
CrossRef Pubmed Google scholar
[2]
Mitchell TJ, Turajlic S, Rowan A, Nicol D, Farmery JHR, O’Brien T, Martincorena I, Tarpey P, Angelopoulos N, Yates LR, Butler AP, Raine K, Stewart GD, Challacombe B, Fernando A, Lopez JI, Hazell S, Chandra A, Chowdhury S, Rudman S, Soultati A, Stamp G, Fotiadis N, Pickering L, Au L, Spain L, Lynch J, Stares M, Teague J, Maura F, Wedge DC, Horswell S, Chambers T, Litchfield K, Xu H, Stewart A, Elaidi R, Oudard S, McGranahan N, Csabai I, Gore M, Futreal PA, Larkin J, Lynch AG, Szallasi Z, Swanton C, Campbell PJ, Consortium TRR. Timing the landmark events in the evolution of clear cell renal cell cancer: TRACERx renal. Cell 2018; 173(3): 611–623.e17
CrossRef Pubmed Google scholar
[3]
Schödel J, Grampp S, Maher ER, Moch H, Ratcliffe PJ, Russo P, Mole DR. Hypoxia, hypoxia-inducible transcription factors, and renal cancer. Eur Urol 2016; 69(4): 646–657
CrossRef Pubmed Google scholar
[4]
Lv L, Lei Q. Proteins moonlighting in tumor metabolism and epigenetics. Front Med 2021; 15(3): 383–403
CrossRef Pubmed Google scholar
[5]
Zhang CS, Hawley SA, Zong Y, Li M, Wang Z, Gray A, Ma T, Cui J, Feng JW, Zhu M, Wu YQ, Li TY, Ye Z, Lin SY, Yin H, Piao HL, Hardie DG, Lin SC. Fructose-1,6-bisphosphate and aldolase mediate glucose sensing by AMPK. Nature 2017; 548(7665): 112–116
CrossRef Pubmed Google scholar
[6]
Li M, He X, Guo W, Yu H, Zhang S, Wang N, Liu G, Sa R, Shen X, Jiang Y, Tang Y, Zhuo Y, Yin C, Tu Q, Li N, Nie X, Li Y, Hu Z, Zhu H, Ding J, Li Z, Liu T, Zhang F, Zhou H, Li S, Yue J, Yan Z, Cheng S, Tao Y, Yin H. Aldolase B suppresses hepatocellular carcinogenesis by inhibiting G6PD and pentose phosphate pathways. Nat Can 2020; 1(7): 735–747
CrossRef Pubmed Google scholar
[7]
Huang J, Kong W, Zhang J, Chen Y, Xue W, Liu D, Huang Y. c-Myc modulates glucose metabolism via regulation of miR-184/PKM2 pathway in clear-cell renal cell carcinoma. Int J Oncol 2016; 49(4): 1569–1575
CrossRef Pubmed Google scholar
[8]
Courtney KD, Bezwada D, Mashimo T, Pichumani K, Vemireddy V, Funk AM, Wimberly J, McNeil SS, Kapur P, Lotan Y, Margulis V, Cadeddu JA, Pedrosa I, DeBerardinis RJ, Malloy CR, Bachoo RM, Maher EA. Isotope tracing of human clear cell renal cell carcinomas demonstrates suppressed glucose oxidation in vivo. Cell Metab 2018; 28(5): 793–800.e2
CrossRef Pubmed Google scholar
[9]
Wettersten HI, Aboud OA, Lara PN Jr, Weiss RH. Metabolic reprogramming in clear cell renal cell carcinoma. Nat Rev Nephrol 2017; 13(7): 410–419
CrossRef Pubmed Google scholar
[10]
Wang J, Wu Q, Qiu J. Accumulation of fructose 1,6-bisphosphate protects clear cell renal cell carcinoma from oxidative stress. Lab Invest 2019; 99(6): 898–908
CrossRef Pubmed Google scholar
[11]
Lu Y, Li Y, Liu Q, Tian N, Du P, Zhu F, Han Y, Liu X, Liu X, Peng X, Wang X, Wu Y, Tong L, Li Y, Zhu Y, Wu L, Zhang P, Xu Y, Chen H, Li B, Tong X. MondoA-thioredoxin-interacting protein axis maintains regulatory T-cell identity and function in colorectal cancer microenvironment. Gastroenterology 2021; 161(2): 575–591.e16
CrossRef Pubmed Google scholar
[12]
Martinelli P, Carrillo-de Santa Pau E, Cox T, Sainz B Jr, Dusetti N, Greenhalf W, Rinaldi L, Costello E, Ghaneh P, Malats N, Büchler M, Pajic M, Biankin AV, Iovanna J, Neoptolemos J, Real FX. GATA6 regulates EMT and tumour dissemination, and is a marker of response to adjuvant chemotherapy in pancreatic cancer. Gut 2017; 66(9): 1665–1676
CrossRef Pubmed Google scholar
[13]
Ganaie AA, Beigh FH, Astone M, Ferrari MG, Maqbool R, Umbreen S, Parray AS, Siddique HR, Hussain T, Murugan P, Morrissey C, Koochekpour S, Deng Y, Konety BR, Hoeppner LH, Saleem M. BMI1 drives metastasis of prostate cancer in Caucasian and African-American men and is a potential therapeutic target: hypothesis tested in race-specific models. Clin Cancer Res 2018; 24(24): 6421–6432
CrossRef Pubmed Google scholar
[14]
Kouwenhoven EN, van Heeringen SJ, Tena JJ, Oti M, Dutilh BE, Alonso ME, de la Calle-Mustienes E, Smeenk L, Rinne T, Parsaulian L, Bolat E, Jurgelenaite R, Huynen MA, Hoischen A, Veltman JA, Brunner HG, Roscioli T, Oates E, Wilson M, Manzanares M, Gómez-Skarmeta JL, Stunnenberg HG, Lohrum M, van Bokhoven H, Zhou H. Genome-wide profiling of p63 DNA-binding sites identifies an element that regulates gene expression during limb development in the 7q21 SHFM1 locus. PLoS Genet 2010; 6(8): e1001065
CrossRef Pubmed Google scholar
[15]
Lu C, Yang D, Sabbatini ME, Colby AH, Grinstaff MW, Oberlies NH, Pearce C, Liu K. Contrasting roles of H3K4me3 and H3K9me3 in regulation of apoptosis and gemcitabine resistance in human pancreatic cancer cells. BMC Cancer 2018; 18(1): 149
CrossRef Pubmed Google scholar
[16]
Hu X, Feng C, Zhou Y, Harrison A, Chen M. DeepTrio: a ternary prediction system for protein-protein interaction using mask multiple parallel convolutional neural networks. Bioinformatics 2021; 38(3): 694–702
CrossRef Pubmed Google scholar
[17]
Sakamoto T, Weng J S, Hara T, Yoshino S, Kozuka-Hata H, Oyama M, Seiki M. Hypoxia-inducible factor 1 regulation through cross talk between mTOR and MT1-MMP. Mol Cell Biol. 2014; 34(1): 30–42
CrossRef Pubmed Google scholar
[18]
Li X, Eberhardt A, Hansen JN, Bohmann D, Li H, Schor NF. Methylation of the phosphatase-transcription activator EYA1 by protein arginine methyltransferase 1: mechanistic, functional, and structural studies. FASEB J 2017; 31(6): 2327–2339
CrossRef Pubmed Google scholar
[19]
SantamariaREsposito GVitaglianoLRaceVPaglionico IZancanLZagariASalvatore F. Functional and molecular modelling studies of two hereditary fructose intolerance-causing mutations at arginine 303 in human liver aldolase. Biochem J 2000; 350 Pt 3(Pt 3): 823–828
[20]
Zhang Y, Heinsen MH, Kostic M, Pagani GM, Riera TV, Perovic I, Hedstrom L, Snider BB, Pochapsky TC. Analogs of 1-phosphonooxy-2,2-dihydroxy-3-oxo-5-(methylthio)pentane, an acyclic intermediate in the methionine salvage pathway: a new preparation and characterization of activity with E1 enolase/phosphatase from Klebsiella oxytoca. Bioorg Med Chem 2004; 12(14): 3847–3855
CrossRef Pubmed Google scholar
[21]
Deshpande AR, Wagenpfeil K, Pochapsky TC, Petsko GA, Ringe D. Metal-dependent function of a mammalian acireductone dioxygenase. Biochemistry 2016; 55(9): 1398–1407
CrossRef Pubmed Google scholar
[22]
Wang J, Tan M, Ge J, Zhang P, Zhong J, Tao L, Wang Q, Tong X, Qiu J. Lysosomal acid lipase promotes cholesterol ester metabolism and drives clear cell renal cell carcinoma progression. Cell Prolif 2018; 51(4): e12452
CrossRef Pubmed Google scholar
[23]
AlexandrovBSIlievFLStanevV VesselinovVAlexandrov LB. rNMF 1.0: Robust Nonnegative matrix factorization with kmeans clustering and signal shift. 2016
[24]
Guinney J, Dienstmann R, Wang X, de Reyniès A, Schlicker A, Soneson C, Marisa L, Roepman P, Nyamundanda G, Angelino P, Bot BM, Morris JS, Simon IM, Gerster S, Fessler E, De Sousa E Melo F, Missiaglia E, Ramay H, Barras D, Homicsko K, Maru D, Manyam GC, Broom B, Boige V, Perez-Villamil B, Laderas T, Salazar R, Gray JW, Hanahan D, Tabernero J, Bernards R, Friend SH, Laurent-Puig P, Medema JP, Sadanandam A, Wessels L, Delorenzi M, Kopetz S, Vermeulen L, Tejpar S, Tejpar S. The consensus molecular subtypes of colorectal cancer. Nat Med 2015; 21(11): 1350–1356
CrossRef Pubmed Google scholar
[25]
He X, Li M, Yu H, Liu G, Wang N, Yin C, Tu Q, Narla G, Tao Y, Cheng S, Yin H, Yin H. Loss of hepatic aldolase B activates Akt and promotes hepatocellular carcinogenesis by destabilizing the Aldob/Akt/PP2A protein complex. PLoS Biol 2020; 18(12): e3000803
CrossRef Pubmed Google scholar
[26]
Takayama K, Suzuki T, Fujimura T, Urano T, Takahashi S, Homma Y, Inoue S. CtBP2 modulates the androgen receptor to promote prostate cancer progression. Cancer Res 2014; 74(22): 6542–6553
CrossRef Pubmed Google scholar
[27]
Wang DP, Gu LL, Xue Q, Chen H, Mao GX. CtBP2 promotes proliferation and reduces drug sensitivity in non-small cell lung cancer via the Wnt/β-catenin pathway. Neoplasma 2018; 65(6): 888–897
CrossRef Pubmed Google scholar
[28]
Paliwal S, Ho N, Parker D, Grossman SR. CtBP2 promotes human cancer cell migration by transcriptional activation of tiam1. Genes Cancer 2012; 3(7–8): 481–490
CrossRef Pubmed Google scholar
[29]
Dai F, Xuan Y, Jin JJ, Yu S, Long ZW, Cai H, Liu XW, Zhou Y, Wang YN, Chen Z, Huang H. CtBP2 overexpression promotes tumor cell proliferation and invasion in gastric cancer and is associated with poor prognosis. Oncotarget 2017; 8(17): 28736–28749
CrossRef Pubmed Google scholar
[30]
Quinlan KGR, Verger A, Kwok A, Lee SHY, Perdomo J, Nardini M, Bolognesi M, Crossley M. Role of the C-terminal binding protein PXDLS motif binding cleft in protein interactions and transcriptional repression. Mol Cell Biol 2006; 26(21): 8202–8213
CrossRef Pubmed Google scholar
[31]
Riefler GM, Firestein BL. Binding of neuronal nitric-oxide synthase (nNOS) to carboxyl-terminal-binding protein (CtBP) changes the localization of CtBP from the nucleus to the cytosol: a novel function for targeting by the PDZ domain of nNOS. J Biol Chem 2001; 276(51): 48262–48268
CrossRef Pubmed Google scholar
[32]
Benziane B, Demaretz S, Defontaine N, Zaarour N, Cheval L, Bourgeois S, Klein C, Froissart M, Blanchard A, Paillard M, Gamba G, Houillier P, Laghmani K. NKCC2 surface expression in mammalian cells: down-regulation by novel interaction with aldolase B. J Biol Chem 2007; 282(46): 33817–33830
CrossRef Pubmed Google scholar
[33]
Zhao LJ, Kuppuswamy M, Vijayalingam S, Chinnadurai G. Interaction of ZEB and histone deacetylase with the PLDLS-binding cleft region of monomeric C-terminal binding protein 2. BMC Mol Biol 2009; 10(1): 89
CrossRef Pubmed Google scholar
[34]
Lu M, Ammar D, Ives H, Albrecht F, Gluck SL. Physical interaction between aldolase and vacuolar H+-ATPase is essential for the assembly and activity of the proton pump. J Biol Chem 2007; 282(34): 24495–24503
CrossRef Pubmed Google scholar
[35]
Lee S, Hong S, Kim S, Kang S. Ataxin-1 occupies the promoter region of E-cadherin in vivo and activates CtBP2-repressed promoter. Biochim Biophys Acta 2011; 1813(5): 713–722
CrossRef Pubmed Google scholar
[36]
Wan C, Borgeson B, Phanse S, Tu F, Drew K, Clark G, Xiong X, Kagan O, Kwan J, Bezginov A, Chessman K, Pal S, Cromar G, Papoulas O, Ni Z, Boutz DR, Stoilova S, Havugimana PC, Guo X, Malty RH, Sarov M, Greenblatt J, Babu M, Derry WB, Tillier ER, Wallingford JB, Parkinson J, Marcotte EM, Emili A. Panorama of ancient metazoan macromolecular complexes. Nature 2015; 525(7569): 339–344
CrossRef Pubmed Google scholar
[37]
Lucarelli G, Loizzo D, Franzin R, Battaglia S, Ferro M, Cantiello F, Castellano G, Bettocchi C, Ditonno P, Battaglia M. Metabolomic insights into pathophysiological mechanisms and biomarker discovery in clear cell renal cell carcinoma. Expert Rev Mol Diagn 2019; 19(5): 397–407
CrossRef Pubmed Google scholar
[38]
Ragone R, Sallustio F, Piccinonna S, Rutigliano M, Vanessa G, Palazzo S, Lucarelli G, Ditonno P, Battaglia M, Fanizzi FP, Schena FP. Renal cell carcinoma: a study through NMR-based metabolomics combined with transcriptomics. Diseases 2016; 4(1): 7
CrossRef Pubmed Google scholar
[39]
Bianchi C, Meregalli C, Bombelli S, Di Stefano V, Salerno F, Torsello B, De Marco S, Bovo G, Cifola I, Mangano E, Battaglia C, Strada G, Lucarelli G, Weiss RH, Perego RA. The glucose and lipid metabolism reprogramming is grade-dependent in clear cell renal cell carcinoma primary cultures and is targetable to modulate cell viability and proliferation. Oncotarget 2017; 8(69): 113502–113515
CrossRef Pubmed Google scholar
[40]
Lucarelli G, Ferro M, Loizzo D, Bianchi C, Terracciano D, Cantiello F, Bell LN, Battaglia S, Porta C, Gernone A, Perego RA, Maiorano E, Cobelli O, Castellano G, Vincenti L, Ditonno P, Battaglia M. Integration of lipidomics and transcriptomics reveals reprogramming of the lipid metabolism and composition in clear cell renal cell carcinoma. Metabolites 2020; 10(12): 509
CrossRef Pubmed Google scholar
[41]
Bombelli S, Torsello B, De Marco S, Lucarelli G, Cifola I, Grasselli C, Strada G, Bovo G, Perego RA, Bianchi C. 36-kDa annexin A3 isoform negatively modulates lipid storage in clear cell renal cell carcinoma cells. Am J Pathol 2020; 190(11): 2317–2326
CrossRef Pubmed Google scholar
[42]
Lucarelli G, Rutigliano M, Sallustio F, Ribatti D, Giglio A, Lepore Signorile M, Grossi V, Sanese P, Napoli A, Maiorano E, Bianchi C, Perego RA, Ferro M, Ranieri E, Serino G, Bell LN, Ditonno P, Simone C, Battaglia M. Integrated multi-omics characterization reveals a distinctive metabolic signature and the role of NDUFA4L2 in promoting angiogenesis, chemoresistance, and mitochondrial dysfunction in clear cell renal cell carcinoma. Aging (Albany NY) 2018; 10(12): 3957–3985
CrossRef Pubmed Google scholar
[43]
Gatto F, Nookaew I, Nielsen J. Chromosome 3p loss of heterozygosity is associated with a unique metabolic network in clear cell renal carcinoma. Proc Natl Acad Sci USA 2014; 111(9): E866–E875
CrossRef Pubmed Google scholar
[44]
Li B, Qiu B, Lee DSM, Walton ZE, Ochocki JD, Mathew LK, Mancuso A, Gade TPF, Keith B, Nissim I, Simon MC. Fructose-1,6-bisphosphatase opposes renal carcinoma progression. Nature 2014; 513(7517): 251–255
CrossRef Pubmed Google scholar
[45]
Tao QF, Yuan SX, Yang F, Yang S, Yang Y, Yuan JH, Wang ZG, Xu QG, Lin KY, Cai J, Yu J, Huang WL, Teng XL, Zhou CC, Wang F, Sun SH, Zhou WP. Aldolase B inhibits metastasis through ten-eleven translocation 1 and serves as a prognostic biomarker in hepatocellular carcinoma. Mol Cancer 2015; 14(1): 170
CrossRef Pubmed Google scholar
[46]
Lian J, Xia L, Chen Y, Zheng J, Ma K, Luo L, Ye F. Aldolase B impairs DNA mismatch repair and induces apoptosis in colon adenocarcinoma. Pathol Res Pract 2019; 215(11): 152597
CrossRef Pubmed Google scholar
[47]
Bu P, Chen KY, Xiang K, Johnson C, Crown SB, Rakhilin N, Ai Y, Wang L, Xi R, Astapova I, Han Y, Li J, Barth BB, Lu M, Gao Z, Mines R, Zhang L, Herman M, Hsu D, Zhang GF, Shen X. Aldolase B-mediated fructose metabolism drives metabolic reprogramming of colon cancer liver metastasis. Cell Metab 2018; 27(6): 1249–1262.e4
CrossRef Pubmed Google scholar
[48]
Li M, Zhang CS, Zong Y, Feng JW, Ma T, Hu M, Lin Z, Li X, Xie C, Wu Y, Jiang D, Li Y, Zhang C, Tian X, Wang W, Yang Y, Chen J, Cui J, Wu YQ, Chen X, Liu QF, Wu J, Lin SY, Ye Z, Liu Y, Piao HL, Yu L, Zhou Z, Xie XS, Hardie DG, Lin SC. Transient receptor potential V channels are essential for glucose sensing by aldolase and AMPK. Cell Metab 2019; 30(3): 508–524.e12
CrossRef Pubmed Google scholar
[49]
Liu G, Wang N, Zhang C, Li M, He X, Yin C, Tu Q, Shen X, Zhang L, Lv J, Wang Y, Jiang H, Chen S, Li N, Tao Y, Yin H. Fructose-1,6-bisphosphate aldolase B depletion promotes hepatocellular carcinogenesis through activating insulin receptor signaling and lipogenesis. Hepatology 2021; 74(6): 3037–3055
CrossRef Pubmed Google scholar
[50]
Chan CB, Liu X, Jang SW, Hsu SIH, Williams I, Kang S, Chen J, Ye K. NGF inhibits human leukemia proliferation by downregulating cyclin A1 expression through promoting acinus/CtBP2 association. Oncogene 2009; 28(43): 3825–3836
CrossRef Pubmed Google scholar
[51]
Barroilhet L, Yang J, Hasselblatt K, Paranal RM, Ng SK, Rauh-Hain JA, Welch WR, Bradner JE, Berkowitz RS, Ng SW. C-terminal binding protein-2 regulates response of epithelial ovarian cancer cells to histone deacetylase inhibitors. Oncogene 2013; 32(33): 3896–3903
CrossRef Pubmed Google scholar
[52]
Wang L, Zhou H, Wang Y, Cui G, Di LJ. CtBP maintains cancer cell growth and metabolic homeostasis via regulating SIRT4. Cell Death Dis 2015; 6(1): e1620
CrossRef Pubmed Google scholar
[53]
Fjeld CC, Birdsong WT, Goodman RH. Differential binding of NAD+ and NADH allows the transcriptional corepressor carboxyl-terminal binding protein to serve as a metabolic sensor. Proc Natl Acad Sci USA 2003; 100(16): 9202–9207
CrossRef Pubmed Google scholar

Acknowledgments

This work was financially supported by grants from the National Natural Science Foundation of China (Nos. 82002683 and 81902569).

Electronic Supplementary Material

Supplementary material is available in the online version of this article at https://doi.org/10.1007/s11684-022-0947-9 and is accessible for authorized users.

Compliance with ethical guidelines

Mingyue Tan, Qi Pan, Qi Wu, Jianfa Li, and Jun Wang declare that they have no conflicts of interest. All procedures were performed in accordance with the ethical standards of the responsible committees on human experimentation (institutional and national) and with the Declaration of Helsinki of 1975 and its revision in 2000 (5). All procedures were approved by the Institutional Review Board at the authors’ institutions (2020SQ192). Informed consent was obtained from all patients for inclusion in the study. All institutional and national guidelines for the care and use of laboratory animals were followed. All animal experiments were conducted using protocols approved by the Institutional Animal Care and Use Committee of Shanghai General Hospital (2021AWS0154, 2022AW006).

RIGHTS & PERMISSIONS

2022 Higher Education Press
AI Summary AI Mindmap
PDF(3698 KB)

Accesses

Citations

Detail

Sections
Recommended

/