CD47 blockade improves the therapeutic effect of osimertinib in non-small cell lung cancer

Wei-Bang Yu , Yu-Chi Chen , Can-Yu Huang , Zi-Han Ye , Wei Shi , Hong Zhu , Jia-Jie Shi , Jun Chen , Jin-Jian Lu

Front. Med. ›› 2023, Vol. 17 ›› Issue (1) : 105 -118.

PDF (7197KB)
Front. Med. ›› 2023, Vol. 17 ›› Issue (1) : 105 -118. DOI: 10.1007/s11684-022-0934-1
RESEARCH ARTICLE
RESEARCH ARTICLE

CD47 blockade improves the therapeutic effect of osimertinib in non-small cell lung cancer

Author information +
History +
PDF (7197KB)

Abstract

The third-generation epidermal growth factor receptor (EGFR) inhibitor osimertinib (OSI) has been approved as the first-line treatment for EGFR-mutant non-small cell lung cancer (NSCLC). This study aims to explore a rational combination strategy for enhancing the OSI efficacy. In this study, OSI induced higher CD47 expression, an important anti-phagocytic immune checkpoint, via the NF-κB pathway in EGFR-mutant NSCLC HCC827 and NCI-H1975 cells. The combination treatment of OSI and the anti-CD47 antibody exhibited dramatically increasing phagocytosis in HCC827 and NCI-H1975 cells, which highly relied on the antibody-dependent cellular phagocytosis effect. Consistently, the enhanced phagocytosis index from combination treatment was reversed in CD47 knockout HCC827 cells. Meanwhile, combining the anti-CD47 antibody significantly augmented the anticancer effect of OSI in HCC827 xenograft mice model. Notably, OSI induced the surface exposure of “eat me” signal calreticulin and reduced the expression of immune-inhibitory receptor PD-L1 in cancer cells, which might contribute to the increased phagocytosis on cancer cells pretreated with OSI. In summary, these findings suggest the multidimensional regulation by OSI and encourage the further exploration of combining anti-CD47 antibody with OSI as a new strategy to enhance the anticancer efficacy in EGFR-mutant NSCLC with CD47 activation induced by OSI.

Keywords

osimertinib / anti-CD47 antibody / combination strategy / ADCP / EGFR

Cite this article

Download citation ▾
Wei-Bang Yu, Yu-Chi Chen, Can-Yu Huang, Zi-Han Ye, Wei Shi, Hong Zhu, Jia-Jie Shi, Jun Chen, Jin-Jian Lu. CD47 blockade improves the therapeutic effect of osimertinib in non-small cell lung cancer. Front. Med., 2023, 17(1): 105-118 DOI:10.1007/s11684-022-0934-1

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, Bray F. Global Cancer Statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 2021; 71(3): 209–249

[2]

Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 2018; 68(6): 394–424

[3]

Govindan R. Overcoming resistance to targeted therapy for lung cancer. N Engl J Med 2015; 372(18): 1760–1761

[4]

Mok TS, Wu YL, Thongprasert S, Yang CH, Chu DT, Saijo N, Sunpaweravong P, Han B, Margono B, Ichinose Y, Nishiwaki Y, Ohe Y, Yang JJ, Chewaskulyong B, Jiang H, Duffield EL, Watkins CL, Armour AA, Fukuoka M. Gefitinib or carboplatin-paclitaxel in pulmonary adenocarcinoma. N Engl J Med 2009; 361(10): 947–957

[5]

Rosell R, Carcereny E, Gervais R, Vergnenegre A, Massuti B, Felip E, Palmero R, Garcia-Gomez R, Pallares C, Sanchez JM, Porta R, Cobo M, Garrido P, Longo F, Moran T, Insa A, De Marinis F, Corre R, Bover I, Illiano A, Dansin E, de Castro J, Milella M, Reguart N, Altavilla G, Jimenez U, Provencio M, Moreno MA, Terrasa J, Muñoz-Langa J, Valdivia J, Isla D, Domine M, Molinier O, Mazieres J, Baize N, Garcia-Campelo R, Robinet G, Rodriguez-Abreu D, Lopez-Vivanco G, Gebbia V, Ferrera-Delgado L, Bombaron P, Bernabe R, Bearz A, Artal A, Cortesi E, Rolfo C, Sanchez-Ronco M, Drozdowskyj A, Queralt C, de Aguirre I, Ramirez JL, Sanchez JJ, Molina MA, Taron M, Paz-Ares L; Spanish Lung Cancer Group in collaboration with Groupe Français de Pneumo-Cancérologie, Associazione Italiana Oncologia Toracica. Erlotinib versus standard chemotherapy as first-line treatment for European patients with advanced EGFR mutation-positive non-small-cell lung cancer (EURTAC): a multicentre, open-label, randomised phase 3 trial. Lancet Oncol 2012; 13(3): 239–246

[6]

Sequist LV, Yang JC, Yamamoto N, O’Byrne K, Hirsh V, Mok T, Geater SL, Orlov S, Tsai CM, Boyer M, Su WC, Bennouna J, Kato T, Gorbunova V, Lee KH, Shah R, Massey D, Zazulina V, Shahidi M, Schuler M. Phase III study of afatinib or cisplatin plus pemetrexed in patients with metastatic lung adenocarcinoma with EGFR mutations. J Clin Oncol 2013; 31(27): 3327–3334

[7]

Ramalingam SS, Yang JC, Lee CK, Kurata T, Kim DW, John T, Nogami N, Ohe Y, Mann H, Rukazenkov Y, Ghiorghiu S, Stetson D, Markovets A, Barrett JC, Thress KS, Jänne PA. Osimertinib as first-line treatment of EGFR mutation-positive advanced non-small-cell lung cancer. J Clin Oncol 2018; 36(9): 841–849

[8]

Soria JC, Ohe Y, Vansteenkiste J, Reungwetwattana T, Chewaskulyong B, Lee KH, Dechaphunkul A, Imamura F, Nogami N, Kurata T, Okamoto I, Zhou C, Cho BC, Cheng Y, Cho EK, Voon PJ, Planchard D, Su WC, Gray JE, Lee SM, Hodge R, Marotti M, Rukazenkov Y, Ramalingam SS; FLAURA Investigators. Osimertinib in untreated EGFR-mutated advanced non-small-cell lung cancer. N Engl J Med 2018; 378(2): 113–125

[9]

Ramalingam SS, Vansteenkiste J, Planchard D, Cho BC, Gray JE, Ohe Y, Zhou C, Reungwetwattana T, Cheng Y, Chewaskulyong B, Shah R, Cobo M, Lee KH, Cheema P, Tiseo M, John T, Lin MC, Imamura F, Kurata T, Todd A, Hodge R, Saggese M, Rukazenkov Y, Soria JC; FLAURA Investigators. Overall survival with osimertinib in untreated, EGFR-mutated advanced NSCLC. N Engl J Med 2020; 382(1): 41–50

[10]

Iwasaki A, Medzhitov R. Regulation of adaptive immunity by the innate immune system. Science 2010; 327(5963): 291–295

[11]

Feng M, Jiang W, Kim BYS, Zhang CC, Fu YX, Weissman IL. Phagocytosis checkpoints as new targets for cancer immunotherapy. Nat Rev Cancer 2019; 19(10): 568–586

[12]

Logtenberg MEW, Scheeren FA, Schumacher TN. The CD47-SIRPα immune checkpoint. Immunity 2020; 52(5): 742–752

[13]

Oldenborg PA, Zheleznyak A, Fang YF, Lagenaur CF, Gresham HD, Lindberg FP. Role of CD47 as a marker of self on red blood cells. Science 2000; 288(5473): 2051–2054

[14]

Yu WB, Ye ZH, Chen X, Shi JJ, Lu JJ. The development of small-molecule inhibitors targeting CD47. Drug Discov Today 2021; 26(2): 561–568

[15]

Majeti R, Chao MP, Alizadeh AA, Pang WW, Jaiswal S, Gibbs KD Jr, van Rooijen N, Weissman IL. CD47 is an adverse prognostic factor and therapeutic antibody target on human acute myeloid leukemia stem cells. Cell 2009; 138(2): 286–299

[16]

Willingham SB, Volkmer JP, Gentles AJ, Sahoo D, Dalerba P, Mitra SS, Wang J, Contreras-Trujillo H, Martin R, Cohen JD, Lovelace P, Scheeren FA, Chao MP, Weiskopf K, Tang C, Volkmer AK, Naik TJ, Storm TA, Mosley AR, Edris B, Schmid SM, Sun CK, Chua MS, Murillo O, Rajendran P, Cha AC, Chin RK, Kim D, Adorno M, Raveh T, Tseng D, Jaiswal S, Enger PO, Steinberg GK, Li G, So SK, Majeti R, Harsh GR, van de Rijn M, Teng NN, Sunwoo JB, Alizadeh AA, Clarke MF, Weissman IL. The CD47-signal regulatory protein alpha (SIRPα) interaction is a therapeutic target for human solid tumors. Proc Natl Acad Sci USA 2012; 109(17): 6662–6667

[17]

Zhang X, Wang Y, Fan J, Chen W, Luan J, Mei X, Wang S, Li Y, Ye L, Li S, Tian W, Yin K, Ju D. Blocking CD47 efficiently potentiated therapeutic effects of anti-angiogenic therapy in non-small cell lung cancer. J Immunother Cancer 2019; 7(1): 346

[18]

Lo J, Lau EY, Ching RH, Cheng BY, Ma MK, Ng IO, Lee TK. Nuclear factor kappa B-mediated CD47 up-regulation promotes sorafenib resistance and its blockade synergizes the effect of sorafenib in hepatocellular carcinoma in mice. Hepatology 2015; 62(2): 534–545

[19]

Liu F, Jiang CC, Yan XG, Tseng HY, Wang CY, Zhang YY, Yari H, La T, Farrelly M, Guo ST, Thorne RF, Jin L, Wang Q, Zhang XD. BRAF/MEK inhibitors promote CD47 expression that is reversible by ERK inhibition in melanoma. Oncotarget 2017; 8(41): 69477–69492

[20]

Cui Z, Xu D, Zhang F, Sun J, Song L, Ye W, Zeng J, Zhou M, Ruan Z, Zhang L, Ren R. CD47 blockade enhances therapeutic efficacy of cisplatin against lung carcinoma in a murine model. Exp Cell Res 2021; 405(2): 112677

[21]

Lee TK, Cheung VC, Lu P, Lau EY, Ma S, Tang KH, Tong M, Lo J, Ng IO. Blockade of CD47-mediated cathepsin S/protease-activated receptor 2 signaling provides a therapeutic target for hepatocellular carcinoma. Hepatology 2014; 60(1): 179–191

[22]

Gordon SR, Maute RL, Dulken BW, Hutter G, George BM, McCracken MN, Gupta R, Tsai JM, Sinha R, Corey D, Ring AM, Connolly AJ, Weissman IL. PD-1 expression by tumour-associated macrophages inhibits phagocytosis and tumour immunity. Nature 2017; 545(7655): 495–499

[23]

Chen X, Yang Y, Zhou Q, Weiss JM, Howard OZ, McPherson JM, Wakefield LM, Oppenheim JJ. Effective chemoimmunotherapy with anti-TGFβ antibody and cyclophosphamide in a mouse model of breast cancer. PLoS One 2014; 9(1): e85398

[24]

Jiang XM, Xu YL, Huang MY, Zhang LL, Su MX, Chen X, Lu JJ. Osimertinib (AZD9291) decreases programmed death ligand-1 in EGFR-mutated non-small cell lung cancer cells. Acta Pharmacol Sin 2017; 38(11): 1512–1520

[25]

Tsai RK, Rodriguez PL, Discher DE. Self inhibition of phagocytosis: the affinity of ‘marker of self’ CD47 for SIRPalpha dictates potency of inhibition but only at low expression levels. Blood Cells Mol Dis 2010; 45(1): 67–74

[26]

Lo J, Lau EY, So FT, Lu P, Chan VS, Cheung VC, Ching RH, Cheng BY, Ma MK, Ng IO, Lee TK. Anti-CD47 antibody suppresses tumour growth and augments the effect of chemotherapy treatment in hepatocellular carcinoma. Liver Int 2016; 36(5): 737–745

[27]

Wu Z, Weng L, Zhang T, Tian H, Fang L, Teng H, Zhang W, Gao J, Hao Y, Li Y, Zhou H, Wang P. Identification of glutaminyl cyclase isoenzyme isoQC as a regulator of SIRPα-CD47 axis. Cell Res 2019; 29(6): 502–505

[28]

Citri A, Alroy I, Lavi S, Rubin C, Xu W, Grammatikakis N, Patterson C, Neckers L, Fry DW, Yarden Y. Drug-induced ubiquitylation and degradation of ErbB receptor tyrosine kinases: implications for cancer therapy. EMBO J 2002; 21(10): 2407–2417

[29]

Betancur PA, Abraham BJ, Yiu YY, Willingham SB, Khameneh F, Zarnegar M, Kuo AH, McKenna K, Kojima Y, Leeper NJ, Ho P, Gip P, Swigut T, Sherwood RI, Clarke MF, Somlo G, Young RA, Weissman ILA. A CD47-associated super-enhancer links pro-inflammatory signalling to CD47 upregulation in breast cancer. Nat Commun 2017; 8(1): 14802

[30]

Jiang XM, Xu YL, Yuan LW, Zhang LL, Huang MY, Ye ZH, Su MX, Chen XP, Zhu H, Ye RD, Lu JJ. TGFβ2-mediated epithelial-mesenchymal transition and NF-κB pathway activation contribute to osimertinib resistance. Acta Pharmacol Sin 2021; 42(3): 451–459

[31]

Veillette A, Chen J. SIRPα-CD47 immune checkpoint blockade in anticancer therapy. Trends Immunol 2018; 39(3): 173–184

[32]

La Monica S, Minari R, Cretella D, Flammini L, Fumarola C, Bonelli M, Cavazzoni A, Digiacomo G, Galetti M, Madeddu D, Falco A, Lagrasta CA, Squadrilli A, Barocelli E, Romanel A, Quaini F, Petronini PG, Tiseo M, Alfieri R. Third generation EGFR inhibitor osimertinib combined with pemetrexed or cisplatin exerts long-lasting anti-tumor effect in EGFR-mutated pre-clinical models of NSCLC. J Exp Clin Cancer Res 2019; 38(1): 222

[33]

Cross DA, Ashton SE, Ghiorghiu S, Eberlein C, Nebhan CA, Spitzler PJ, Orme JP, Finlay MR, Ward RA, Mellor MJ, Hughes G, Rahi A, Jacobs VN, Red Brewer M, Ichihara E, Sun J, Jin H, Ballard P, Al-Kadhimi K, Rowlinson R, Klinowska T, Richmond GH, Cantarini M, Kim DW, Ranson MR, Pao W. AZD9291, an irreversible EGFR TKI, overcomes T790M-mediated resistance to EGFR inhibitors in lung cancer. Cancer Discov 2014; 4(9): 1046–1061

[34]

Kurdi AT, Glavey SV, Bezman NA, Jhatakia A, Guerriero JL, Manier S, Moschetta M, Mishima Y, Roccaro A, Detappe A, Liu CJ, Sacco A, Huynh D, Tai YT, Robbins MD, Azzi J, Ghobrial IM. Antibody-dependent cellular phagocytosis by macrophages is a novel mechanism of action of elotuzumab. Mol Cancer Ther 2018; 17(7): 1454–1463

[35]

Kamen L, Myneni S, Langsdorf C, Kho E, Ordonia B, Thakurta T, Zheng K, Song A, Chung S. A novel method for determining antibody-dependent cellular phagocytosis. J Immunol Methods 2019; 468: 55–60

[36]

von Roemeling CA, Wang Y, Qie Y, Yuan H, Zhao H, Liu X, Yang Z, Yang M, Deng W, Bruno KA, Chan CK, Lee AS, Rosenfeld SS, Yun K, Johnson AJ, Mitchell DA, Jiang W, Kim BYS. Therapeutic modulation of phagocytosis in glioblastoma can activate both innate and adaptive antitumour immunity. Nat Commun 2020; 11(1): 1508

[37]

Papadimitrakopoulou VA, Mok TS, Han JY, Ahn MJ, Delmonte A, Ramalingam SS, Kim SW, Shepherd FA, Laskin J, He Y, Akamatsu H, Theelen WSME, Su WC, John T, Sebastian M, Mann H, Miranda M, Laus G, Rukazenkov Y, Wu YL. Osimertinib versus platinum-pemetrexed for patients with EGFR T790M advanced NSCLC and progression on a prior EGFR-tyrosine kinase inhibitor: AURA3 overall survival analysis. Ann Oncol 2020; 31(11): 1536–1544

[38]

Yu HA, Schoenfeld AJ, Makhnin A, Kim R, Rizvi H, Tsui D, Falcon C, Houck-Loomis B, Meng F, Yang JL, Tobi Y, Heller G, Ahn L, Hayes SA, Young RJ, Arcila ME, Berger M, Chaft JE, Ladanyi M, Riely GJ, Kris MG. Effect of osimertinib and bevacizumab on progression-free survival for patients with metastatic EGFR-mutant lung cancers: a phase 1/2 single-group open-label trial. JAMA Oncol 2020; 6(7): 1048–1054

[39]

Oshima Y, Tanimoto T, Yuji K, Tojo A. EGFR-TKI-associated interstitial pneumonitis in nivolumab-treated patients with non-small cell lung cancer. JAMA Oncol 2018; 4(8): 1112–1115

[40]

Oxnard GR, Yang JC, Yu H, Kim SW, Saka H, Horn L, Goto K, Ohe Y, Mann H, Thress KS, Frigault MM, Vishwanathan K, Ghiorghiu D, Ramalingam SS, Ahn MJ. TATTON: a multi-arm, phase Ib trial of osimertinib combined with selumetinib, savolitinib, or durvalumab in EGFR-mutant lung cancer. Ann Oncol 2020; 31(4): 507–516

[41]

Subramanian S, Parthasarathy R, Sen S, Boder ET, Discher DE. Species- and cell type-specific interactions between CD47 and human SIRPalpha. Blood 2006; 107(6): 2548–2556

[42]

Jain S, Van Scoyk A, Morgan EA, Matthews A, Stevenson K, Newton G, Powers F, Autio A, Louissaint A Jr, Pontini G, Aster JC, Luscinskas FW, Weinstock DM. Targeted inhibition of CD47-SIRPα requires Fc-FcγR interactions to maximize activity in T-cell lymphomas. Blood 2019; 134(17): 1430–1440

[43]

Chao MP, Alizadeh AA, Tang C, Myklebust JH, Varghese B, Gill S, Jan M, Cha AC, Chan CK, Tan BT, Park CY, Zhao F, Kohrt HE, Malumbres R, Briones J, Gascoyne RD, Lossos IS, Levy R, Weissman IL, Majeti R. Anti-CD47 antibody synergizes with rituximab to promote phagocytosis and eradicate non-Hodgkin lymphoma. Cell 2010; 142(5): 699–713

[44]

Pietsch EC, Dong J, Cardoso R, Zhang X, Chin D, Hawkins R, Dinh T, Zhou M, Strake B, Feng PH, Rocca M, Santos CD, Shan X, Danet-Desnoyers G, Shi F, Kaiser E, Millar HJ, Fenton S, Swanson R, Nemeth JA, Attar RM. Anti-leukemic activity and tolerability of anti-human CD47 monoclonal antibodies. Blood Cancer J 2017; 7(2): e536

[45]

Métayer LE, Vilalta A, Burke GAA, Brown GC. Anti-CD47 antibodies induce phagocytosis of live, malignant B cells by macrophages via the Fc domain, resulting in cell death by phagoptosis. Oncotarget 2017; 8(37): 60892–60903

[46]

Huang CY, Ye ZH, Huang MY, Lu JJ. Regulation of CD47 expression in cancer cells. Transl Oncol 2020; 13(12): 100862

[47]

Blakely CM, Pazarentzos E, Olivas V, Asthana S, Yan JJ, Tan I, Hrustanovic G, Chan E, Lin L, Neel DS, Newton W, Bobb KL, Fouts TR, Meshulam J, Gubens MA, Jablons DM, Johnson JR, Bandyopadhyay S, Krogan NJ, Bivona TG. NF-κB-activating complex engaged in response to EGFR oncogene inhibition drives tumor cell survival and residual disease in lung cancer. Cell Rep 2015; 11(1): 98–110

[48]

Tang ZH, Su MX, Guo X, Jiang XM, Jia L, Chen X, Lu JJ. Increased expression of IRE1α associates with the resistant mechanism of osimertinib (AZD9291)-resistant non-small cell lung cancer HCC827/OSIR cells. Anticancer Agents Med Chem 2018; 18(4): 550–555

[49]

Passaro A, Jänne PA, Mok T, Peters S. Overcoming therapy resistance in EGFR-mutant lung cancer. Nat Can 2021; 2(4): 377–391

[50]

Candas-Green D, Xie B, Huang J, Fan M, Wang A, Menaa C, Zhang Y, Zhang L, Jing D, Azghadi S, Zhou W, Liu L, Jiang N, Li T, Gao T, Sweeney C, Shen R, Lin TY, Pan CX, Ozpiskin OM, Woloschak G, Grdina DJ, Vaughan AT, Wang JM, Xia S, Monjazeb AM, Murphy WJ, Sun LQ, Chen HW, Lam KS, Weichselbaum RR, Li JJ. Dual blockade of CD47 and HER2 eliminates radioresistant breast cancer cells. Nat Commun 2020; 11(1): 4591

[51]

Fucikova J, Spisek R, Kroemer G, Galluzzi L. Calreticulin and cancer. Cell Res 2021; 31(1): 5–16

[52]

Vanmeerbeek I, Sprooten J, De Ruysscher D, Tejpar S, Vandenberghe P, Fucikova J, Spisek R, Zitvogel L, Kroemer G, Galluzzi L, Garg AD. Trial watch: chemotherapy-induced immunogenic cell death in immuno-oncology. OncoImmunology 2020; 9(1): 1703449

[53]

Sun C, Mezzadra R, Schumacher TN. Regulation and function of the PD-L1 checkpoint. Immunity 2018; 48(3): 434–452

RIGHTS & PERMISSIONS

Higher Education Press

AI Summary AI Mindmap
PDF (7197KB)

Supplementary files

FMD-22011-OF-LJJ_suppl_1

FMD-22011-OF-LJJ_suppl_1

4035

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/