lncR-GAS5 upregulates the splicing factor SRSF10 to impair endothelial autophagy, leading to atherogenesis
Yuhua Fan, Yue Zhang, Hongrui Zhao, Wenfeng Liu, Wanqing Xu, Lintong Jiang, Ranchen Xu, Yue Zheng, Xueqing Tang, Xiaohan Li, Limin Zhao, Xin Liu, Yang Hong, Yuan Lin, Hui Chen, Yong Zhang
lncR-GAS5 upregulates the splicing factor SRSF10 to impair endothelial autophagy, leading to atherogenesis
Long noncoding RNAs (lncRNAs) play a critical role in the regulation of atherosclerosis. Here, we investigated the role of the lncRNA growth arrest-specific 5 (lncR-GAS5) in atherogenesis. We found that the enforced expression of lncR-GAS5 contributed to the development of atherosclerosis, which presented as increased plaque size and reduced collagen content. Moreover, impaired autophagy was observed, as shown by a decreased LC3II/LC3I protein ratio and an elevated P62 level in lncR-GAS5-overexpressing human aortic endothelial cells. By contrast, lncR-GAS5 knockdown promoted autophagy. Moreover, serine/arginine-rich splicing factor 10 (SRSF10) knockdown increased the LC3II/LC3I ratio and decreased the P62 level, thus enhancing the formation of autophagic vacuoles, autolysosomes, and autophagosomes. Mechanistically, lncR-GAS5 regulated the downstream splicing factor SRSF10 to impair autophagy in the endothelium, which was reversed by the knockdown of SRSF10. Further results revealed that overexpression of the lncR-GAS5-targeted gene miR-193-5p promoted autophagy and autophagic vacuole accumulation by repressing its direct target gene, SRSF10. Notably, miR-193-5p overexpression decreased plaque size and increased collagen content. Altogether, these findings demonstrate that lncR-GAS5 partially contributes to atherogenesis and plaque instability by impairing endothelial autophagy. In conclusion, lncR-GAS5 overexpression arrested endothelial autophagy through the miR-193-5p/SRSF10 signaling pathway. Thus, miR-193-5p/SRSF10 may serve as a novel treatment target for atherosclerosis.
lncR-GAS5 / miR-193-5p / splicing factor SRSF10 / autophagy / atherogenesis
[1] |
Gimbrone MA Jr, García-Cardeña G. Endothelial cell dysfunction and the pathobiology of atherosclerosis. Circ Res 2016; 118(4): 620–636
CrossRef
Pubmed
Google scholar
|
[2] |
Poillet-Perez L, Xie X, Zhan L, Yang Y, Sharp DW, Hu ZS, Su X, Maganti A, Jiang C, Lu W, Zheng H, Bosenberg MW, Mehnert JM, Guo JY, Lattime E, Rabinowitz JD, White E. Autophagy maintains tumour growth through circulating arginine. Nature 2018; 563(7732): 569–573
CrossRef
Pubmed
Google scholar
|
[3] |
Torisu T, Torisu K, Lee IH, Liu J, Malide D, Combs CA, Wu XS, Rovira II II, Fergusson MM, Weigert R, Connelly PS, Daniels MP, Komatsu M, Cao L, Finkel T. Autophagy regulates endothelial cell processing, maturation and secretion of von Willebrand factor. Nat Med 2013; 19(10): 1281–1287
CrossRef
Pubmed
Google scholar
|
[4] |
Rubinsztein DC, Codogno P, Levine B. Autophagy modulation as a potential therapeutic target for diverse diseases. Nat Rev Drug Discov 2012; 11(9): 709–730
CrossRef
Pubmed
Google scholar
|
[5] |
Vion AC, Kheloufi M, Hammoutene A, Poisson J, Lasselin J, Devue C, Pic I, Dupont N, Busse J, Stark K, Lafaurie-Janvore J, Barakat AI, Loyer X, Souyri M, Viollet B, Julia P, Tedgui A, Codogno P, Boulanger CM, Rautou PE. Autophagy is required for endothelial cell alignment and atheroprotection under physiological blood flow. Proc Natl Acad Sci USA 2017; 114(41): E8675–E8684
CrossRef
Pubmed
Google scholar
|
[6] |
Pankratz F, Hohnloser C, Bemtgen X, Jaenich C, Kreuzaler S, Hoefer I, Pasterkamp G, Mastroianni J, Zeiser R, Smolka C, Schneider L, Martin J, Juschkat M, Helbing T, Moser M, Bode C, Grundmann S. MicroRNA-100 suppresses chronic vascular inflammation by stimulation of endothelial autophagy. Circ Res 2018; 122(3): 417–432
CrossRef
Pubmed
Google scholar
|
[7] |
Ulitsky I, Bartel DP. lincRNAs: genomics, evolution, and mechanisms. Cell 2013; 154(1): 26–46
CrossRef
Pubmed
Google scholar
|
[8] |
Liu CY, Zhang YH, Li RB, Zhou LY, An T, Zhang RC, Zhai M, Huang Y, Yan KW, Dong YH, Ponnusamy M, Shan C, Xu S, Wang Q, Zhang YH, Zhang J, Wang K. LncRNA CAIF inhibits autophagy and attenuates myocardial infarction by blocking p53-mediated myocardin transcription. Nat Commun 2018; 9(1): 29
CrossRef
Pubmed
Google scholar
|
[9] |
Schneider C, King RM, Philipson L. Genes specifically expressed at growth arrest of mammalian cells. Cell 1988; 54(6): 787–793
CrossRef
Pubmed
Google scholar
|
[10] |
Liang W, Fan T, Liu L, Zhang L. Knockdown of growth-arrest specific transcript 5 restores oxidized low-density lipoprotein-induced impaired autophagy flux via upregulating miR-26a in human endothelial cells. Eur J Pharmacol 2019; 843: 154–161
CrossRef
Pubmed
Google scholar
|
[11] |
Zhang N, Yang GQ, Shao XM, Wei L. GAS5 modulated autophagy is a mechanism modulating cisplatin sensitivity in NSCLC cells. Eur Rev Med Pharmacol Sci 2016; 20(11): 2271–2277
Pubmed
|
[12] |
Huo JF, Chen XB. Long noncoding RNA growth arrest-specific 5 facilitates glioma cell sensitivity to cisplatin by suppressing excessive autophagy in an mTOR-dependent manner. J Cell Biochem 2019; 120(4): 6127–6136
CrossRef
Pubmed
Google scholar
|
[13] |
Zhang Y, Qin W, Zhang L, Wu X, Du N, Hu Y, Li X, Shen N, Xiao D, Zhang H, Li Z, Zhang Y, Yang H, Gao F, Du Z, Xu C, Yang B. MicroRNA-26a prevents endothelial cell apoptosis by directly targeting TRPC6 in the setting of atherosclerosis. Sci Rep 2015; 5(1): 9401
CrossRef
Pubmed
Google scholar
|
[14] |
Pan J, Alexan B, Dennis D, Bettina C, Christoph LIM, Tang Y. MicroRNA-193-3p attenuates myocardial injury of mice with sepsis via STAT3/HMGB1 axis. J Transl Med 2021; 19(1): 386
CrossRef
Pubmed
Google scholar
|
[15] |
Jiang C, Shen F, Du J, Fang X, Li X, Su J, Wang X, Huang X, Liu Z. Upregulation of CASC2 sensitized glioma to temozolomide cytotoxicity through autophagy inhibition by sponging miR-193a-5p and regulating mTOR expression. Biomed Pharmacother 2018; 97: 844–850
CrossRef
Pubmed
Google scholar
|
[16] |
Zheng X, Yu Q, Shang D, Yin C, Xie D, Huang T, Du X, Wang W, Yan X, Zhang C, Li W, Song Z. TAK1 accelerates transplant arteriosclerosis in rat aortic allografts by inducing autophagy in vascular smooth muscle cells. Atherosclerosis 2022; 343: 10–19
CrossRef
Pubmed
Google scholar
|
[17] |
Fan Y, Liu L, Fang K, Huang T, Wan L, Liu Y, Zhang S, Yan D, Li G, Gao Y, Lv Y, Chen Y, Tu Y. Resveratrol ameliorates cardiac hypertrophy by down-regulation of miR-155 through activation of breast cancer type 1 susceptibility protein. J Am Heart Assoc 2016; 5(4): e002648
CrossRef
Pubmed
Google scholar
|
[18] |
Jiang W, Zhao W, Ye F, Huang S, Wu Y, Chen H, Zhou R, Fu G. SNHG12 regulates biological behaviors of ox-LDL-induced HA-VSMCs through upregulation of SPRY2 and NUB1. Atherosclerosis 2022; 340: 1–11
CrossRef
Pubmed
Google scholar
|
[19] |
Ramírez CM, Zhang X, Bandyopadhyay C, Rotllan N, Sugiyama MG, Aryal B, Liu X, He S, Kraehling JR, Ulrich V, Lin CS, Velazquez H, Lasunción MA, Li G, Suárez Y, Tellides G, Swirski FK, Lee WL, Schwartz MA, Sessa WC, Fernández-Hernando C. Caveolin-1 regulates atherogenesis by attenuating low-density lipoprotein transcytosis and vascular inflammation independently of endothelial nitric oxide synthase activation. Circulation 2019; 140(3): 225–239
CrossRef
Pubmed
Google scholar
|
[20] |
Brauner S, Jiang X, Thorlacius GE, Lundberg AM, Östberg T, Yan ZQ, Kuchroo VK, Hansson GK, Wahren-Herlenius M. Augmented Th17 differentiation in Trim21 deficiency promotes a stable phenotype of atherosclerotic plaques with high collagen content. Cardiovasc Res 2018; 114(1): 158–167
CrossRef
Pubmed
Google scholar
|
[21] |
Grootaert MOJ, Roth L, Schrijvers DM, De Meyer GRY, Martinet W. Defective autophagy in atherosclerosis: to die or to senesce? Oxid Med Cell Longev 2018; 2018: 7687083 doi:10.1155/2018/7687083
Pubmed
|
[22] |
Liu KX, Chen GP, Lin PL, Huang JC, Lin X, Qi JC, Lin QC. Detection and analysis of apoptosis- and autophagy-related miRNAs of mouse vascular endothelial cells in chronic intermittent hypoxia model. Life Sci 2018; 193: 194–199
CrossRef
Pubmed
Google scholar
|
[23] |
Chen L, Yang W, Guo Y, Chen W, Zheng P, Zeng J, Tong W. Exosomal lncRNA GAS5 regulates the apoptosis of macrophages and vascular endothelial cells in atherosclerosis. PLoS One 2017; 12(9): e0185406
CrossRef
Pubmed
Google scholar
|
[24] |
Meng XD, Yao HH, Wang LM, Yu M, Shi S, Yuan ZX, Liu J. Knockdown of GAS5 inhibits atherosclerosis progression via reducing EZH2-mediated ABCA1 transcription in ApoE–/– mice. Mol Ther Nucleic Acids 2020; 19: 84–96
CrossRef
Pubmed
Google scholar
|
[25] |
Kheloufi M, Vion AC, Hammoutene A, Poisson J, Lasselin J, Devue C, Pic I, Dupont N, Busse J, Stark K, Lafaurie-Janvore J, Barakat AI, Loyer X, Souyri M, Viollet B, Julia P, Tedgui A, Codogno P, Boulanger CM, Rautou PE. Endothelial autophagic flux hampers atherosclerotic lesion development. Autophagy 2018; 14(1): 173–175
CrossRef
Pubmed
Google scholar
|
[26] |
Liang W, Fan T, Liu L, Zhang L. Knockdown of growth-arrest specific transcript 5 restores oxidized low-density lipoprotein-induced impaired autophagy flux via upregulating miR-26a in human endothelial cells. Eur J Pharmacol 2019; 843: 154–161
CrossRef
Pubmed
Google scholar
|
[27] |
Feng Y, Chen M, Manley JL. Phosphorylation switches the general splicing repressor SRp38 to a sequence-specific activator. Nat Struct Mol Biol 2008; 15(10): 1040–1048
CrossRef
Pubmed
Google scholar
|
[28] |
Torres-Odio S, Key J, Hoepken HH, Canet-Pons J, Valek L, Roller B, Walter M, Morales-Gordo B, Meierhofer D, Harter PN, Mittelbronn M, Tegeder I, Gispert S, Auburger G. Progression of pathology in PINK1-deficient mouse brain from splicing via ubiquitination, ER stress, and mitophagy changes to neuroinflammation. J Neuroinflammation 2017; 14(1): 154
CrossRef
Pubmed
Google scholar
|
/
〈 | 〉 |