CD47 blockade improves the therapeutic effect of osimertinib in non-small cell lung cancer

Wei-Bang Yu, Yu-Chi Chen, Can-Yu Huang, Zi-Han Ye, Wei Shi, Hong Zhu, Jia-Jie Shi, Jun Chen, Jin-Jian Lu

PDF(7197 KB)
PDF(7197 KB)
Front. Med. ›› 2023, Vol. 17 ›› Issue (1) : 105-118. DOI: 10.1007/s11684-022-0934-1
RESEARCH ARTICLE
RESEARCH ARTICLE

CD47 blockade improves the therapeutic effect of osimertinib in non-small cell lung cancer

Author information +
History +

Abstract

The third-generation epidermal growth factor receptor (EGFR) inhibitor osimertinib (OSI) has been approved as the first-line treatment for EGFR-mutant non-small cell lung cancer (NSCLC). This study aims to explore a rational combination strategy for enhancing the OSI efficacy. In this study, OSI induced higher CD47 expression, an important anti-phagocytic immune checkpoint, via the NF-κB pathway in EGFR-mutant NSCLC HCC827 and NCI-H1975 cells. The combination treatment of OSI and the anti-CD47 antibody exhibited dramatically increasing phagocytosis in HCC827 and NCI-H1975 cells, which highly relied on the antibody-dependent cellular phagocytosis effect. Consistently, the enhanced phagocytosis index from combination treatment was reversed in CD47 knockout HCC827 cells. Meanwhile, combining the anti-CD47 antibody significantly augmented the anticancer effect of OSI in HCC827 xenograft mice model. Notably, OSI induced the surface exposure of “eat me” signal calreticulin and reduced the expression of immune-inhibitory receptor PD-L1 in cancer cells, which might contribute to the increased phagocytosis on cancer cells pretreated with OSI. In summary, these findings suggest the multidimensional regulation by OSI and encourage the further exploration of combining anti-CD47 antibody with OSI as a new strategy to enhance the anticancer efficacy in EGFR-mutant NSCLC with CD47 activation induced by OSI.

Keywords

osimertinib / anti-CD47 antibody / combination strategy / ADCP / EGFR

Cite this article

Download citation ▾
Wei-Bang Yu, Yu-Chi Chen, Can-Yu Huang, Zi-Han Ye, Wei Shi, Hong Zhu, Jia-Jie Shi, Jun Chen, Jin-Jian Lu. CD47 blockade improves the therapeutic effect of osimertinib in non-small cell lung cancer. Front. Med., 2023, 17(1): 105‒118 https://doi.org/10.1007/s11684-022-0934-1

References

[1]
Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, Bray F. Global Cancer Statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 2021; 71(3): 209–249
CrossRef Pubmed Google scholar
[2]
Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 2018; 68(6): 394–424
CrossRef Pubmed Google scholar
[3]
Govindan R. Overcoming resistance to targeted therapy for lung cancer. N Engl J Med 2015; 372(18): 1760–1761
CrossRef Pubmed Google scholar
[4]
Mok TS, Wu YL, Thongprasert S, Yang CH, Chu DT, Saijo N, Sunpaweravong P, Han B, Margono B, Ichinose Y, Nishiwaki Y, Ohe Y, Yang JJ, Chewaskulyong B, Jiang H, Duffield EL, Watkins CL, Armour AA, Fukuoka M. Gefitinib or carboplatin-paclitaxel in pulmonary adenocarcinoma. N Engl J Med 2009; 361(10): 947–957
CrossRef Pubmed Google scholar
[5]
Rosell R, Carcereny E, Gervais R, Vergnenegre A, Massuti B, Felip E, Palmero R, Garcia-Gomez R, Pallares C, Sanchez JM, Porta R, Cobo M, Garrido P, Longo F, Moran T, Insa A, De Marinis F, Corre R, Bover I, Illiano A, Dansin E, de Castro J, Milella M, Reguart N, Altavilla G, Jimenez U, Provencio M, Moreno MA, Terrasa J, Muñoz-Langa J, Valdivia J, Isla D, Domine M, Molinier O, Mazieres J, Baize N, Garcia-Campelo R, Robinet G, Rodriguez-Abreu D, Lopez-Vivanco G, Gebbia V, Ferrera-Delgado L, Bombaron P, Bernabe R, Bearz A, Artal A, Cortesi E, Rolfo C, Sanchez-Ronco M, Drozdowskyj A, Queralt C, de Aguirre I, Ramirez JL, Sanchez JJ, Molina MA, Taron M, Paz-Ares L; Spanish Lung Cancer Group in collaboration with Groupe Français de Pneumo-Cancérologie, Associazione Italiana Oncologia Toracica. Erlotinib versus standard chemotherapy as first-line treatment for European patients with advanced EGFR mutation-positive non-small-cell lung cancer (EURTAC): a multicentre, open-label, randomised phase 3 trial. Lancet Oncol 2012; 13(3): 239–246
CrossRef Pubmed Google scholar
[6]
Sequist LV, Yang JC, Yamamoto N, O’Byrne K, Hirsh V, Mok T, Geater SL, Orlov S, Tsai CM, Boyer M, Su WC, Bennouna J, Kato T, Gorbunova V, Lee KH, Shah R, Massey D, Zazulina V, Shahidi M, Schuler M. Phase III study of afatinib or cisplatin plus pemetrexed in patients with metastatic lung adenocarcinoma with EGFR mutations. J Clin Oncol 2013; 31(27): 3327–3334
CrossRef Pubmed Google scholar
[7]
Ramalingam SS, Yang JC, Lee CK, Kurata T, Kim DW, John T, Nogami N, Ohe Y, Mann H, Rukazenkov Y, Ghiorghiu S, Stetson D, Markovets A, Barrett JC, Thress KS, Jänne PA. Osimertinib as first-line treatment of EGFR mutation-positive advanced non-small-cell lung cancer. J Clin Oncol 2018; 36(9): 841–849
CrossRef Pubmed Google scholar
[8]
Soria JC, Ohe Y, Vansteenkiste J, Reungwetwattana T, Chewaskulyong B, Lee KH, Dechaphunkul A, Imamura F, Nogami N, Kurata T, Okamoto I, Zhou C, Cho BC, Cheng Y, Cho EK, Voon PJ, Planchard D, Su WC, Gray JE, Lee SM, Hodge R, Marotti M, Rukazenkov Y, Ramalingam SS; FLAURA Investigators. Osimertinib in untreated EGFR-mutated advanced non-small-cell lung cancer. N Engl J Med 2018; 378(2): 113–125
CrossRef Pubmed Google scholar
[9]
Ramalingam SS, Vansteenkiste J, Planchard D, Cho BC, Gray JE, Ohe Y, Zhou C, Reungwetwattana T, Cheng Y, Chewaskulyong B, Shah R, Cobo M, Lee KH, Cheema P, Tiseo M, John T, Lin MC, Imamura F, Kurata T, Todd A, Hodge R, Saggese M, Rukazenkov Y, Soria JC; FLAURA Investigators. Overall survival with osimertinib in untreated, EGFR-mutated advanced NSCLC. N Engl J Med 2020; 382(1): 41–50
CrossRef Pubmed Google scholar
[10]
Iwasaki A, Medzhitov R. Regulation of adaptive immunity by the innate immune system. Science 2010; 327(5963): 291–295
CrossRef Pubmed Google scholar
[11]
Feng M, Jiang W, Kim BYS, Zhang CC, Fu YX, Weissman IL. Phagocytosis checkpoints as new targets for cancer immunotherapy. Nat Rev Cancer 2019; 19(10): 568–586
CrossRef Pubmed Google scholar
[12]
Logtenberg MEW, Scheeren FA, Schumacher TN. The CD47-SIRPα immune checkpoint. Immunity 2020; 52(5): 742–752
CrossRef Pubmed Google scholar
[13]
Oldenborg PA, Zheleznyak A, Fang YF, Lagenaur CF, Gresham HD, Lindberg FP. Role of CD47 as a marker of self on red blood cells. Science 2000; 288(5473): 2051–2054
CrossRef Pubmed Google scholar
[14]
Yu WB, Ye ZH, Chen X, Shi JJ, Lu JJ. The development of small-molecule inhibitors targeting CD47. Drug Discov Today 2021; 26(2): 561–568
CrossRef Pubmed Google scholar
[15]
Majeti R, Chao MP, Alizadeh AA, Pang WW, Jaiswal S, Gibbs KD Jr, van Rooijen N, Weissman IL. CD47 is an adverse prognostic factor and therapeutic antibody target on human acute myeloid leukemia stem cells. Cell 2009; 138(2): 286–299
CrossRef Pubmed Google scholar
[16]
Willingham SB, Volkmer JP, Gentles AJ, Sahoo D, Dalerba P, Mitra SS, Wang J, Contreras-Trujillo H, Martin R, Cohen JD, Lovelace P, Scheeren FA, Chao MP, Weiskopf K, Tang C, Volkmer AK, Naik TJ, Storm TA, Mosley AR, Edris B, Schmid SM, Sun CK, Chua MS, Murillo O, Rajendran P, Cha AC, Chin RK, Kim D, Adorno M, Raveh T, Tseng D, Jaiswal S, Enger PO, Steinberg GK, Li G, So SK, Majeti R, Harsh GR, van de Rijn M, Teng NN, Sunwoo JB, Alizadeh AA, Clarke MF, Weissman IL. The CD47-signal regulatory protein alpha (SIRPα) interaction is a therapeutic target for human solid tumors. Proc Natl Acad Sci USA 2012; 109(17): 6662–6667
CrossRef Pubmed Google scholar
[17]
Zhang X, Wang Y, Fan J, Chen W, Luan J, Mei X, Wang S, Li Y, Ye L, Li S, Tian W, Yin K, Ju D. Blocking CD47 efficiently potentiated therapeutic effects of anti-angiogenic therapy in non-small cell lung cancer. J Immunother Cancer 2019; 7(1): 346
CrossRef Pubmed Google scholar
[18]
Lo J, Lau EY, Ching RH, Cheng BY, Ma MK, Ng IO, Lee TK. Nuclear factor kappa B-mediated CD47 up-regulation promotes sorafenib resistance and its blockade synergizes the effect of sorafenib in hepatocellular carcinoma in mice. Hepatology 2015; 62(2): 534–545
CrossRef Pubmed Google scholar
[19]
Liu F, Jiang CC, Yan XG, Tseng HY, Wang CY, Zhang YY, Yari H, La T, Farrelly M, Guo ST, Thorne RF, Jin L, Wang Q, Zhang XD. BRAF/MEK inhibitors promote CD47 expression that is reversible by ERK inhibition in melanoma. Oncotarget 2017; 8(41): 69477–69492
CrossRef Pubmed Google scholar
[20]
Cui Z, Xu D, Zhang F, Sun J, Song L, Ye W, Zeng J, Zhou M, Ruan Z, Zhang L, Ren R. CD47 blockade enhances therapeutic efficacy of cisplatin against lung carcinoma in a murine model. Exp Cell Res 2021; 405(2): 112677
CrossRef Pubmed Google scholar
[21]
Lee TK, Cheung VC, Lu P, Lau EY, Ma S, Tang KH, Tong M, Lo J, Ng IO. Blockade of CD47-mediated cathepsin S/protease-activated receptor 2 signaling provides a therapeutic target for hepatocellular carcinoma. Hepatology 2014; 60(1): 179–191
CrossRef Pubmed Google scholar
[22]
Gordon SR, Maute RL, Dulken BW, Hutter G, George BM, McCracken MN, Gupta R, Tsai JM, Sinha R, Corey D, Ring AM, Connolly AJ, Weissman IL. PD-1 expression by tumour-associated macrophages inhibits phagocytosis and tumour immunity. Nature 2017; 545(7655): 495–499
CrossRef Pubmed Google scholar
[23]
Chen X, Yang Y, Zhou Q, Weiss JM, Howard OZ, McPherson JM, Wakefield LM, Oppenheim JJ. Effective chemoimmunotherapy with anti-TGFβ antibody and cyclophosphamide in a mouse model of breast cancer. PLoS One 2014; 9(1): e85398
CrossRef Pubmed Google scholar
[24]
Jiang XM, Xu YL, Huang MY, Zhang LL, Su MX, Chen X, Lu JJ. Osimertinib (AZD9291) decreases programmed death ligand-1 in EGFR-mutated non-small cell lung cancer cells. Acta Pharmacol Sin 2017; 38(11): 1512–1520
CrossRef Pubmed Google scholar
[25]
Tsai RK, Rodriguez PL, Discher DE. Self inhibition of phagocytosis: the affinity of ‘marker of self’ CD47 for SIRPalpha dictates potency of inhibition but only at low expression levels. Blood Cells Mol Dis 2010; 45(1): 67–74
CrossRef Pubmed Google scholar
[26]
Lo J, Lau EY, So FT, Lu P, Chan VS, Cheung VC, Ching RH, Cheng BY, Ma MK, Ng IO, Lee TK. Anti-CD47 antibody suppresses tumour growth and augments the effect of chemotherapy treatment in hepatocellular carcinoma. Liver Int 2016; 36(5): 737–745
CrossRef Pubmed Google scholar
[27]
Wu Z, Weng L, Zhang T, Tian H, Fang L, Teng H, Zhang W, Gao J, Hao Y, Li Y, Zhou H, Wang P. Identification of glutaminyl cyclase isoenzyme isoQC as a regulator of SIRPα-CD47 axis. Cell Res 2019; 29(6): 502–505
CrossRef Pubmed Google scholar
[28]
Citri A, Alroy I, Lavi S, Rubin C, Xu W, Grammatikakis N, Patterson C, Neckers L, Fry DW, Yarden Y. Drug-induced ubiquitylation and degradation of ErbB receptor tyrosine kinases: implications for cancer therapy. EMBO J 2002; 21(10): 2407–2417
CrossRef Pubmed Google scholar
[29]
Betancur PA, Abraham BJ, Yiu YY, Willingham SB, Khameneh F, Zarnegar M, Kuo AH, McKenna K, Kojima Y, Leeper NJ, Ho P, Gip P, Swigut T, Sherwood RI, Clarke MF, Somlo G, Young RA, Weissman ILA. A CD47-associated super-enhancer links pro-inflammatory signalling to CD47 upregulation in breast cancer. Nat Commun 2017; 8(1): 14802
CrossRef Pubmed Google scholar
[30]
Jiang XM, Xu YL, Yuan LW, Zhang LL, Huang MY, Ye ZH, Su MX, Chen XP, Zhu H, Ye RD, Lu JJ. TGFβ2-mediated epithelial-mesenchymal transition and NF-κB pathway activation contribute to osimertinib resistance. Acta Pharmacol Sin 2021; 42(3): 451–459
CrossRef Pubmed Google scholar
[31]
Veillette A, Chen J. SIRPα-CD47 immune checkpoint blockade in anticancer therapy. Trends Immunol 2018; 39(3): 173–184
CrossRef Pubmed Google scholar
[32]
La Monica S, Minari R, Cretella D, Flammini L, Fumarola C, Bonelli M, Cavazzoni A, Digiacomo G, Galetti M, Madeddu D, Falco A, Lagrasta CA, Squadrilli A, Barocelli E, Romanel A, Quaini F, Petronini PG, Tiseo M, Alfieri R. Third generation EGFR inhibitor osimertinib combined with pemetrexed or cisplatin exerts long-lasting anti-tumor effect in EGFR-mutated pre-clinical models of NSCLC. J Exp Clin Cancer Res 2019; 38(1): 222
CrossRef Pubmed Google scholar
[33]
Cross DA, Ashton SE, Ghiorghiu S, Eberlein C, Nebhan CA, Spitzler PJ, Orme JP, Finlay MR, Ward RA, Mellor MJ, Hughes G, Rahi A, Jacobs VN, Red Brewer M, Ichihara E, Sun J, Jin H, Ballard P, Al-Kadhimi K, Rowlinson R, Klinowska T, Richmond GH, Cantarini M, Kim DW, Ranson MR, Pao W. AZD9291, an irreversible EGFR TKI, overcomes T790M-mediated resistance to EGFR inhibitors in lung cancer. Cancer Discov 2014; 4(9): 1046–1061
CrossRef Pubmed Google scholar
[34]
Kurdi AT, Glavey SV, Bezman NA, Jhatakia A, Guerriero JL, Manier S, Moschetta M, Mishima Y, Roccaro A, Detappe A, Liu CJ, Sacco A, Huynh D, Tai YT, Robbins MD, Azzi J, Ghobrial IM. Antibody-dependent cellular phagocytosis by macrophages is a novel mechanism of action of elotuzumab. Mol Cancer Ther 2018; 17(7): 1454–1463
CrossRef Pubmed Google scholar
[35]
Kamen L, Myneni S, Langsdorf C, Kho E, Ordonia B, Thakurta T, Zheng K, Song A, Chung S. A novel method for determining antibody-dependent cellular phagocytosis. J Immunol Methods 2019; 468: 55–60
CrossRef Pubmed Google scholar
[36]
von Roemeling CA, Wang Y, Qie Y, Yuan H, Zhao H, Liu X, Yang Z, Yang M, Deng W, Bruno KA, Chan CK, Lee AS, Rosenfeld SS, Yun K, Johnson AJ, Mitchell DA, Jiang W, Kim BYS. Therapeutic modulation of phagocytosis in glioblastoma can activate both innate and adaptive antitumour immunity. Nat Commun 2020; 11(1): 1508
CrossRef Pubmed Google scholar
[37]
Papadimitrakopoulou VA, Mok TS, Han JY, Ahn MJ, Delmonte A, Ramalingam SS, Kim SW, Shepherd FA, Laskin J, He Y, Akamatsu H, Theelen WSME, Su WC, John T, Sebastian M, Mann H, Miranda M, Laus G, Rukazenkov Y, Wu YL. Osimertinib versus platinum-pemetrexed for patients with EGFR T790M advanced NSCLC and progression on a prior EGFR-tyrosine kinase inhibitor: AURA3 overall survival analysis. Ann Oncol 2020; 31(11): 1536–1544
CrossRef Pubmed Google scholar
[38]
Yu HA, Schoenfeld AJ, Makhnin A, Kim R, Rizvi H, Tsui D, Falcon C, Houck-Loomis B, Meng F, Yang JL, Tobi Y, Heller G, Ahn L, Hayes SA, Young RJ, Arcila ME, Berger M, Chaft JE, Ladanyi M, Riely GJ, Kris MG. Effect of osimertinib and bevacizumab on progression-free survival for patients with metastatic EGFR-mutant lung cancers: a phase 1/2 single-group open-label trial. JAMA Oncol 2020; 6(7): 1048–1054
CrossRef Pubmed Google scholar
[39]
Oshima Y, Tanimoto T, Yuji K, Tojo A. EGFR-TKI-associated interstitial pneumonitis in nivolumab-treated patients with non-small cell lung cancer. JAMA Oncol 2018; 4(8): 1112–1115
CrossRef Pubmed Google scholar
[40]
Oxnard GR, Yang JC, Yu H, Kim SW, Saka H, Horn L, Goto K, Ohe Y, Mann H, Thress KS, Frigault MM, Vishwanathan K, Ghiorghiu D, Ramalingam SS, Ahn MJ. TATTON: a multi-arm, phase Ib trial of osimertinib combined with selumetinib, savolitinib, or durvalumab in EGFR-mutant lung cancer. Ann Oncol 2020; 31(4): 507–516
CrossRef Pubmed Google scholar
[41]
Subramanian S, Parthasarathy R, Sen S, Boder ET, Discher DE. Species- and cell type-specific interactions between CD47 and human SIRPalpha. Blood 2006; 107(6): 2548–2556
CrossRef Pubmed Google scholar
[42]
Jain S, Van Scoyk A, Morgan EA, Matthews A, Stevenson K, Newton G, Powers F, Autio A, Louissaint A Jr, Pontini G, Aster JC, Luscinskas FW, Weinstock DM. Targeted inhibition of CD47-SIRPα requires Fc-FcγR interactions to maximize activity in T-cell lymphomas. Blood 2019; 134(17): 1430–1440
CrossRef Pubmed Google scholar
[43]
Chao MP, Alizadeh AA, Tang C, Myklebust JH, Varghese B, Gill S, Jan M, Cha AC, Chan CK, Tan BT, Park CY, Zhao F, Kohrt HE, Malumbres R, Briones J, Gascoyne RD, Lossos IS, Levy R, Weissman IL, Majeti R. Anti-CD47 antibody synergizes with rituximab to promote phagocytosis and eradicate non-Hodgkin lymphoma. Cell 2010; 142(5): 699–713
CrossRef Pubmed Google scholar
[44]
Pietsch EC, Dong J, Cardoso R, Zhang X, Chin D, Hawkins R, Dinh T, Zhou M, Strake B, Feng PH, Rocca M, Santos CD, Shan X, Danet-Desnoyers G, Shi F, Kaiser E, Millar HJ, Fenton S, Swanson R, Nemeth JA, Attar RM. Anti-leukemic activity and tolerability of anti-human CD47 monoclonal antibodies. Blood Cancer J 2017; 7(2): e536
CrossRef Pubmed Google scholar
[45]
Métayer LE, Vilalta A, Burke GAA, Brown GC. Anti-CD47 antibodies induce phagocytosis of live, malignant B cells by macrophages via the Fc domain, resulting in cell death by phagoptosis. Oncotarget 2017; 8(37): 60892–60903
CrossRef Pubmed Google scholar
[46]
Huang CY, Ye ZH, Huang MY, Lu JJ. Regulation of CD47 expression in cancer cells. Transl Oncol 2020; 13(12): 100862
CrossRef Pubmed Google scholar
[47]
Blakely CM, Pazarentzos E, Olivas V, Asthana S, Yan JJ, Tan I, Hrustanovic G, Chan E, Lin L, Neel DS, Newton W, Bobb KL, Fouts TR, Meshulam J, Gubens MA, Jablons DM, Johnson JR, Bandyopadhyay S, Krogan NJ, Bivona TG. NF-κB-activating complex engaged in response to EGFR oncogene inhibition drives tumor cell survival and residual disease in lung cancer. Cell Rep 2015; 11(1): 98–110
CrossRef Pubmed Google scholar
[48]
Tang ZH, Su MX, Guo X, Jiang XM, Jia L, Chen X, Lu JJ. Increased expression of IRE1α associates with the resistant mechanism of osimertinib (AZD9291)-resistant non-small cell lung cancer HCC827/OSIR cells. Anticancer Agents Med Chem 2018; 18(4): 550–555
CrossRef Pubmed Google scholar
[49]
Passaro A, Jänne PA, Mok T, Peters S. Overcoming therapy resistance in EGFR-mutant lung cancer. Nat Can 2021; 2(4): 377–391
CrossRef Pubmed Google scholar
[50]
Candas-Green D, Xie B, Huang J, Fan M, Wang A, Menaa C, Zhang Y, Zhang L, Jing D, Azghadi S, Zhou W, Liu L, Jiang N, Li T, Gao T, Sweeney C, Shen R, Lin TY, Pan CX, Ozpiskin OM, Woloschak G, Grdina DJ, Vaughan AT, Wang JM, Xia S, Monjazeb AM, Murphy WJ, Sun LQ, Chen HW, Lam KS, Weichselbaum RR, Li JJ. Dual blockade of CD47 and HER2 eliminates radioresistant breast cancer cells. Nat Commun 2020; 11(1): 4591
CrossRef Pubmed Google scholar
[51]
Fucikova J, Spisek R, Kroemer G, Galluzzi L. Calreticulin and cancer. Cell Res 2021; 31(1): 5–16
CrossRef Pubmed Google scholar
[52]
Vanmeerbeek I, Sprooten J, De Ruysscher D, Tejpar S, Vandenberghe P, Fucikova J, Spisek R, Zitvogel L, Kroemer G, Galluzzi L, Garg AD. Trial watch: chemotherapy-induced immunogenic cell death in immuno-oncology. OncoImmunology 2020; 9(1): 1703449
CrossRef Pubmed Google scholar
[53]
Sun C, Mezzadra R, Schumacher TN. Regulation and function of the PD-L1 checkpoint. Immunity 2018; 48(3): 434–452
CrossRef Pubmed Google scholar

Acknowledgements

This work was supported by the Science and Technology Development Fund, Macau SAR (File no. 0129/2019/A3). We sincerely thank Professor Xiuping Chen from University of Macau for the helpful discussions.

Compliance with ethics guidelines

Wei-Bang Yu, Yu-Chi Chen, Can-Yu Huang, Zi-Han Ye, Wei Shi, Hong Zhu, Jia-Jie Shi, Jun Chen, and Jin-Jian Lu declare no conflict of interest. BALB/c nude mice were maintained under SPF conditions in the animal facility of the Faculty of Health Science, University of Macau. The design of the animal experiments was approved by the Animal Care and Use Committee of University of Macau.

Electronic Supplementary Material

Supplementary material is available in the online version of this article at https://doi.org/10.1007/s11684-022-0934-1 and is accessible for authorized users.

RIGHTS & PERMISSIONS

2022 Higher Education Press
AI Summary AI Mindmap
PDF(7197 KB)

Accesses

Citations

Detail

Sections
Recommended

/