Prefrontal cortical circuits in anxiety and fear: an overview

Yihua Chen, Nengyuan Hu, Jianming Yang, Tianming Gao

PDF(3335 KB)
PDF(3335 KB)
Front. Med. ›› 2022, Vol. 16 ›› Issue (4) : 518-539. DOI: 10.1007/s11684-022-0941-2
REVIEW
REVIEW

Prefrontal cortical circuits in anxiety and fear: an overview

Author information +
History +

Abstract

Pathological anxiety is among the most difficult neuropsychiatric diseases to treat pharmacologically, and it represents a major societal problem. Studies have implicated structural changes within the prefrontal cortex (PFC) and functional changes in the communication of the PFC with distal brain structures in anxiety disorders. Treatments that affect the activity of the PFC, including cognitive therapies and transcranial magnetic stimulation, reverse anxiety- and fear-associated circuit abnormalities through mechanisms that remain largely unclear. While the subjective experience of a rodent cannot be precisely determined, rodent models hold great promise in dissecting well-conserved circuits. Newly developed genetic and viral tools and optogenetic and chemogenetic techniques have revealed the intricacies of neural circuits underlying anxiety and fear by allowing direct examination of hypotheses drawn from existing psychological concepts. This review focuses on studies that have used these circuit-based approaches to gain a more detailed, more comprehensive, and more integrated view on how the PFC governs anxiety and fear and orchestrates adaptive defensive behaviors to hopefully provide a roadmap for the future development of therapies for pathological anxiety.

Keywords

prefrontal cortex / anxiety / fear / neural circuits / optogenetics / DREADD

Cite this article

Download citation ▾
Yihua Chen, Nengyuan Hu, Jianming Yang, Tianming Gao. Prefrontal cortical circuits in anxiety and fear: an overview. Front. Med., 2022, 16(4): 518‒539 https://doi.org/10.1007/s11684-022-0941-2

References

[1]
Grupe DW, Nitschke JB. Uncertainty and anticipation in anxiety: an integrated neurobiological and psychological perspective. Nat Rev Neurosci 2013; 14( 7): 488– 501
CrossRef Pubmed Google scholar
[2]
Davis M, Walker DL, Miles L, Grillon C. Phasic vs sustained fear in rats and humans: role of the extended amygdala in fear vs anxiety. Neuropsychopharmacology 2010; 35( 1): 105– 135
CrossRef Pubmed Google scholar
[3]
Kessler RC, Petukhova M, Sampson NA, Zaslavsky AM, Wittchen HU. Twelve-month and lifetime prevalence and lifetime morbid risk of anxiety and mood disorders in the United States. Int J Methods Psychiatr Res 2012; 21( 3): 169– 184
CrossRef Pubmed Google scholar
[4]
Wittchen HU, Jacobi F, Rehm J, Gustavsson A, Svensson M, Jönsson B, Olesen J, Allgulander C, Alonso J, Faravelli C, Fratiglioni L, Jennum P, Lieb R, Maercker A, van Os J, Preisig M, Salvador-Carulla L, Simon R, Steinhausen HC. The size and burden of mental disorders and other disorders of the brain in Europe 2010. Eur Neuropsychopharmacol 2011; 21( 9): 655– 679
CrossRef Pubmed Google scholar
[5]
Chisholm D, Sweeny K, Sheehan P, Rasmussen B, Smit F, Cuijpers P, Saxena S. Scaling-up treatment of depression and anxiety: a global return on investment analysis. Lancet Psychiatry 2016; 3( 5): 415– 424
CrossRef Pubmed Google scholar
[6]
Kessler RC, Chiu WT, Demler O, Merikangas KR, Walters EE. Prevalence, severity, and comorbidity of 12-month DSM-IV disorders in the National Comorbidity Survey Replication. Arch Gen Psychiatry 2005; 62( 6): 617– 627
CrossRef Pubmed Google scholar
[7]
Kessler RC, Berglund P, Demler O, Jin R, Merikangas KR, Walters EE. Lifetime prevalence and age-of-onset distributions of DSM-IV disorders in the National Comorbidity Survey Replication. Arch Gen Psychiatry 2005; 62( 6): 593– 602
CrossRef Pubmed Google scholar
[8]
Lecrubier Y. Widespread underrecognition and undertreatment of anxiety and mood disorders: results from 3 European studies. J Clin Psychiatry 2007; 68(Suppl 2): 36–41
Pubmed
[9]
Bandelow B, Michaelis S, Wedekind D. Treatment of anxiety disorders. Dialogues Clin Neurosci 2017; 19( 2): 93– 107
CrossRef Pubmed Google scholar
[10]
Bandelow B, Reitt M, Röver C, Michaelis S, Görlich Y, Wedekind D. Efficacy of treatments for anxiety disorders: a meta-analysis. Int Clin Psychopharmacol 2015; 30( 4): 183– 192
CrossRef Pubmed Google scholar
[11]
Kaczkurkin AN, Foa EB. Cognitive-behavioral therapy for anxiety disorders: an update on the empirical evidence. Dialogues Clin Neurosci 2015; 17( 3): 337– 346
CrossRef Pubmed Google scholar
[12]
Wang Z, Whiteside SPH, Sim L, Farah W, Morrow AS, Alsawas M, Barrionuevo P, Tello M, Asi N, Beuschel B, Daraz L, Almasri J, Zaiem F, Larrea-Mantilla L, Ponce OJ, LeBlanc A, Prokop LJ, Murad MH. Comparative effectiveness and safety of cognitive behavioral therapy and pharmacotherapy for childhood anxiety disorders: a systematic review and meta-analysis. JAMA Pediatr 2017; 171( 11): 1049– 1056
CrossRef Pubmed Google scholar
[13]
Carpenter JK, Andrews LA, Witcraft SM, Powers MB, Smits JAJ, Hofmann SG. Cognitive behavioral therapy for anxiety and related disorders: a meta-analysis of randomized placebo-controlled trials. Depress Anxiety 2018; 35( 6): 502– 514
CrossRef Pubmed Google scholar
[14]
Zugliani MM, Cabo MC, Nardi AE, Perna G, Freire RC. Pharmacological and neuromodulatory treatments for panic disorder: clinical trials from 2010 to 2018. Psychiatry Investig 2019; 16( 1): 50– 58
CrossRef Pubmed Google scholar
[15]
Freire RC, Cabrera-Abreu C, Milev R. Neurostimulation in anxiety disorders, post-traumatic stress disorder, and obsessive-compulsive disorder. Adv Exp Med Biol 2020; 1191 : 331– 346
CrossRef Pubmed Google scholar
[16]
Deppermann S, Vennewald N, Diemer J, Sickinger S, Haeussinger FB, Notzon S, Laeger I, Arolt V, Ehlis AC, Zwanzger P, Fallgatter AJ. Does rTMS alter neurocognitive functioning in patients with panic disorder/agoraphobia? An fNIRS-based investigation of prefrontal activation during a cognitive task and its modulation via sham-controlled rTMS. BioMed Res Int 2014; 2014 : 542526
CrossRef Pubmed Google scholar
[17]
Clark DA, Beck AT. Cognitive theory and therapy of anxiety and depression: convergence with neurobiological findings. Trends Cogn Sci 2010; 14( 9): 418– 424
CrossRef Pubmed Google scholar
[18]
Linden DE. How psychotherapy changes the brain—the contribution of functional neuroimaging. Mol Psychiatry 2006; 11( 6): 528– 538
CrossRef Pubmed Google scholar
[19]
Raij T, Nummenmaa A, Marin MF, Porter D, Furtak S, Setsompop K, Milad MR. Prefrontal cortex stimulation enhances fear extinction memory in humans. Biol Psychiatry 2018; 84( 2): 129– 137
CrossRef Pubmed Google scholar
[20]
Chocyk A, Majcher-Maślanka I, Dudys D, Przyborowska A, Wędzony K. Impact of early-life stress on the medial prefrontal cortex functions—a search for the pathomechanisms of anxiety and mood disorders. Pharmacol Rep 2013; 65( 6): 1462– 1470
CrossRef Pubmed Google scholar
[21]
Myers-Schulz B, Koenigs M. Functional anatomy of ventromedial prefrontal cortex: implications for mood and anxiety disorders. Mol Psychiatry 2012; 17( 2): 132– 141
CrossRef Pubmed Google scholar
[22]
Thompson-Schill SL, Jonides J, Marshuetz C, Smith EE, D’Esposito M, Kan IP, Knight RT, Swick D. Effects of frontal lobe damage on interference effects in working memory. Cogn Affect Behav Neurosci 2002; 2( 2): 109– 120
CrossRef Pubmed Google scholar
[23]
Bremner JD. Traumatic stress: effects on the brain. Dialogues Clin Neurosci 2006; 8( 4): 445– 461
CrossRef Pubmed Google scholar
[24]
Liberzon I, Martis B. Neuroimaging studies of emotional responses in PTSD. Ann N Y Acad Sci 2006; 1071( 1): 87– 109
CrossRef Pubmed Google scholar
[25]
Shin LM, Rauch SL, Pitman RK. Amygdala, medial prefrontal cortex, and hippocampal function in PTSD. Ann N Y Acad Sci 2006; 1071( 1): 67– 79
CrossRef Pubmed Google scholar
[26]
Bruce SE, Buchholz KR, Brown WJ, Yan L, Durbin A, Sheline YI. Altered emotional interference processing in the amygdala and insula in women with post-traumatic stress disorder. Neuroimage Clin 2013; 2 : 43– 49
CrossRef Pubmed Google scholar
[27]
Brinkmann L, Buff C, Feldker K, Tupak SV, Becker MPI, Herrmann MJ, Straube T. Distinct phasic and sustained brain responses and connectivity of amygdala and bed nucleus of the stria terminalis during threat anticipation in panic disorder. Psychol Med 2017; 47( 15): 2675– 2688
CrossRef Pubmed Google scholar
[28]
Ball TM, Sullivan S, Flagan T, Hitchcock CA, Simmons A, Paulus MP, Stein MB. Selective effects of social anxiety, anxiety sensitivity, and negative affectivity on the neural bases of emotional face processing. Neuroimage 2012; 59( 2): 1879– 1887
CrossRef Pubmed Google scholar
[29]
Buff C, Schmidt C, Brinkmann L, Gathmann B, Tupak S, Straube T. Directed threat imagery in generalized anxiety disorder. Psychol Med 2018; 48( 4): 617– 628
CrossRef Pubmed Google scholar
[30]
Labuschagne I, Phan KL, Wood A, Angstadt M, Chua P, Heinrichs M, Stout JC, Nathan PJ. Medial frontal hyperactivity to sad faces in generalized social anxiety disorder and modulation by oxytocin. Int J Neuropsychopharmacol 2012; 15( 7): 883– 896
CrossRef Pubmed Google scholar
[31]
Wang HY, Zhang XX, Si CP, Xu Y, Liu Q, Bian HT, Zhang BW, Li XL, Yan ZR. Prefrontoparietal dysfunction during emotion regulation in anxiety disorder: a meta-analysis of functional magnetic resonance imaging studies. Neuropsychiatr Dis Treat 2018; 14 : 1183– 1198
CrossRef Pubmed Google scholar
[32]
Etkin A, Wager TD. Functional neuroimaging of anxiety: a meta-analysis of emotional processing in PTSD, social anxiety disorder, and specific phobia. Am J Psychiatry 2007; 164( 10): 1476– 1488
CrossRef Pubmed Google scholar
[33]
Sylvester CM, Corbetta M, Raichle ME, Rodebaugh TL, Schlaggar BL, Sheline YI, Zorumski CF, Lenze EJ. Functional network dysfunction in anxiety and anxiety disorders. Trends Neurosci 2012; 35( 9): 527– 535
CrossRef Pubmed Google scholar
[34]
Arnsten AF, Raskind MA, Taylor FB, Connor DF. The effects of stress exposure on prefrontal cortex: translating basic research into successful treatments for post-traumatic stress disorder. Neurobiol Stress 2015; 1 : 89– 99
CrossRef Pubmed Google scholar
[35]
Long Z, Medlock C, Dzemidzic M, Shin YW, Goddard AW, Dydak U. Decreased GABA levels in anterior cingulate cortex/medial prefrontal cortex in panic disorder. Prog Neuropsychopharmacol Biol Psychiatry 2013; 44 : 131– 135
CrossRef Pubmed Google scholar
[36]
Hasler G, Nugent AC, Carlson PJ, Carson RE, Geraci M, Drevets WC. Altered cerebral γ-aminobutyric acid type A-benzodiazepine receptor binding in panic disorder determined by [11C]flumazenil positron emission tomography. Arch Gen Psychiatry 2008; 65( 10): 1166– 1175
CrossRef Pubmed Google scholar
[37]
Herrmann MJ, Katzorke A, Busch Y, Gromer D, Polak T, Pauli P, Deckert J. Medial prefrontal cortex stimulation accelerates therapy response of exposure therapy in acrophobia. Brain Stimul 2017; 10( 2): 291– 297
CrossRef Pubmed Google scholar
[38]
Balconi M, Ferrari C. Left DLPFC rTMS stimulation reduced the anxiety bias effect or how to restore the positive memory processing in high-anxiety subjects. Psychiatry Res 2013; 209( 3): 554– 559
CrossRef Pubmed Google scholar
[39]
Makovac E, Watson DR, Meeten F, Garfinkel SN, Cercignani M, Critchley HD, Ottaviani C. Amygdala functional connectivity as a longitudinal biomarker of symptom changes in generalized anxiety. Soc Cogn Affect Neurosci 2016; 11( 11): 1719– 1728
CrossRef Pubmed Google scholar
[40]
Jung YH, Shin JE, Lee YI, Jang JH, Jo HJ, Choi SH. Altered amygdala resting-state functional connectivity and hemispheric asymmetry in patients with social anxiety disorder. Front Psychiatry 2018; 9 : 164
CrossRef Pubmed Google scholar
[41]
Lipka J, Hoffmann M, Miltner WH, Straube T. Effects of cognitive-behavioral therapy on brain responses to subliminal and supraliminal threat and their functional significance in specific phobia. Biol Psychiatry 2014; 76( 11): 869– 877
CrossRef Pubmed Google scholar
[42]
Goldin PR, Ziv M, Jazaieri H, Hahn K, Heimberg R, Gross JJ. Impact of cognitive behavioral therapy for social anxiety disorder on the neural dynamics of cognitive reappraisal of negative self-beliefs: randomized clinical trial. JAMA Psychiatry 2013; 70( 10): 1048– 1056
CrossRef Pubmed Google scholar
[43]
Andreescu C, Sheu LK, Tudorascu D, Gross JJ, Walker S, Banihashemi L, Aizenstein H. Emotion reactivity and regulation in late-life generalized anxiety disorder: functional connectivity at baseline and post-treatment. Am J Geriatr Psychiatry 2015; 23( 2): 200– 214
CrossRef Pubmed Google scholar
[44]
Belzung C, Griebel G. Measuring normal and pathological anxiety-like behaviour in mice: a review. Behav Brain Res 2001; 125( 1-2): 141– 149
CrossRef Pubmed Google scholar
[45]
Cryan JF, Holmes A. The ascent of mouse: advances in modelling human depression and anxiety. Nat Rev Drug Discov 2005; 4( 9): 775– 790
CrossRef Pubmed Google scholar
[46]
Anderson DJ, Adolphs R. A framework for studying emotions across species. Cell 2014; 157( 1): 187– 200
CrossRef Pubmed Google scholar
[47]
Pellow S, Chopin P, File SE, Briley M. Validation of open:closed arm entries in an elevated plus-maze as a measure of anxiety in the rat. J Neurosci Methods 1985; 14( 3): 149– 167
CrossRef Pubmed Google scholar
[48]
Kraeuter AK, Guest PC, Sarnyai Z. The open field test for measuring locomotor activity and anxiety-like behavior. Methods Mol Biol 2019; 1916 : 99– 103
CrossRef Pubmed Google scholar
[49]
Ambrogi Lorenzini C, Bucherelli C, Giachetti A. Passive and active avoidance behavior in the light-dark box test. Physiol Behav 1984; 32( 4): 687– 689
CrossRef Pubmed Google scholar
[50]
Dulawa SC, Holick KA, Gundersen B, Hen R. Effects of chronic fluoxetine in animal models of anxiety and depression. Neuropsychopharmacology 2004; 29( 7): 1321– 1330
CrossRef Pubmed Google scholar
[51]
Merali Z, Levac C, Anisman H. Validation of a simple, ethologically relevant paradigm for assessing anxiety in mice. Biol Psychiatry 2003; 54( 5): 552– 565
CrossRef Pubmed Google scholar
[52]
Shang C, Liu Z, Chen Z, Shi Y, Wang Q, Liu S, Li D, Cao P. A parvalbumin-positive excitatory visual pathway to trigger fear responses in mice. Science 2015; 348( 6242): 1472– 1477
CrossRef Pubmed Google scholar
[53]
Yang H, Yang J, Xi W, Hao S, Luo B, He X, Zhu L, Lou H, Yu YQ, Xu F, Duan S, Wang H. Laterodorsal tegmentum interneuron subtypes oppositely regulate olfactory cue-induced innate fear. Nat Neurosci 2016; 19( 2): 283– 289
CrossRef Pubmed Google scholar
[54]
Myers KM, Davis M. Mechanisms of fear extinction. Mol Psychiatry 2007; 12( 2): 120– 150
CrossRef Pubmed Google scholar
[55]
Tovote P, Fadok JP, Lüthi A. Neuronal circuits for fear and anxiety. Nat Rev Neurosci 2015; 16( 6): 317– 331
CrossRef Pubmed Google scholar
[56]
Graham BM, Milad MR. The study of fear extinction: implications for anxiety disorders. Am J Psychiatry 2011; 168( 12): 1255– 1265
CrossRef Pubmed Google scholar
[57]
Bremner JD, Elzinga B, Schmahl C, Vermetten E. Structural and functional plasticity of the human brain in posttraumatic stress disorder. Prog Brain Res 2007; 167 : 171– 186
CrossRef Pubmed Google scholar
[58]
Duvarci S, Pare D. Amygdala microcircuits controlling learned fear. Neuron 2014; 82( 5): 966– 980
CrossRef Pubmed Google scholar
[59]
Calhoon GG, Tye KM. Resolving the neural circuits of anxiety. Nat Neurosci 2015; 18( 10): 1394– 1404
CrossRef Pubmed Google scholar
[60]
Deisseroth K. Optogenetics: 10 years of microbial opsins in neuroscience. Nat Neurosci 2015; 18( 9): 1213– 1225
CrossRef Pubmed Google scholar
[61]
Yizhar O, Fenno LE, Davidson TJ, Mogri M, Deisseroth K. Optogenetics in neural systems. Neuron 2011; 71( 1): 9– 34
CrossRef Pubmed Google scholar
[62]
Sternson SM, Roth BL. Chemogenetic tools to interrogate brain functions. Annu Rev Neurosci 2014; 37( 1): 387– 407
CrossRef Pubmed Google scholar
[63]
Armbruster BN, Li X, Pausch MH, Herlitze S, Roth BL. Evolving the lock to fit the key to create a family of G protein-coupled receptors potently activated by an inert ligand. Proc Natl Acad Sci USA 2007; 104( 12): 5163– 5168
CrossRef Pubmed Google scholar
[64]
Urban DJ, Roth BL. DREADDs (designer receptors exclusively activated by designer drugs): chemogenetic tools with therapeutic utility. Annu Rev Pharmacol Toxicol 2015; 55( 1): 399– 417
CrossRef Pubmed Google scholar
[65]
Gomez JL, Bonaventura J, Lesniak W, Mathews WB, Sysa-Shah P, Rodriguez LA, Ellis RJ, Richie CT, Harvey BK, Dannals RF, Pomper MG, Bonci A, Michaelides M. Chemogenetics revealed: DREADD occupancy and activation via converted clozapine. Science 2017; 357( 6350): 503– 507
CrossRef Pubmed Google scholar
[66]
Kremer EJ, Boutin S, Chillon M, Danos O. Canine adenovirus vectors: an alternative for adenovirus-mediated gene transfer. J Virol 2000; 74( 1): 505– 512
CrossRef Pubmed Google scholar
[67]
Nectow AR, Nestler EJ. Viral tools for neuroscience. Nat Rev Neurosci 2020; 21( 12): 669– 681
CrossRef Pubmed Google scholar
[68]
Zimmermann D, Zhou A, Kiesel M, Feldbauer K, Terpitz U, Haase W, Schneider-Hohendorf T, Bamberg E, Sukhorukov VL. Effects on capacitance by overexpression of membrane proteins. Biochem Biophys Res Commun 2008; 369( 4): 1022– 1026
CrossRef Pubmed Google scholar
[69]
Moser E, Mathiesen I, Andersen P. Association between brain temperature and dentate field potentials in exploring and swimming rats. Science 1993; 259( 5099): 1324– 1326
CrossRef Pubmed Google scholar
[70]
Long MA, Fee MS. Using temperature to analyse temporal dynamics in the songbird motor pathway. Nature 2008; 456( 7219): 189– 194
CrossRef Pubmed Google scholar
[71]
Mahn M, Prigge M, Ron S, Levy R, Yizhar O. Biophysical constraints of optogenetic inhibition at presynaptic terminals. Nat Neurosci 2016; 19( 4): 554– 556
CrossRef Pubmed Google scholar
[72]
Stachniak TJ, Ghosh A, Sternson SM. Chemogenetic synaptic silencing of neural circuits localizes a hypothalamus→midbrain pathway for feeding behavior. Neuron 2014; 82( 4): 797– 808
CrossRef Pubmed Google scholar
[73]
Vardy E, Robinson JE, Li C, Olsen RHJ, DiBerto JF, Giguere PM, Sassano FM, Huang XP, Zhu H, Urban DJ, White KL, Rittiner JE, Crowley NA, Pleil KE, Mazzone CM, Mosier PD, Song J, Kash TL, Malanga CJ, Krashes MJ, Roth BL. A new DREADD facilitates the multiplexed chemogenetic interrogation of behavior. Neuron 2015; 86( 4): 936– 946
CrossRef Pubmed Google scholar
[74]
Preuss TM, Wise SP. Evolution of prefrontal cortex. Neuropsychopharmacology 2022; 47( 1): 3– 19
CrossRef Pubmed Google scholar
[75]
Schaeffer DJ, Hori Y, Gilbert KM, Gati JS, Menon RS, Everling S. Divergence of rodent and primate medial frontal cortex functional connectivity. Proc Natl Acad Sci USA 2020; 117( 35): 21681– 21689
CrossRef Pubmed Google scholar
[76]
Roberts AC. Prefrontal regulation of threat-elicited behaviors: a pathway to translation. Annu Rev Psychol 2020; 71( 1): 357– 387
CrossRef Pubmed Google scholar
[77]
Heidbreder CA, Groenewegen HJ. The medial prefrontal cortex in the rat: evidence for a dorso-ventral distinction based upon functional and anatomical characteristics. Neurosci Biobehav Rev 2003; 27( 6): 555– 579
CrossRef Pubmed Google scholar
[78]
Warthen DM, Lambeth PS, Ottolini M, Shi Y, Barker BS, Gaykema RP, Newmyer BA, Joy-Gaba J, Ohmura Y, Perez-Reyes E, Güler AD, Patel MK, Scott MM. Activation of pyramidal neurons in mouse medial prefrontal cortex enhances food-seeking behavior while reducing impulsivity in the absence of an effect on food intake. Front Behav Neurosci 2016; 10 : 63
CrossRef Pubmed Google scholar
[79]
Covington HE 3rd, Lobo MK, Maze I, Vialou V, Hyman JM, Zaman S, LaPlant Q, Mouzon E, Ghose S, Tamminga CA, Neve RL, Deisseroth K, Nestler EJ. Antidepressant effect of optogenetic stimulation of the medial prefrontal cortex. J Neurosci 2010; 30( 48): 16082– 16090
CrossRef Pubmed Google scholar
[80]
Chen YH, Wu JL, Hu NY, Zhuang JP, Li WP, Zhang SR, Li XW, Yang JM, Gao TM. Distinct projections from the infralimbic cortex exert opposing effects in modulating anxiety and fear. J Clin Invest 2021; 131( 14): e145692
CrossRef Pubmed Google scholar
[81]
Wang GQ, Cen C, Li C, Cao S, Wang N, Zhou Z, Liu XM, Xu Y, Tian NX, Zhang Y, Wang J, Wang LP, Wang Y. Deactivation of excitatory neurons in the prelimbic cortex via Cdk5 promotes pain sensation and anxiety. Nat Commun 2015; 6( 1): 7660
CrossRef Pubmed Google scholar
[82]
Adhikari A, Lerner TN, Finkelstein J, Pak S, Jennings JH, Davidson TJ, Ferenczi E, Gunaydin LA, Mirzabekov JJ, Ye L, Kim SY, Lei A, Deisseroth K. Basomedial amygdala mediates top-down control of anxiety and fear. Nature 2015; 527( 7577): 179– 185
CrossRef Pubmed Google scholar
[83]
Hare BD, Shinohara R, Liu RJ, Pothula S, DiLeone RJ, Duman RS. Optogenetic stimulation of medial prefrontal cortex Drd1 neurons produces rapid and long-lasting antidepressant effects. Nat Commun 2019; 10( 1): 223
CrossRef Pubmed Google scholar
[84]
Gee S, Ellwood I, Patel T, Luongo F, Deisseroth K, Sohal VS. Synaptic activity unmasks dopamine D2 receptor modulation of a specific class of layer V pyramidal neurons in prefrontal cortex. J Neurosci 2012; 32( 14): 4959– 4971
CrossRef Pubmed Google scholar
[85]
Fuchikami M, Thomas A, Liu R, Wohleb ES, Land BB, DiLeone RJ, Aghajanian GK, Duman RS. Optogenetic stimulation of infralimbic PFC reproduces ketamine’s rapid and sustained antidepressant actions. Proc Natl Acad Sci USA 2015; 112( 26): 8106– 8111
CrossRef Pubmed Google scholar
[86]
Vogt BA, Paxinos G. Cytoarchitecture of mouse and rat cingulate cortex with human homologies. Brain Struct Funct 2014; 219( 1): 185– 192
CrossRef Pubmed Google scholar
[87]
Heilbronner SR, Rodriguez-Romaguera J, Quirk GJ, Groenewegen HJ, Haber SN. Circuit-based corticostriatal homologies between rat and primate. Biol Psychiatry 2016; 80( 7): 509– 521
CrossRef Pubmed Google scholar
[88]
Alexander L, Wood CM, Gaskin PLR, Sawiak SJ, Fryer TD, Hong YT, McIver L, Clarke HF, Roberts AC. Over-activation of primate subgenual cingulate cortex enhances the cardiovascular, behavioral and neural responses to threat. Nat Commun 2020; 11( 1): 5386
CrossRef Pubmed Google scholar
[89]
Jhang J, Lee H, Kang MS, Lee HS, Park H, Han JH. Anterior cingulate cortex and its input to the basolateral amygdala control innate fear response. Nat Commun 2018; 9( 1): 2744
CrossRef Pubmed Google scholar
[90]
Falconi-Sobrinho LL, Dos Anjos-Garcia T, Coimbra NC. Nitric oxide-mediated defensive and antinociceptive responses organised at the anterior hypothalamus of mice are modulated by glutamatergic inputs from area 24b of the cingulate cortex. J Psychopharmacol 2021; 35( 1): 78– 90
CrossRef Pubmed Google scholar
[91]
Falconi-Sobrinho LL Dos Anjos-Garcia T Elias-Filho DH Coimbra NC. Unravelling cortico-hypothalamic pathways regulating unconditioned fear-induced antinociception and defensive behaviours. Neuropharmacology 2017; 113(Pt A): 367–385 doi:10.1016/j.neuropharm.2016.10.001
Pubmed
[92]
Falconi-Sobrinho LL, Dos Anjos-Garcia T, de Oliveira R, Coimbra NC. Decrease in NMDA receptor-signalling activity in the anterior cingulate cortex diminishes defensive behaviour and unconditioned fear-induced antinociception elicited by GABAergic tonic inhibition impairment in the posterior hypothalamus. Eur Neuropsychopharmacol 2017; 27( 11): 1120– 1131
CrossRef Pubmed Google scholar
[93]
Page CE, Shepard R, Heslin K, Coutellier L. Prefrontal parvalbumin cells are sensitive to stress and mediate anxiety-related behaviors in female mice. Sci Rep 2019; 9( 1): 19772
CrossRef Pubmed Google scholar
[94]
Soumier A, Sibille E. Opposing effects of acute versus chronic blockade of frontal cortex somatostatin-positive inhibitory neurons on behavioral emotionality in mice. Neuropsychopharmacology 2014; 39( 9): 2252– 2262
CrossRef Pubmed Google scholar
[95]
Tromp DP, Grupe DW, Oathes DJ, McFarlin DR, Hernandez PJ, Kral TR, Lee JE, Adams M, Alexander AL, Nitschke JB. Reduced structural connectivity of a major frontolimbic pathway in generalized anxiety disorder. Arch Gen Psychiatry 2012; 69( 9): 925– 934
CrossRef Pubmed Google scholar
[96]
Prater KE, Hosanagar A, Klumpp H, Angstadt M, Phan KL. Aberrant amygdala-frontal cortex connectivity during perception of fearful faces and at rest in generalized social anxiety disorder. Depress Anxiety 2013; 30( 3): 234– 241
CrossRef Pubmed Google scholar
[97]
Rosenkranz JA, Grace AA. Dopamine attenuates prefrontal cortical suppression of sensory inputs to the basolateral amygdala of rats. J Neurosci 2001; 21( 11): 4090– 4103
CrossRef Pubmed Google scholar
[98]
Motzkin JC, Philippi CL, Wolf RC, Baskaya MK, Koenigs M. Ventromedial prefrontal cortex is critical for the regulation of amygdala activity in humans. Biol Psychiatry 2015; 77( 3): 276– 284
CrossRef Pubmed Google scholar
[99]
Quirk GJ, Likhtik E, Pelletier JG, Paré D. Stimulation of medial prefrontal cortex decreases the responsiveness of central amygdala output neurons. J Neurosci 2003; 23( 25): 8800– 8807
CrossRef Pubmed Google scholar
[100]
Rosenkranz JA, Moore H, Grace AA. The prefrontal cortex regulates lateral amygdala neuronal plasticity and responses to previously conditioned stimuli. J Neurosci 2003; 23( 35): 11054– 11064
CrossRef Pubmed Google scholar
[101]
Adhikari A, Topiwala MA, Gordon JA. Single units in the medial prefrontal cortex with anxiety-related firing patterns are preferentially influenced by ventral hippocampal activity. Neuron 2011; 71( 5): 898– 910
CrossRef Pubmed Google scholar
[102]
Adhikari A, Topiwala MA, Gordon JA. Synchronized activity between the ventral hippocampus and the medial prefrontal cortex during anxiety. Neuron 2010; 65( 2): 257– 269
CrossRef Pubmed Google scholar
[103]
Zhang WH, Zhang JY, Holmes A, Pan BX. Amygdala circuit substrates for stress adaptation and adversity. Biol Psychiatry 2021; 89( 9): 847– 856
CrossRef Pubmed Google scholar
[104]
Liu WZ, Zhang WH, Zheng ZH, Zou JX, Liu XX, Huang SH, You WJ, He Y, Zhang JY, Wang XD, Pan BX. Identification of a prefrontal cortex-to-amygdala pathway for chronic stress-induced anxiety. Nat Commun 2020; 11( 1): 2221
CrossRef Pubmed Google scholar
[105]
Parfitt GM, Nguyen R, Bang JY, Aqrabawi AJ, Tran MM, Seo DK, Richards BA, Kim JC. Bidirectional control of anxiety-related behaviors in mice: role of inputs arising from the ventral hippocampus to the lateral septum and medial prefrontal cortex. Neuropsychopharmacology 2017; 42( 8): 1715– 1728
CrossRef Pubmed Google scholar
[106]
Padilla-Coreano N, Bolkan SS, Pierce GM, Blackman DR, Hardin WD, Garcia-Garcia AL, Spellman TJ, Gordon JA. Direct ventral hippocampal-prefrontal input is required for anxiety-related neural activity and behavior. Neuron 2016; 89( 4): 857– 866
CrossRef Pubmed Google scholar
[107]
Kepecs A, Fishell G. Interneuron cell types are fit to function. Nature 2014; 505( 7483): 318– 326
CrossRef Pubmed Google scholar
[108]
Hattori R, Kuchibhotla KV, Froemke RC, Komiyama T. Functions and dysfunctions of neocortical inhibitory neuron subtypes. Nat Neurosci 2017; 20( 9): 1199– 1208
CrossRef Pubmed Google scholar
[109]
Wamsley B, Fishell G. Genetic and activity-dependent mechanisms underlying interneuron diversity. Nat Rev Neurosci 2017; 18( 5): 299– 309
CrossRef Pubmed Google scholar
[110]
Seybold BA, Stanco A, Cho KK, Potter GB, Kim C, Sohal VS, Rubenstein JL, Schreiner CE. Chronic reduction in inhibition reduces receptive field size in mouse auditory cortex. Proc Natl Acad Sci USA 2012; 109( 34): 13829– 13834
CrossRef Pubmed Google scholar
[111]
Felix-Ortiz AC, Burgos-Robles A, Bhagat ND, Leppla CA, Tye KM. Bidirectional modulation of anxiety-related and social behaviors by amygdala projections to the medial prefrontal cortex. Neuroscience 2016; 321 : 197– 209
CrossRef Pubmed Google scholar
[112]
Do-Monte FH, Quiñones-Laracuente K, Quirk GJ. A temporal shift in the circuits mediating retrieval of fear memory. Nature 2015; 519( 7544): 460– 463
CrossRef Pubmed Google scholar
[113]
Wallis CU, Cardinal RN, Alexander L, Roberts AC, Clarke HF. Opposing roles of primate areas 25 and 32 and their putative rodent homologs in the regulation of negative emotion. Proc Natl Acad Sci USA 2017; 114( 20): E4075– E4084
CrossRef Pubmed Google scholar
[114]
Kim HS, Cho HY, Augustine GJ, Han JH. Selective control of fear expression by optogenetic manipulation of infralimbic cortex after extinction. Neuropsychopharmacology 2016; 41( 5): 1261– 1273
CrossRef Pubmed Google scholar
[115]
DeNardo LA, Liu CD, Allen WE, Adams EL, Friedmann D, Fu L, Guenthner CJ, Tessier-Lavigne M, Luo L. Temporal evolution of cortical ensembles promoting remote memory retrieval. Nat Neurosci 2019; 22( 3): 460– 469
CrossRef Pubmed Google scholar
[116]
Ramanathan KR, Jin J, Giustino TF, Payne MR, Maren S. Prefrontal projections to the thalamic nucleus reuniens mediate fear extinction. Nat Commun 2018; 9( 1): 4527
CrossRef Pubmed Google scholar
[117]
Bloodgood DW, Sugam JA, Holmes A, Kash TL. Fear extinction requires infralimbic cortex projections to the basolateral amygdala. Transl Psychiatry 2018; 8( 1): 60
CrossRef Pubmed Google scholar
[118]
Do-Monte FH, Manzano-Nieves G, Quiñones-Laracuente K, Ramos-Medina L, Quirk GJ. Revisiting the role of infralimbic cortex in fear extinction with optogenetics. J Neurosci 2015; 35( 8): 3607– 3615
CrossRef Pubmed Google scholar
[119]
Milad MR, Quirk GJ. Neurons in medial prefrontal cortex signal memory for fear extinction. Nature 2002; 420( 6911): 70– 74
CrossRef Pubmed Google scholar
[120]
Milad MR, Quirk GJ. Fear extinction as a model for translational neuroscience: ten years of progress. Annu Rev Psychol 2012; 63( 1): 129– 151
CrossRef Pubmed Google scholar
[121]
Milad MR, Rauch SL, Pitman RK, Quirk GJ. Fear extinction in rats: implications for human brain imaging and anxiety disorders. Biol Psychol 2006; 73( 1): 61– 71
CrossRef Pubmed Google scholar
[122]
Milad MR, Wright CI, Orr SP, Pitman RK, Quirk GJ, Rauch SL. Recall of fear extinction in humans activates the ventromedial prefrontal cortex and hippocampus in concert. Biol Psychiatry 2007; 62( 5): 446– 454
CrossRef Pubmed Google scholar
[123]
Phelps EA, Delgado MR, Nearing KI, LeDoux JE. Extinction learning in humans: role of the amygdala and vmPFC. Neuron 2004; 43( 6): 897– 905
CrossRef Pubmed Google scholar
[124]
Chang CH, Maren S. Strain difference in the effect of infralimbic cortex lesions on fear extinction in rats. Behav Neurosci 2010; 124( 3): 391– 397
CrossRef Pubmed Google scholar
[125]
Rajasethupathy P, Sankaran S, Marshel JH, Kim CK, Ferenczi E, Lee SY, Berndt A, Ramakrishnan C, Jaffe A, Lo M, Liston C, Deisseroth K. Projections from neocortex mediate top-down control of memory retrieval. Nature 2015; 526( 7575): 653– 659
CrossRef Pubmed Google scholar
[126]
Marek R, Xu L, Sullivan RKP, Sah P. Excitatory connections between the prelimbic and infralimbic medial prefrontal cortex show a role for the prelimbic cortex in fear extinction. Nat Neurosci 2018; 21( 5): 654– 658
CrossRef Pubmed Google scholar
[127]
Cummings KA, Clem RL. Prefrontal somatostatin interneurons encode fear memory. Nat Neurosci 2020; 23( 1): 61– 74
CrossRef Pubmed Google scholar
[128]
Mukherjee A, Caroni P. Infralimbic cortex is required for learning alternatives to prelimbic promoted associations through reciprocal connectivity. Nat Commun 2018; 9( 1): 2727
CrossRef Pubmed Google scholar
[129]
Chen YH, Hu NY, Wu DY, Bi LL, Luo ZY, Huang L, Wu JL, Wang ML, Li JT, Song YL, Zhang SR, Jie W, Li XW, Zhang SZ, Yang JM, Gao TM. PV network plasticity mediated by neuregulin1-ErbB4 signalling controls fear extinction. Mol Psychiatry 2022; 27( 2): 896– 906
CrossRef Pubmed Google scholar
[130]
Karalis N, Dejean C, Chaudun F, Khoder S, Rozeske RR, Wurtz H, Bagur S, Benchenane K, Sirota A, Courtin J, Herry C. 4-Hz oscillations synchronize prefrontal-amygdala circuits during fear behavior. Nat Neurosci 2016; 19( 4): 605– 612
CrossRef Pubmed Google scholar
[131]
Courtin J, Chaudun F, Rozeske RR, Karalis N, Gonzalez-Campo C, Wurtz H, Abdi A, Baufreton J, Bienvenu TC, Herry C. Prefrontal parvalbumin interneurons shape neuronal activity to drive fear expression. Nature 2014; 505( 7481): 92– 96
CrossRef Pubmed Google scholar
[132]
Bukalo O, Pinard CR, Silverstein S, Brehm C, Hartley ND, Whittle N, Colacicco G, Busch E, Patel S, Singewald N, Holmes A. Prefrontal inputs to the amygdala instruct fear extinction memory formation. Sci Adv 2015; 1( 6): e1500251
CrossRef Pubmed Google scholar
[133]
Xu W, Südhof TC. A neural circuit for memory specificity and generalization. Science 2013; 339( 6125): 1290– 1295
CrossRef Pubmed Google scholar
[134]
Davoodi FG, Motamedi F, Akbari E, Ghanbarian E, Jila B. Effect of reversible inactivation of reuniens nucleus on memory processing in passive avoidance task. Behav Brain Res 2011; 221( 1): 1– 6
CrossRef Pubmed Google scholar
[135]
Ito HT, Zhang SJ, Witter MP, Moser EI, Moser MB. A prefrontal-thalamo-hippocampal circuit for goal-directed spatial navigation. Nature 2015; 522( 7554): 50– 55
CrossRef Pubmed Google scholar
[136]
Vertes RP, Hoover WB, Szigeti-Buck K, Leranth C. Nucleus reuniens of the midline thalamus: link between the medial prefrontal cortex and the hippocampus. Brain Res Bull 2007; 71( 6): 601– 609
CrossRef Pubmed Google scholar
[137]
Griffin AL. Role of the thalamic nucleus reuniens in mediating interactions between the hippocampus and medial prefrontal cortex during spatial working memory. Front Syst Neurosci 2015; 9 : 29
CrossRef Pubmed Google scholar
[138]
Hoover WB, Vertes RP. Anatomical analysis of afferent projections to the medial prefrontal cortex in the rat. Brain Struct Funct 2007; 212( 2): 149– 179
CrossRef Pubmed Google scholar
[139]
Ji G, Neugebauer V. Modulation of medial prefrontal cortical activity using in vivo recordings and optogenetics. Mol Brain 2012; 5( 1): 36
CrossRef Pubmed Google scholar
[140]
van Aerde KI, Heistek TS, Mansvelder HD. Prelimbic and infralimbic prefrontal cortex interact during fast network oscillations. PLoS One 2008; 3( 7): e2725
CrossRef Pubmed Google scholar
[141]
Senn V, Wolff SB, Herry C, Grenier F, Ehrlich I, Gründemann J, Fadok JP, Müller C, Letzkus JJ, Lüthi A. Long-range connectivity defines behavioral specificity of amygdala neurons. Neuron 2014; 81( 2): 428– 437
CrossRef Pubmed Google scholar
[142]
Klavir O, Prigge M, Sarel A, Paz R, Yizhar O. Manipulating fear associations via optogenetic modulation of amygdala inputs to prefrontal cortex. Nat Neurosci 2017; 20( 6): 836– 844
CrossRef Pubmed Google scholar
[143]
Parent MA, Wang L, Su J, Netoff T, Yuan LL. Identification of the hippocampal input to medial prefrontal cortex in vitro. Cereb Cortex 2010; 20( 2): 393– 403
CrossRef Pubmed Google scholar
[144]
Marek R, Jin J, Goode TD, Giustino TF, Wang Q, Acca GM, Holehonnur R, Ploski JE, Fitzgerald PJ, Lynagh T, Lynch JW, Maren S, Sah P. Hippocampus-driven feed-forward inhibition of the prefrontal cortex mediates relapse of extinguished fear. Nat Neurosci 2018; 21( 3): 384– 392
CrossRef Pubmed Google scholar
[145]
Pi HJ, Hangya B, Kvitsiani D, Sanders JI, Huang ZJ, Kepecs A. Cortical interneurons that specialize in disinhibitory control. Nature 2013; 503( 7477): 521– 524
CrossRef Pubmed Google scholar
[146]
Froemke RC, Merzenich MM, Schreiner CE. A synaptic memory trace for cortical receptive field plasticity. Nature 2007; 450( 7168): 425– 429
CrossRef Pubmed Google scholar
[147]
Royer S, Zemelman BV, Losonczy A, Kim J, Chance F, Magee JC, Buzsáki G. Control of timing, rate and bursts of hippocampal place cells by dendritic and somatic inhibition. Nat Neurosci 2012; 15( 5): 769– 775
CrossRef Pubmed Google scholar
[148]
Butler AC, Chapman JE, Forman EM, Beck AT. The empirical status of cognitive-behavioral therapy: a review of meta-analyses. Clin Psychol Rev 2006; 26( 1): 17– 31
CrossRef Pubmed Google scholar
[149]
Sun Q, Li X, Ren M, Zhao M, Zhong Q, Ren Y, Luo P, Ni H, Zhang X, Zhang C, Yuan J, Li A, Luo M, Gong H, Luo Q. A whole-brain map of long-range inputs to GABAergic interneurons in the mouse medial prefrontal cortex. Nat Neurosci 2019; 22( 8): 1357– 1370
CrossRef Pubmed Google scholar
[150]
Ährlund-Richter S, Xuan Y, van Lunteren JA, Kim H, Ortiz C, Pollak Dorocic I, Meletis K, Carlén M. A whole-brain atlas of monosynaptic input targeting four different cell types in the medial prefrontal cortex of the mouse. Nat Neurosci 2019; 22( 4): 657– 668
CrossRef Pubmed Google scholar
[151]
Delgado MR, Beer JS, Fellows LK, Huettel SA, Platt ML, Quirk GJ, Schiller D. Viewpoints: Dialogues on the functional role of the ventromedial prefrontal cortex. Nat Neurosci 2016; 19( 12): 1545– 1552
CrossRef Pubmed Google scholar
[152]
Dejean C, Courtin J, Rozeske RR, Bonnet MC, Dousset V, Michelet T, Herry C. Neuronal circuits for fear expression and recovery: recent advances and potential therapeutic strategies. Biol Psychiatry 2015; 78( 5): 298– 306
CrossRef Pubmed Google scholar
[153]
Cho JH, Deisseroth K, Bolshakov VY. Synaptic encoding of fear extinction in mPFC-amygdala circuits. Neuron 2013; 80( 6): 1491– 1507
CrossRef Pubmed Google scholar
[154]
Kulesskaya N, Voikar V. Assessment of mouse anxiety-like behavior in the light-dark box and open-field arena: role of equipment and procedure. Physiol Behav 2014; 133 : 30– 38
CrossRef Pubmed Google scholar
[155]
Snyder CN, Brown AR, Buffalari D. Similar tests of anxiety-like behavior yield different results: comparison of the open field and free exploratory rodent procedures. Physiol Behav 2021; 230 : 113246
CrossRef Pubmed Google scholar
[156]
Wiltschko AB, Tsukahara T, Zeine A, Anyoha R, Gillis WF, Markowitz JE, Peterson RE, Katon J, Johnson MJ, Datta SR. Revealing the structure of pharmacobehavioral space through motion sequencing. Nat Neurosci 2020; 23( 11): 1433– 1443
CrossRef Pubmed Google scholar
[157]
von Ziegler L, Sturman O, Bohacek J. Big behavior: challenges and opportunities in a new era of deep behavior profiling. Neuropsychopharmacology 2021; 46( 1): 33– 44
CrossRef Pubmed Google scholar
[158]
Liu N, Han Y, Ding H, Huang K, Wei P, Wang L. Objective and comprehensive re-evaluation of anxiety-like behaviors in mice using the Behavior Atlas. Biochem Biophys Res Commun 2021; 559 : 1– 7
CrossRef Pubmed Google scholar

Acknowledgements

This work was supported by grants from the National Key R&D Program of China (No. 2021ZD0202704 to Tianming Gao, No. 2022ZD0214300 to Yihua Chen), the National Natural Science Foundation of China (Nos. 82090032 and 31830033 to Tianming Gao); the Key Area Research and Development Program of Guangdong Province (Nos. 2018B030334001 and 2018B030340001 to Tianming Gao); the Guangdong Basic and Applied Basic Research Foundation (No. 2020A1515011310 to Yihua Chen); the Guangdong−Hong Kong−Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence Fund (No. 2019019 to Yihua Chen); and the Science and Technology Program of Guangzhou (No. 202007030013 to Tianming Gao).

Compliance with ethics guidelines

Yihua Chen, Nengyuan Hu, Jianming Yang, and Tianming Gao declare that they have no conflicts of interest. This manuscript is a review article and does not involved a research protocol requiring approval from relevant institutional review board or ethics committee.

RIGHTS & PERMISSIONS

2022 Higher Education Press
AI Summary AI Mindmap
PDF(3335 KB)

Accesses

Citations

Detail

Sections
Recommended

/