Fine-tuning cell organelle dynamics during mitosis by small GTPases

Zijian Zhang, Wei Zhang, Quentin Liu

PDF(2154 KB)
PDF(2154 KB)
Front. Med. ›› 2022, Vol. 16 ›› Issue (3) : 339-357. DOI: 10.1007/s11684-022-0926-1
REVIEW
REVIEW

Fine-tuning cell organelle dynamics during mitosis by small GTPases

Author information +
History +

Abstract

During mitosis, the allocation of genetic material concurs with organelle transformation and distribution. The coordination of genetic material inheritance with organelle dynamics directs accurate mitotic progression, cell fate determination, and organismal homeostasis. Small GTPases belonging to the Ras superfamily regulate various cell organelles during division. Being the key regulators of membrane dynamics, the dysregulation of small GTPases is widely associated with cell organelle disruption in neoplastic and non-neoplastic diseases, such as cancer and Alzheimer’s disease. Recent discoveries shed light on the molecular properties of small GTPases as sophisticated modulators of a remarkably complex and perfect adaptors for rapid structure reformation. This review collects current knowledge on small GTPases in the regulation of cell organelles during mitosis and highlights the mediator role of small GTPase in transducing cell cycle signaling to organelle dynamics during mitosis.

Keywords

small GTPase / cell organelle / mitosis

Cite this article

Download citation ▾
Zijian Zhang, Wei Zhang, Quentin Liu. Fine-tuning cell organelle dynamics during mitosis by small GTPases. Front. Med., 2022, 16(3): 339‒357 https://doi.org/10.1007/s11684-022-0926-1

References

[1]
Champion L, Linder MI, Kutay U. Cellular reorganization during mitotic entry. Trends Cell Biol 2017; 27( 1): 26– 41
CrossRef Google scholar
[2]
Carlton JG, Jones H, Eggert US. Membrane and organelle dynamics during cell division. Nat Rev Mol Cell Biol 2020; 21( 3): 151– 166
CrossRef Google scholar
[3]
Jongsma MLM, Berlin I, Neefjes J. On the move: organelle dynamics during mitosis. Trends Cell Biol 2015; 25( 3): 112– 124
CrossRef Google scholar
[4]
Song S, Cong W, Zhou S, Shi Y, Dai W, Zhang H, Wang X, He B, Zhang Q. Small GTPases: structure, biological function and its interaction with nanoparticles. Asian J Pharm Sci 2019; 14( 1): 30– 39
CrossRef Google scholar
[5]
Vetter IR. The structure of the G domain of the Ras superfamily. In: Wittinghofer A. Ras Superfamily Small G Proteins: Biology and Mechanisms 1. Springer Vienna, 2014: 25- 50 doi:10.1007/978-3-7091-1806-1_2
[6]
Wennerberg K, Rossman KL, Der CJ. The Ras superfamily at a glance. J Cell Sci 2005; 118( 5): 843– 846
CrossRef Google scholar
[7]
Hodge RG, Schaefer A, Howard SV, Der CJ. RAS and RHO family GTPase mutations in cancer: twin sons of different mothers? Crit Rev Biochem Mol Biol 2020; 55(4): 386–407
32838579" target="_blank">Pubmed
[8]
Rojas AM, Fuentes G, Rausell A, Valencia A. The Ras protein superfamily: evolutionary tree and role of conserved amino acids. J Cell Biol. 2012; 196 : 189– 201
CrossRef Google scholar
[9]
Cherfils J, Zeghouf M. Regulation of small GTPases by GEFs, GAPs, and GDIs. Physiol Rev 2013; 93( 1): 269– 309
CrossRef Google scholar
[10]
Bos J Rehmann H Wittinghofer A. GEFs and GAPs: critical elements in the control of small G proteins. Cell 2007; 129(5): 865–877 Erratum in: Cell 2007; 130(2): 385
Pubmed
[11]
Cherfils J. GEFs and GAPs: mechanisms and structures. In: Wittinghofer A. Ras Superfamily Small G Proteins: Biology and Mechanisms 1. Springer Vienna; 2014: 51- 63
[12]
Mishra AK, Lambright DG. Small GTPases and their GAPs. Biopolymers 2016; 105( 8): 431– 448
CrossRef Google scholar
[13]
Clarke PR, Zhang C. Spatial and temporal coordination of mitosis by Ran GTPase. Nat Rev Mol Cell Biol 2008; 9( 6): 464– 477
CrossRef Google scholar
[14]
Jackson CL, Bouvet S. Arfs at a glance. J Cell Sci 2014; 127( 19): 4103– 4109
[15]
Schwartz SL, Cao C, Pylypenko O, Rak A, Wandinger-Ness A. Rab GTPases at a glance. J Cell Sci 2007; 120( 22): 3905– 3910
CrossRef Google scholar
[16]
D’Souza-Schorey C, Chavrier P. ARF proteins: roles in membrane traffic and beyond. Nat Rev Mol Cell Biol 2006; 7( 5): 347– 358
CrossRef Google scholar
[17]
Kjos I, Vestre K, Guadagno NA, Borg Distefano M, Progida C. Rab and Arf proteins at the crossroad between membrane transport and cytoskeleton dynamics. Biochim Biophys Acta Mol Cell Res 2018; 1865( 10): 1397– 1409
CrossRef Google scholar
[18]
Bannykh SI, Plutner H, Matteson J, Balch WE. The role of ARF1 and rab GTPases in polarization of the Golgi stack. Traffic 2005; 6( 9): 803– 819
CrossRef Google scholar
[19]
Yahara N, Ueda T, Sato K, Nakano A. Multiple roles of Arf1 GTPase in the yeast exocytic and endocytic pathways. Mol Biol Cell 2001; 12( 1): 221– 238
CrossRef Google scholar
[20]
Donaldson JG, Honda A, Weigert R. Multiple activities for Arf1 at the Golgi complex. Biochim Biophys Acta 2005; 1744( 3): 364– 373
CrossRef Google scholar
[21]
Kashatus DF, Lim KH, Brady DC, Pershing NLKK, Cox AD, Counter CM. RALA and RALBP1 regulate mitochondrial fission at mitosis. Nat Cell Biol 2011; 13( 9): 1108– 1115
CrossRef Google scholar
[22]
Shinde SR, Maddika S. Post translational modifications of Rab GTPases. Small GTPases 2018; 9( 1-2): 49– 56
CrossRef Google scholar
[23]
Hodge RG, Ridley AJ. Regulating Rho GTPases and their regulators. Nat Rev Mol Cell Biol 2016; 17( 8): 496– 510
CrossRef Google scholar
[24]
Nigg EA. Mitotic kinases as regulators of cell division and its checkpoints. Nat Rev Mol Cell Biol 2001; 2( 1): 21– 32
CrossRef Google scholar
[25]
Dao VT, Dupuy AG, Gavet O, Caron E, de Gunzburg J. Dynamic changes in Rap1 activity are required for cell retraction and spreading during mitosis. J Cell Sci 2009; 122( 16): 2996– 3004
CrossRef Google scholar
[26]
Glotzer M, Murray AW, Kirschner MW. Cyclin is degraded by the ubiquitin pathway. Nature 1991; 349( 6305): 132– 138
CrossRef Google scholar
[27]
Lei Z, Wang J, Zhang L, Liu CH. Ubiquitination-dependent regulation of small GTPases in membrane trafficking: from cell biology to human diseases. Front Cell Dev Biol 2021; 9 : 688352
CrossRef Google scholar
[28]
de la Vega M, Burrows JF, Johnston JA. Ubiquitination: added complexity in Ras and Rho family GTPase function. Small GTPases 2011; 2( 4): 192– 201
CrossRef Google scholar
[29]
Ding F, Yin Z, Wang HR. Ubiquitination in Rho signaling. Curr Top Med Chem 2011; 11( 23): 2879– 2887
CrossRef Google scholar
[30]
Song P, Trajkovic K, Tsunemi T, Krainc D. Parkin modulates endosomal organization and function of the endo-lysosomal pathway. J Neurosci 2016; 36( 8): 2425– 2437
CrossRef Google scholar
[31]
Wang H-R, Zhang Y, Ozdamar B, Ogunjimi AA, Alexandrova E, Thomsen GH, Wrana JL. Regulation of cell polarity and protrusion formation by targeting RhoA for degradation. Science 2003; 302( 5651): 1775– 1779
CrossRef Google scholar
[32]
Seabra MC, Goldstein JL, Südhof TC, Brown MS. Rab geranylgeranyl transferase. A multisubunit enzyme that prenylates GTP-binding proteins terminating in Cys-X-Cys or Cys-Cys. J Biol Chem 1992; 267( 20): 14497– 14503
CrossRef Google scholar
[33]
Leung KF, Baron R, Ali BR, Magee AI, Seabra MC. Rab GTPases containing a CAAX motif are processed post-geranylgeranylation by proteolysis and methylation. J Biol Chem 2007; 282( 2): 1487– 1497
CrossRef Google scholar
[34]
Heald R, Khodjakov A. Thirty years of search and capture: the complex simplicity of mitotic spindle assembly. J Cell Biol 2015; 211( 6): 1103– 1111
CrossRef Google scholar
[35]
O’Connell CB, Khodjakov AL. Cooperative mechanisms of mitotic spindle formation. J Cell Sci 2007; 120( 10): 1717– 1722
CrossRef Google scholar
[36]
Lavia P. The GTPase RAN regulates multiple steps of the centrosome life cycle. Chromosome Res 2016; 24( 1): 53– 65
CrossRef Google scholar
[37]
Feng Y, Yuan JH, Maloid SC, Fisher R, Copeland TD, Longo DL, Conrads TP, Veenstra TD, Ferris A, Hughes S, Dimitrov DS, Ferris DK. Polo-like kinase 1-mediated phosphorylation of the GTP-binding protein Ran is important for bipolar spindle formation. Biochem Biophys Res Commun 2006; 349( 1): 144– 152
CrossRef Google scholar
[38]
Bompard G, Rabeharivelo G, Frank M, Cau J, Delsert C, Morin N. Subgroup II PAK-mediated phosphorylation regulates Ran activity during mitosis. J Cell Biol 2010; 190( 5): 807– 822
CrossRef Google scholar
[39]
Tedeschi A, Ciciarello M, Mangiacasale R, Roscioli E, Rensen WM, Lavia P. RANBP1 localizes a subset of mitotic regulatory factors on spindle microtubules and regulates chromosome segregation in human cells. J Cell Sci 2007; 120( 21): 3748– 3761
CrossRef Google scholar
[40]
Sit ST, Manser E. Rho GTPases and their role in organizing the actin cytoskeleton. J Cell Sci 2011; 124( 5): 679– 683
CrossRef Google scholar
[41]
Müller PM, Rademacher J, Bagshaw RD, Wortmann C, Barth C, van Unen J, Alp KM, Giudice G, Eccles RL, Heinrich LE, Pascual-Vargas P, Sanchez-Castro M, Brandenburg L, Mbamalu G, Tucholska M, Spatt L, Czajkowski MT, Welke RW, Zhang S, Nguyen V, Rrustemi T, Trnka P, Freitag K, Larsen B, Popp O, Mertins P, Gingras AC, Roth FP, Colwill K, Bakal C, Pertz O, Pawson T, Petsalaki E, Rocks O. Systems analysis of RhoGEF and RhoGAP regulatory proteins reveals spatially organized RAC1 signalling from integrin adhesions. Nat Cell Biol 2020; 22( 4): 498– 511
CrossRef Google scholar
[42]
Chircop M. Rho GTPases as regulators of mitosis and cytokinesis in mammalian cells. Small GTPases 2014; 5( 2): e29770
CrossRef Google scholar
[43]
Yasuda S, Taniguchi H, Oceguera-Yanez F, Ando Y, Watanabe S, Monypenny J, Narumiya S. An essential role of Cdc42-like GTPases in mitosis of HeLa cells. FEBS Lett 2006; 580( 14): 3375– 3380
CrossRef Google scholar
[44]
Miserey-Lenkei S, Colombo MI. Small RAB GTPases regulate multiple steps of mitosis. Front Cell Dev Biol 2016; 4 : 2
CrossRef Google scholar
[45]
Lanzetti L. A novel function of Rab5 in mitosis. Small GTPases 2012; 3( 3): 168– 172
CrossRef Google scholar
[46]
Hehnly H, Doxsey S. Rab11 endosomes contribute to mitotic spindle organization and orientation. Dev Cell 2014; 28( 5): 497– 507
CrossRef Google scholar
[47]
Hobdy-Henderson KC, Hales CM, Lapierre LA, Cheney RE, Goldenring JR. Dynamics of the apical plasma membrane recycling system during cell division. Traffic 2003; 4( 10): 681– 693
CrossRef Google scholar
[48]
Zhou C, Cunningham L, Marcus AI, Li Y, Kahn RA. Arl2 and Arl3 regulate different microtubule-dependent processes. Mol Biol Cell 2006; 17( 5): 2476– 2487
CrossRef Google scholar
[49]
Okai T, Araki Y, Tada M, Tateno T, Kontani K, Katada T. Novel small GTPase subfamily capable of associating with tubulin is required for chromosome segregation. J Cell Sci 2004; 117( 20): 4705– 4715
CrossRef Google scholar
[50]
Papini D, Langemeyer L, Abad MA, Kerr A, Samejima I, Eyers PA, Jeyaprakash AA, Higgins JMG, Barr FA, Earnshaw WC. TD-60 links RalA GTPase function to the CPC in mitosis. Nat Commun 2015; 6( 1): 7678
CrossRef Google scholar
[51]
Boeynaems S, Alberti S, Fawzi NL, Mittag T, Polymenidou M, Rousseau F, Schymkowitz J, Shorter J, Wolozin B, Van Den Bosch L, Tompa P, Fuxreiter M. Protein phase separation: a new phase in cell biology. Trends Cell Biol 2018; 28( 6): 420– 435
CrossRef Google scholar
[52]
Zhang C, Rabouille C. Membrane-bound meet membraneless in health and disease. Cells 2019; 8( 9): 1000
CrossRef Google scholar
[53]
Nott TJ, Petsalaki E, Farber P, Jervis D, Fussner E, Plochowietz A, Craggs TD, Bazett-Jones DP, Pawson T, Forman-Kay JD, Baldwin AJ. Phase transition of a disordered nuage protein generates environmentally responsive membraneless organelles. Mol Cell 2015; 57( 5): 936– 947
CrossRef Google scholar
[54]
Gomes E, Shorter J. The molecular language of membraneless organelles. J Biol Chem 2019; 294( 18): 7115– 7127
CrossRef Google scholar
[55]
Rai AK, Chen JXX, Selbach M, Pelkmans L. Kinase-controlled phase transition of membraneless organelles in mitosis. Nature 2018; 559( 7713): 211– 216
CrossRef Google scholar
[56]
Jiang H, Wang S, Huang Y, He X, Cui H, Zhu X, Zheng Y. Phase transition of spindle-associated protein regulate spindle apparatus assembly. Cell 2015; 163( 1): 108– 122
CrossRef Google scholar
[57]
Woodruff JB, Ferreira Gomes B, Widlund PO, Mahamid J, Honigmann A, Hyman AA. The centrosome is a selective condensate that nucleates microtubules by concentrating tubulin. Cell 2017; 169( 6): 1066– 1077.e10
CrossRef Google scholar
[58]
Keryer G, Witczak O, Delouvée A, Kemmner WA, Rouillard D, Taskén K, Bornens M. Dissociating the centrosomal matrix protein AKAP450 from centrioles impairs centriole duplication and cell cycle progression. Mol Biol Cell 2003; 14( 6): 2436– 2446
CrossRef Google scholar
[59]
Keryer G, Di Fiore B, Celati C, Lechtreck KF, Mogensen M, Delouvée A, Lavia P, Bornens M, Tassin AM. Part of Ran is associated with AKAP450 at the centrosome: involvement in microtubule-organizing activity. Mol Biol Cell 2003; 14( 10): 4260– 4271
CrossRef Google scholar
[60]
Bompard G, Rabeharivelo G, Cau J, Abrieu A, Delsert C, Morin N. P21-activated kinase 4 (PAK4) is required for metaphase spindle positioning and anchoring. Oncogene 2013; 32( 7): 910– 919
CrossRef Google scholar
[61]
Kilchert C, Weidner J, Prescianotto-Baschong C, Spang A. Defects in the secretory pathway and high Ca2+ induce multiple P-bodies. Mol Biol Cell 2010; 21( 15): 2624– 2638
CrossRef Google scholar
[62]
Serio G, Margaria V, Jensen S, Oldani A, Bartek J, Bussolino F, Lanzetti L. Small GTPase Rab5 participates in chromosome congression and regulates localization of the centromere-associated protein CENP-F to kinetochores. Proc Natl Acad Sci USA 2011; 108( 42): 17337– 17342
CrossRef Google scholar
[63]
Zhang X, Hagen J, Muniz VP, Smith T, Coombs GS, Eischen CM, Mackie DI, Roman DL, Van Rheeden R, Darbro B, Tompkins VS, Quelle DE. RABL6A, a novel RAB-like protein, controls centrosome amplification and chromosome instability in primary fibroblasts. PLoS One 2013; 8( 11): e80228
CrossRef Google scholar
[64]
Hehnly H, Chen CTT, Powers CM, Liu HLL, Doxsey S. The centrosome regulates the Rab11-dependent recycling endosome pathway at appendages of the mother centriole. Curr Biol 2012; 22( 20): 1944– 1950
CrossRef Google scholar
[65]
Takahashi S, Takei T, Koga H, Takatsu H, Shin HW, Nakayama K. Distinct roles of Rab11 and Arf6 in the regulation of Rab11-FIP3/arfophilin-1 localization in mitotic cells. Genes Cells 2011; 16( 9): 938– 950
CrossRef Google scholar
[66]
Champion L, Linder MI, Kutay U. Cellular reorganization during mitotic entry. Trends Cell Biol 2017; 27( 1): 26– 41
CrossRef Google scholar
[67]
Ramkumar N, Baum B. Coupling changes in cell shape to chromosome segregation. Nat Rev Mol Cell Biol 2016; 17( 8): 511– 521
CrossRef Google scholar
[68]
Atilla-Gokcumen GE, Muro E, Relat-Goberna J, Sasse S, Bedigian A, Coughlin ML, Garcia-Manyes S, Eggert US. Dividing cells regulate their lipid composition and localization. Cell 2014; 156( 3): 428– 439
CrossRef Google scholar
[69]
Storck EM, Özbalci C, Eggert US. Lipid cell biology: a focus on lipids in cell division. Annu Rev Biochem 2018; 87( 1): 839– 869
CrossRef Google scholar
[70]
Théry M, Bornens M. Get round and stiff for mitosis. HFSP J 2008; 2( 2): 65– 71
CrossRef Google scholar
[71]
Lee HS, Lim CJ, Puzon-McLaughlin W, Shattil SJ, Ginsberg MH. RIAM activates integrins by linking talin to ras GTPase membrane-targeting sequences. J Biol Chem 2009; 284( 8): 5119– 5127
CrossRef Google scholar
[72]
Lafuente EM, van Puijenbroek AAFL, Krause M, Carman CV, Freeman GJ, Berezovskaya A, Constantine E, Springer TA, Gertler FB, Boussiotis VA. RIAM, an Ena/VASP and Profilin ligand, interacts with Rap1-GTP and mediates Rap1-induced adhesion. Dev Cell 2004; 7( 4): 585– 595
CrossRef Google scholar
[73]
Marchesi S, Montani F, Deflorian G, D’Antuono R, Cuomo A, Bologna S, Mazzoccoli C, Bonaldi T, Di Fiore PP, Nicassio F. DEPDC1B coordinates de-adhesion events and cell-cycle progression at mitosis. Dev Cell 2014; 31( 4): 420– 433
CrossRef Google scholar
[74]
Lancaster OM, Le Berre M, Dimitracopoulos A, Bonazzi D, Zlotek-Zlotkiewicz E, Picone R, Duke T, Piel M, Baum B. Mitotic rounding alters cell geometry to ensure efficient bipolar spindle formation. Dev Cell 2013; 25( 3): 270– 283
CrossRef Google scholar
[75]
Chugh P, Paluch EK. The actin cortex at a glance. J Cell Sci 2018; 131( 14): jcs186254
CrossRef Google scholar
[76]
Arnold TR, Stephenson RE, Miller AL. Rho GTPases and actomyosin: partners in regulating epithelial cell-cell junction structure and function. Exp Cell Res 2017; 358( 1): 20– 30
CrossRef Google scholar
[77]
Rosa A, Vlassaks E, Pichaud F, Baum B. Ect2/Pbl acts via Rho and polarity proteins to direct the assembly of an isotropic actomyosin cortex upon mitotic entry. Dev Cell 2015; 32( 5): 604– 616
CrossRef Google scholar
[78]
Mierzwa B, Gerlich DW. Cytokinetic abscission: molecular mechanisms and temporal control. Dev Cell 2014; 31( 5): 525– 538
CrossRef Google scholar
[79]
Pollard TD, O’Shaughnessy B. Molecular mechanism of cytokinesis. Annu Rev Biochem 2019; 88( 1): 661– 689
CrossRef Google scholar
[80]
Neto H, Collins LL, Gould GW. Vesicle trafficking and membrane remodelling in cytokinesis. Biochem J 2011; 437( 1): 13– 24
CrossRef Google scholar
[81]
Kiyomitsu T, Cheeseman IM. Cortical dynein and asymmetric membrane elongation coordinately position the spindle in anaphase. Cell 2013; 154( 2): 391– 402
CrossRef Google scholar
[82]
Kiyomitsu T, Cheeseman IM. Chromosome- and spindle-pole-derived signals generate an intrinsic code for spindle position and orientation. Nat Cell Biol 2012; 14( 3): 311– 317
CrossRef Google scholar
[83]
Bird SL, Heald R, Weis K. RanGTP and CLASP1 cooperate to position the mitotic spindle. Mol Biol Cell 2013; 24( 16): 2506– 2514
CrossRef Google scholar
[84]
Queralt E, Uhlmann F. Cdk-counteracting phosphatases unlock mitotic exit. Curr Opin Cell Biol 2008; 20( 6): 661– 668
CrossRef Google scholar
[85]
Baumann O, Walz B. Endoplasmic reticulum of animal cells and its organization into structural and functional domains. Int Rev Cytol 2001; 205 : 149– 214
CrossRef Google scholar
[86]
Friedman JR, Voeltz GK. The ER in 3D: a multifunctional dynamic membrane network. Trends Cell Biol 2011; 21( 12): 709– 717
CrossRef Google scholar
[87]
Westrate LM, Lee JE, Prinz WA, Voeltz GK. Form follows function: the importance of endoplasmic reticulum shape. Annu Rev Biochem 2015; 84( 1): 791– 811
CrossRef Google scholar
[88]
Schwarz DS, Blower MD. The endoplasmic reticulum: structure, function and response to cellular signaling. Cell Mol Life Sci 2016; 73( 1): 79– 94
CrossRef Google scholar
[89]
English AR, Voeltz GK. Endoplasmic reticulum structure and interconnections with other organelles. Cold Spring Harb Perspect Biol 2013; 5( 4): a013227
CrossRef Google scholar
[90]
Merta H, Carrasquillo Rodríguez JW, Anjur-Dietrich MI, Vitale T, Granade ME, Harris TE, Needleman DJ, Bahmanyar S. Cell cycle regulation of ER membrane biogenesis protects against chromosome missegregation. Dev Cell 2021; 56( 24): 3364– 3379.e10
CrossRef Google scholar
[91]
Oertle T, Klinger M, Stuermer CAO, Schwab ME. A reticular rhapsody: phylogenic evolution and nomenclature of the RTN/Nogo gene family. FASEB J 2003; 17( 10): 1238– 1247
CrossRef Google scholar
[92]
Di Sano F, Bernardoni P, Piacentini M. The reticulons: guardians of the structure and function of the endoplasmic reticulum. Exp Cell Res 2012; 318( 11): 1201– 1207
CrossRef Google scholar
[93]
Voeltz GK, Prinz WA, Shibata Y, Rist JM, Rapoport TA. A class of membrane proteins shaping the tubular endoplasmic reticulum. Cell 2006; 124( 3): 573– 586
CrossRef Google scholar
[94]
Gerondopoulos A, Bastos RN, Yoshimura S, Anderson R, Carpanini S, Aligianis I, Handley MT, Barr FA. Rab18 and a Rab18 GEF complex are required for normal ER structure. J Cell Biol 2014; 205( 5): 707– 720
CrossRef Google scholar
[95]
English AR, Voeltz GK. Rab10 GTPase regulates ER dynamics and morphology. Nat Cell Biol 2013; 15( 2): 169– 178
CrossRef Google scholar
[96]
Morohashi Y, Balklava Z, Ball M, Hughes H, Lowe M. Phosphorylation and membrane dissociation of the ARF exchange factor GBF1 in mitosis. Biochem J 2010; 427( 3): 401– 412
CrossRef Google scholar
[97]
Kumar D, Golchoubian B, Belevich I, Jokitalo E, Schlaitz ALL. REEP3 and REEP4 determine the tubular morphology of the endoplasmic reticulum during mitosis. Mol Biol Cell 2019; 30( 12): 1377– 1389
CrossRef Google scholar
[98]
Schlaitz AL, Thompson J, Wong CCLL, Yates JR 3rd, Heald R. REEP3/4 ensure endoplasmic reticulum clearance from metaphase chromatin and proper nuclear envelope architecture. Dev Cell 2013; 26( 3): 315– 323
CrossRef Google scholar
[99]
Arnone JT, Walters AD, Cohen-Fix O. The dynamic nature of the nuclear envelope: lessons from closed mitosis. Nucleus 2013; 4( 4): 261– 266
CrossRef Google scholar
[100]
LaJoie D, Ullman KS. Coordinated events of nuclear assembly. Curr Opin Cell Biol 2017; 46 : 39– 45
CrossRef Google scholar
[101]
Vietri M, Stenmark H, Campsteijn C. Closing a gap in the nuclear envelope. Curr Opin Cell Biol 2016; 40 : 90– 97
CrossRef Google scholar
[102]
Hetzer MW. The nuclear envelope. Cold Spring Harb Perspect Biol 2010; 2( 3): a000539
CrossRef Google scholar
[103]
Prunuske AJ, Ullman KS. The nuclear envelope: form and reformation. Curr Opin Cell Biol 2006; 18( 1): 108– 116
CrossRef Google scholar
[104]
Peter M, Nakagawa J, Dorée M, Labbé JC, Nigg EA. Identification of major nucleolar proteins as candidate mitotic substrates of cdc2 kinase. Cell 1990; 60( 5): 791– 801
CrossRef Google scholar
[105]
Heald R, McKeon F. Mutations of phosphorylation sites in lamin A that prevent nuclear lamina disassembly in mitosis. Cell 1990; 61( 4): 579– 589
CrossRef Google scholar
[106]
Torvaldson E, Kochin V, Eriksson JE. Phosphorylation of lamins determine their structural properties and signaling functions. Nucleus 2015; 6( 3): 166– 171
CrossRef Google scholar
[107]
Martinez de Ilarduya O, Vicente-Carbajosa J, Sanchez de la Hoz P, Carbonero P. Sucrose synthase genes in barley. cDNA cloning of the Ss2 type and tissue-specific expression of Ss1 and Ss2. FEBS Lett 1993; 320( 2): 177– 181
CrossRef Google scholar
[108]
Audhya A, Desai A, Oegema K. A role for Rab5 in structuring the endoplasmic reticulum. J Cell Biol 2007; 178( 1): 43– 56
CrossRef Google scholar
[109]
Nielsen E, Severin F, Backer JM, Hyman AA, Zerial M. Rab5 regulates motility of early endosomes on microtubules. Nat Cell Biol 1999; 1( 6): 376– 382
CrossRef Google scholar
[110]
Bucci C, Parton RG, Mather IH, Stunnenberg H, Simons K, Hoflack B, Zerial M. The small GTPase rab5 functions as a regulatory factor in the early endocytic pathway. Cell 1992; 70( 5): 715– 728
CrossRef Google scholar
[111]
Cavazza T, Vernos I. The RanGTP pathway: from nucleo-cytoplasmic transport to spindle assembly and beyond. Front Cell Dev Biol 2016; 3 : 82
CrossRef Google scholar
[112]
Wesolowska N, Avilov I, Machado P, Geiss C, Kondo H, Mori M, Lénárt P. Actin assembly ruptures the nuclear envelope by prying the lamina away from nuclear pores and nuclear membranes in starfish oocytes. eLife 2020; 9 : e49774
CrossRef Google scholar
[113]
Penfield L, Wysolmerski B, Mauro M, Farhadifar R, Martinez MA, Biggs R, Wu HY, Broberg C, Needleman D, Bahmanyar S. Dynein pulling forces counteract lamin-mediated nuclear stability during nuclear envelope repair. Mol Biol Cell 2018; 29( 7): 852– 868
CrossRef Google scholar
[114]
Mühlhäusser P, Kutay U. An in vitro nuclear disassembly system reveals a role for the RanGTPase system and microtubule-dependent steps in nuclear envelope breakdown. J Cell Biol 2007; 178( 4): 595– 610
CrossRef Google scholar
[115]
Beaudouin J, Gerlich D, Daigle N, Eils R, Ellenberg J. Nuclear envelope breakdown proceeds by microtubule-induced tearing of the lamina. Cell 2002; 108( 1): 83– 96
CrossRef Google scholar
[116]
Salina D, Bodoor K, Eckley DMM, Schroer TA, Rattner JBB, Burke B. Cytoplasmic dynein as a facilitator of nuclear envelope breakdown. Cell 2002; 108( 1): 97– 107
CrossRef Google scholar
[117]
Sullivan M, Morgan DO. Finishing mitosis, one step at a time. Nat Rev Mol Cell Biol 2007; 8( 11): 894– 903
CrossRef Google scholar
[118]
Zhang C, Clarke PR. Chromatin-independent nuclear envelope assembly induced by Ran GTPase in Xenopus egg extracts. Science 2000; 288( 5470): 1429– 1432
CrossRef Google scholar
[119]
Hetzer M, Gruss OJ, Mattaj IW. The Ran GTPase as a marker of chromosome position in spindle formation and nuclear envelope assembly. Nat Cell Biol 2002; 4( 7): E177– E184
CrossRef Google scholar
[120]
Bamba C, Bobinnec Y, Fukuda M, Nishida E. The GTPase Ran regulates chromosome positioning and nuclear envelope assembly in vivo. Curr Biol 2002; 12( 6): 503– 507
CrossRef Google scholar
[121]
Hetzer M, Bilbao-Cortés D, Walther TC, Gruss OJ, Mattaj IW. GTP hydrolysis by Ran is required for nuclear envelope assembly. Mol Cell 2000; 5( 6): 1013– 1024
CrossRef Google scholar
[122]
Schellhaus AK De Magistris P Antonin W. Nuclear reformation at the end of mitosis. J Mol Biol 2016; 428(10Pt A): 1962–1985 doi:10.1016/j.jmb.2015.09.016
Pubmed
[123]
Matchett KB, McFarlane S, Hamilton SE, Eltuhamy YSA, Davidson MA, Murray JT, Faheem AM, El-Tanani M. Ran GTPase in Nuclear Envelope Formation and Cancer Metastasis. Adv Exp Med Biol 2014; 773 : 323– 351
CrossRef Google scholar
[124]
Townley AK, Feng Y, Schmidt K, Carter DA, Porter R, Verkade P, Stephens DJ. Efficient coupling of Sec23-Sec24 to Sec13-Sec31 drives COPII-dependent collagen secretion and is essential for normal craniofacial development. J Cell Sci 2008; 121( 18): 3025– 3034
CrossRef Google scholar
[125]
Siniossoglou S, Lutzmann M, Santos-Rosa H, Leonard K, Mueller S, Aebi U, Hurt E. Structure and assembly of the Nup84p complex. J Cell Biol 2000; 149( 1): 41– 54
CrossRef Google scholar
[126]
Lu MS, Drubin DG. Cdc42 GTPase regulates ESCRTs in nuclear envelope sealing and ER remodeling. J Cell Biol 2020; 219( 8): e201910119
CrossRef Google scholar
[127]
Chen X, Simon ES, Xiang Y, Kachman M, Andrews PC, Wang Y. Quantitative proteomics analysis of cell cycle-regulated Golgi disassembly and reassembly. J Biol Chem 2010; 285( 10): 7197– 7207
CrossRef Google scholar
[128]
Klumperman J. Architecture of the mammalian Golgi. Cold Spring Harb Perspect Biol 2011; 3( 7): a005181
CrossRef Google scholar
[129]
Xiang Y, Wang Y. GRASP55 and GRASP65 play complementary and essential roles in Golgi cisternal stacking. J Cell Biol 2010; 188( 2): 237– 251
CrossRef Google scholar
[130]
Colanzi A, Corda D. Mitosis controls the Golgi and the Golgi controls mitosis. Curr Opin Cell Biol 2007; 19( 4): 386– 393
CrossRef Google scholar
[131]
Tang D, Wang Y. Cell cycle regulation of Golgi membrane dynamics. Trends Cell Biol 2013; 23( 6): 296– 304
CrossRef Google scholar
[132]
Valente C, Colanzi A. Mechanisms and regulation of the mitotic inheritance of the Golgi complex. Front Cell Dev Biol 2015; 3 : 79
CrossRef Google scholar
[133]
Mao L Li N Guo Y Xu X Gao L Xu Y Zhou L Liu W. AMPK phosphorylates GBF1 for mitotic Golgi disassembly. J Cell Sci 2013; 126(Pt 6): 1498–1505 doi:10.1242/jcs.121954
Pubmed
[134]
Yadav S, Puthenveedu MA, Linstedt AD. Golgin160 recruits the dynein motor to position the Golgi apparatus. Dev Cell 2012; 23( 1): 153– 165
CrossRef Google scholar
[135]
Kano F, Tanaka AR, Yamauchi S, Kondo H, Murata M. Cdc2 kinase-dependent disassembly of endoplasmic reticulum (ER) exit sites inhibits ER-to-Golgi vesicular transport during mitosis. Mol Biol Cell 2004; 15( 9): 4289– 4298
CrossRef Google scholar
[136]
Prescott AR, Farmaki T, Thomson C, James J, Paccaud JP, Tang BL, Hong W, Quinn M, Ponnambalam S, Lucocq J. Evidence for prebudding arrest of ER export in animal cell mitosis and its role in generating Golgi partitioning intermediates. Traffic 2001; 2( 5): 321– 335
CrossRef Google scholar
[137]
Stroud WJ, Jiang S, Jack G, Storrie B. Persistence of Golgi matrix distribution exhibits the same dependence on Sar1p activity as a Golgi glycosyltransferase. Traffic 2003; 4( 9): 631– 641
CrossRef Google scholar
[138]
Ward TH, Polishchuk RS, Caplan S, Hirschberg K, Lippincott-Schwartz J. Maintenance of Golgi structure and function depends on the integrity of ER export. J Cell Biol 2001; 155( 4): 557– 570
CrossRef Google scholar
[139]
Miles S, McManus H, Forsten KE, Storrie B. Evidence that the entire Golgi apparatus cycles in interphase HeLa cells: sensitivity of Golgi matrix proteins to an ER exit block. J Cell Biol 2001; 155( 4): 543– 556
CrossRef Google scholar
[140]
Corda D, Barretta ML, Cervigni RI, Colanzi A. Golgi complex fragmentation in G2/M transition: an organelle-based cell-cycle checkpoint. IUBMB Life 2012; 64( 8): 661– 670
CrossRef Google scholar
[141]
Persico A, Cervigni RI, Barretta ML, Corda D, Colanzi A. Golgi partitioning controls mitotic entry through Aurora-A kinase. Mol Biol Cell 2010; 21( 21): 3708– 3721
CrossRef Google scholar
[142]
Altan-Bonnet N, Sougrat R, Lippincott-Schwartz J. Molecular basis for Golgi maintenance and biogenesis. Curr Opin Cell Biol 2004; 16( 4): 364– 372
CrossRef Google scholar
[143]
Altan-Bonnet N, Sougrat R, Liu W, Snapp EL, Ward T, Lippincott-Schwartz J. Golgi inheritance in mammalian cells is mediated through endoplasmic reticulum export activities. Mol Biol Cell 2006; 17( 2): 990– 1005
CrossRef Google scholar
[144]
Magliozzi R, Carrero ZI, Low TY, Yuniati L, Valdes-Quezada C, Kruiswijk F, van Wijk K, Heck AJR, Jackson CL, Guardavaccaro D. Inheritance of the Golgi apparatus and cytokinesis are controlled by degradation of GBF1. Cell Rep 2018; 23( 11): 3381– 3391.e4
CrossRef Google scholar
[145]
Miserey-Lenkei S, Couëdel-Courteille A, Del Nery E, Bardin S, Piel M, Racine V, Sibarita JB, Perez F, Bornens M, Goud B. A role for the Rab6A′ GTPase in the inactivation of the Mad2-spindle checkpoint. EMBO J 2006; 25( 2): 278– 289
CrossRef Google scholar
[146]
Mishra P, Chan DC. Mitochondrial dynamics and inheritance during cell division, development and disease. Nat Rev Mol Cell Biol 2014; 15( 10): 634– 646
CrossRef Google scholar
[147]
Giacomello M, Pyakurel A, Glytsou C, Scorrano L. The cell biology of mitochondrial membrane dynamics. Nat Rev Mol Cell Biol 2020; 21( 4): 204– 224
CrossRef Google scholar
[148]
Kashatus DF, Lim KH, Brady DC, Pershing NLK, Cox AD, Counter CM. RALA and RALBP1 regulate mitochondrial fission at mitosis. Nat Cell Biol 2011; 13( 9): 1108– 1115
CrossRef Google scholar
[149]
Kanfer G, Kornmann B. Dynamics of the mitochondrial network during mitosis. Biochem Soc Trans 2016; 44( 2): 510– 516
CrossRef Google scholar
[150]
Benard G, Bellance N, James D, Parrone P, Fernandez H, Letellier T, Rossignol R. Mitochondrial bioenergetics and structural network organization. J Cell Sci 2007; 120( 5): 838– 848
CrossRef Google scholar
[151]
Parone PA, Da Cruz S, Tondera D, Mattenberger Y, James DI, Maechler P, Barja F, Martinou JC. Preventing mitochondrial fission impairs mitochondrial function and leads to loss of mitochondrial DNA. PLoS One 2008; 3( 9): e3257
CrossRef Google scholar
[152]
Nagashima S, Tábara LC, Tilokani L, Paupe V, Anand H, Pogson JH, Zunino R, McBride HM, Prudent J. Golgi-derived PI(4)P-containing vesicles drive late steps of mitochondrial division. Science 2020; 367( 6484): 1366– 1371
CrossRef Google scholar
[153]
Horbay R, Bilyy R. Mitochondrial dynamics during cell cycling. Apoptosis 2016; 21( 12): 1327– 1335
CrossRef Google scholar
[154]
Kanfer G, Courthéoux T, Peterka M, Meier S, Soste M, Melnik A, Reis K, Aspenström P, Peter M, Picotti P, Kornmann B. Mitotic redistribution of the mitochondrial network by Miro and Cenp-F. Nat Commun 2015; 6( 1): 8015
CrossRef Google scholar
[155]
Walch L, Pellier E, Leng W, Lakisic G, Gautreau A, Contremoulins V, Verbavatz JM, Jackson CL. GBF1 and Arf1 interact with Miro and regulate mitochondrial positioning within cells. Sci Rep 2018; 8( 1): 17121
CrossRef Google scholar
[156]
Frederick RL, Shaw JM. Moving mitochondria: establishing distribution of an essential organelle. Traffic 2007; 8( 12): 1668– 1675
CrossRef Google scholar
[157]
Kettenbach AN, Schweppe DK, Faherty BK, Pechenick D, Pletnev AA, Gerber SA. Quantitative phosphoproteomics identifies substrates and functional modules of Aurora and Polo-like kinase activities in mitotic cells. Sci Signal 2011; 4( 179): rs5
CrossRef Google scholar
[158]
Dephoure N, Zhou C, Villén J, Beausoleil SA, Bakalarski CE, Elledge SJ, Gygi SP. A quantitative atlas of mitotic phosphorylation. Proc Natl Acad Sci USA 2008; 105( 31): 10762– 10767
CrossRef Google scholar
[159]
Malik R, Lenobel R, Santamaria A, Ries A, Nigg EA, Körner R. Quantitative analysis of the human spindle phosphoproteome at distinct mitotic stages. J Proteome Res 2009; 8( 10): 4553– 4563
CrossRef Google scholar
[160]
D’Avino PP, Giansanti MG, Petronczki M. Cytokinesis in animal cells. Cold Spring Harb Perspect Biol 2015; 7( 4): a015834
CrossRef Google scholar
[161]
Kechad A, Jananji S, Ruella Y, Hickson GRX. Anillin acts as a bifunctional linker coordinating midbody ring biogenesis during cytokinesis. Curr Biol 2012; 22( 3): 197– 203
CrossRef Google scholar
[162]
Steigemann P, Gerlich DW. Cytokinetic abscission: cellular dynamics at the midbody. Trends Cell Biol 2009; 19( 11): 606– 616
CrossRef Google scholar
[163]
Hu CK, Coughlin M, Mitchison TJ. Midbody assembly and its regulation during cytokinesis. Mol Biol Cell 2012; 23( 6): 1024– 1034
CrossRef Google scholar
[164]
Wadsworth P. Cytokinesis: Rho marks the spot. Curr Biol 2005; 15 : R871– R874
CrossRef Google scholar
[165]
Piekny A, Werner M, Glotzer M. Cytokinesis: welcome to the Rho zone. Trends Cell Biol 2005; 15( 12): 651– 658
CrossRef Google scholar
[166]
Jordan SN, Canman JC. Rho GTPases in animal cell cytokinesis: an occupation by the one percent. Cytoskeleton (Hoboken) 2012; 69( 11): 919– 930
CrossRef Google scholar
[167]
Narumiya S, Yasuda S. Rho GTPases in animal cell mitosis. Curr Opin Cell Biol 2006; 18( 2): 199– 205
CrossRef Google scholar
[168]
Fraschini R. Cytokinesis in eukaryotic cells: the furrow complexity at a glance. Cells 2020; 9( 2): 271
CrossRef Google scholar
[169]
Bement WM, Benink HAHA, von Dassow G. A microtubule-dependent zone of active RhoA during cleavage plane specification. J Cell Biol 2005; 170( 1): 91– 101
CrossRef Google scholar
[170]
Yüce O, Piekny A, Glotzer M. An ECT2-centralspindlin complex regulates the localization and function of RhoA. J Cell Biol 2005; 170( 4): 571– 582
CrossRef Google scholar
[171]
Yoshizaki H, Ohba Y, Kurokawa K, Itoh RE, Nakamura T, Mochizuki N, Nagashima K, Matsuda M. Activity of Rho-family GTPases during cell division as visualized with FRET-based probes. J Cell Biol 2003; 162( 2): 223– 232
CrossRef Google scholar
[172]
Kotýnková K, Su KC, West SC, Petronczki M. Plasma membrane association but not midzone recruitment of RhoGEF ECT2 is essential for cytokinesis. Cell Rep 2016; 17( 10): 2672– 2686
CrossRef Google scholar
[173]
Schroeder TE. The contractile ring. I. Fine structure of dividing mammalian (HeLa) cells and the effects of cytochalasin B. Z Zellforsch Mikrosk Anat 1970; 109( 4): 431– 449
CrossRef Google scholar
[174]
Schroeder TE. Actin in dividing cells: contractile ring filaments bind heavy meromyosin. Proc Natl Acad Sci USA 1973; 70( 6): 1688– 1692
CrossRef Google scholar
[175]
Otomo T, Otomo C, Tomchick DR, Machius M, Rosen MK. Structural basis of Rho GTPase-mediated activation of the formin mDia1. Mol Cell 2005; 18( 3): 273– 281
CrossRef Google scholar
[176]
Rose R, Weyand M, Lammers M, Ishizaki T, Ahmadian MR, Wittinghofer A. Structural and mechanistic insights into the interaction between Rho and mammalian Dia. Nature 2005; 435( 7041): 513– 518
CrossRef Google scholar
[177]
Castrillon DH, Wasserman SA. Diaphanous is required for cytokinesis in Drosophila and shares domains of similarity with the products of the limb deformity gene. Development 1994; 120( 12): 3367– 3377
CrossRef Google scholar
[178]
Evangelista M, Pruyne D, Amberg DC, Boone C, Bretscher A. Formins direct Arp2/3-independent actin filament assembly to polarize cell growth in yeast. Nat Cell Biol 2002; 4( 3): 260– 269
CrossRef Google scholar
[179]
Sagot I, Rodal AA, Moseley J, Goode BL, Pellman D. An actin nucleation mechanism mediated by Bni1 and profilin. Nat Cell Biol 2002; 4( 8): 626– 631
CrossRef Google scholar
[180]
Watanabe N, Madaule P, Reid T, Ishizaki T, Watanabe G, Kakizuka A, Saito Y, Nakao K, Jockusch BM, Narumiya S. p140mDia, a mammalian homolog of Drosophila diaphanous, is a target protein for Rho small GTPase and is a ligand for profilin. EMBO J 1997; 16( 11): 3044– 3056
CrossRef Google scholar
[181]
Kawano Y, Fukata Y, Oshiro N, Amano M, Nakamura T, Ito M, Matsumura F, Inagaki M, Kaibuchi K. Phosphorylation of myosin-binding subunit (MBS) of myosin phosphatase by Rho-kinase in vivo. J Cell Biol 1999; 147( 5): 1023– 1038
CrossRef Google scholar
[182]
Kosako H, Yoshida T, Matsumura F, Ishizaki T, Narumiya S, Inagaki M. Rho-kinase/ROCK is involved in cytokinesis through the phosphorylation of myosin light chain and not ezrin/radixin/moesin proteins at the cleavage furrow. Oncogene 2000; 19( 52): 6059– 6064
CrossRef Google scholar
[183]
Yokoyama T, Goto H, Izawa I, Mizutani H, Inagaki M. Aurora-B and Rho-kinase/ROCK, the two cleavage furrow kinases, independently regulate the progression of cytokinesis: possible existence of a novel cleavage furrow kinase phosphorylates ezrin/radixin/moesin (ERM). Genes Cells 2005; 10( 2): 127– 137
CrossRef Google scholar
[184]
Khasnis M, Nakatomi A, Gumpper K, Eto M. Reconstituted human myosin light chain phosphatase reveals distinct roles of two inhibitory phosphorylation sites of the regulatory subunit, MYPT1. Biochemistry 2014; 53( 16): 2701– 2709
CrossRef Google scholar
[185]
Gai M, Camera P, Dema A, Bianchi F, Berto G, Scarpa E, Germena G, Di Cunto F. Citron kinase controls abscission through RhoA and anillin. Mol Biol Cell 2011; 22( 20): 3768– 3778
CrossRef Google scholar
[186]
D’Avino PP. Citron kinase—renaissance of a neglected mitotic kinase. J Cell Sci 2017; 130( 10): 1701– 1708
CrossRef Google scholar
[187]
Canman JC, Lewellyn L, Laband K, Smerdon SJ, Desai A, Bowerman B, Oegema K. Inhibition of Rac by the GAP activity of centralspindlin is essential for cytokinesis. Science 2008; 322( 5907): 1543– 1546
CrossRef Google scholar
[188]
Boucrot E, Kirchhausen T. Endosomal recycling controls plasma membrane area during mitosis. Proc Natl Acad Sci USA 2007; 104( 19): 7939– 7944
CrossRef Google scholar
[189]
Ai E, Skop AR. Endosomal recycling regulation during cytokinesis. Commun Integr Biol 2009; 2( 5): 444– 447
CrossRef Google scholar
[190]
Schiel JA, Prekeris R. Membrane dynamics during cytokinesis. Curr Opin Cell Biol 2013; 25( 1): 92– 98
CrossRef Google scholar
[191]
Sechi S, Frappaolo A, Fraschini R, Capalbo L, Gottardo M, Belloni G, Glover DM, Wainman A, Giansanti MG. Rab1 interacts with GOLPH3 and controls Golgi structure and contractile ring constriction during cytokinesis in Drosophila melanogaster. Open Biol 2017; 7( 1): 160257
CrossRef Google scholar
[192]
Cao J, Albertson R, Riggs B, Field CM, Sullivan W. Nuf, a Rab11 effector, maintains cytokinetic furrow integrity by promoting local actin polymerization. J Cell Biol 2008; 182( 2): 301– 313
CrossRef Google scholar
[193]
Rodrigues FF, Shao W, Harris TJC. The Arf GAP Asap promotes Arf1 function at the Golgi for cleavage furrow biosynthesis in Drosophila. Mol Biol Cell 2016; 27( 20): 3143– 3155
CrossRef Google scholar
[194]
Frémont S, Echard A. Membrane traffic in the late steps of cytokinesis. Curr Biol 2018; 28( 8): R458– R470
CrossRef Google scholar
[195]
Albertson R, Riggs B, Sullivan W. Membrane traffic: a driving force in cytokinesis. Trends Cell Biol 2005; 15( 2): 92– 101
CrossRef Google scholar
[196]
Montagnac G, Echard A, Chavrier P. Endocytic traffic in animal cell cytokinesis. Curr Opin Cell Biol 2008; 20( 4): 454– 461
CrossRef Google scholar
[197]
Schiel JA, Childs C, Prekeris R. Endocytic transport and cytokinesis: from regulation of the cytoskeleton to midbody inheritance. Trends Cell Biol 2013; 23( 7): 319– 327
CrossRef Google scholar
[198]
Schiel JA, Simon GC, Zaharris C, Weisz J, Castle D, Wu CC, Prekeris R. FIP3-endosome-dependent formation of the secondary ingression mediates ESCRT-III recruitment during cytokinesis. Nat Cell Biol 2012; 14( 10): 1068– 1078
CrossRef Google scholar
[199]
Minoshima Y, Kawashima T, Hirose K, Tonozuka Y, Kawajiri A, Bao YC, Deng X, Tatsuka M, Narumiya S, May WS Jr, Nosaka T, Semba K, Inoue T, Satoh T, Inagaki M, Kitamura T. Phosphorylation by aurora B converts MgcRacGAP to a RhoGAP during cytokinesis. Dev Cell 2003; 4( 4): 549– 560
CrossRef Google scholar
[200]
Yu X, Prekeris R, Gould GW. Role of endosomal Rab GTPases in cytokinesis. Eur J Cell Biol 2007; 86( 1): 25– 35
CrossRef Google scholar
[201]
Hanai A, Ohgi M, Yagi C, Ueda T, Shin HW, Nakayama K. Class I Arfs (Arf1 and Arf3) and Arf6 are localized to the Flemming body and play important roles in cytokinesis. J Biochem 2016; 159( 2): 201– 208
CrossRef Google scholar
[202]
Dambournet D, Machicoane M, Chesneau L, Sachse M, Rocancourt M, El Marjou A, Formstecher E, Salomon R, Goud B, Echard A. Rab35 GTPase and OCRL phosphatase remodel lipids and F-actin for successful cytokinesis. Nat Cell Biol 2011; 13( 8): 981– 988
CrossRef Google scholar
[203]
Frémont S, Hammich H, Bai J, Wioland H, Klinkert K, Rocancourt M, Kikuti C, Stroebel D, Romet-Lemonne G, Pylypenko O, Houdusse A, Echard A. Oxidation of F-actin controls the terminal steps of cytokinesis. Nat Commun 2017; 8( 1): 14528
CrossRef Google scholar
[204]
Montagnac G, Sibarita JB, Loubéry S, Daviet L, Romao M, Raposo G, Chavrier P. ARF6 interacts with JIP4 to control a motor switch mechanism regulating endosome traffic in cytokinesis. Curr Biol 2009; 19( 3): 184– 195
CrossRef Google scholar
[205]
Cascone I, Selimoglu R, Ozdemir C, Del Nery E, Yeaman C, White M, Camonis J. Distinct roles of RalA and RalB in the progression of cytokinesis are supported by distinct RalGEFs. EMBO J 2008; 27( 18): 2375– 2387
CrossRef Google scholar
[206]
Chen XW, Inoue M, Hsu SC, Saltiel AR. RalA-exocyst-dependent recycling endosome trafficking is required for the completion of cytokinesis. J Biol Chem 2006; 281( 50): 38609– 38616
CrossRef Google scholar
[207]
Neumann B, Walter T, Hériché JKK, Bulkescher J, Erfle H, Conrad C, Rogers P, Poser I, Held M, Liebel U, Cetin C, Sieckmann F, Pau G, Kabbe R, Wünsche A, Satagopam V, Schmitz MH, Chapuis C, Gerlich DW, Schneider R, Eils R, Huber W, Peters JM, Hyman AA, Durbin R, Pepperkok R, Ellenberg J. Phenotypic profiling of the human genome by time-lapse microscopy reveals cell division genes. Nature 2010; 464( 7289): 721– 727
CrossRef Google scholar
[208]
Yang PL, Hsu TH, Wang CW, Chen RH. Lipid droplets maintain lipid homeostasis during anaphase for efficient cell separation in budding yeast. Mol Biol Cell 2016; 27( 15): 2368– 2380
CrossRef Google scholar
[209]
Brill JA, Wong R, Wilde A. Phosphoinositide function in cytokinesis. Curr Biol 2011; 21( 22): R930– R934
CrossRef Google scholar
[210]
Ben El Kadhi K, Roubinet C, Solinet S, Emery G, Carréno S. The inositol 5-phosphatase dOCRL controls PI(4,5)P2 homeostasis and is necessary for cytokinesis. Curr Biol 2011; 21( 12): 1074– 1079
CrossRef Google scholar
[211]
Field SJ, Madson N, Kerr ML, Galbraith KAA, Kennedy CE, Tahiliani M, Wilkins A, Cantley LC. PtdIns(4,5)P2 functions at the cleavage furrow during cytokinesis. Curr Biol 2005; 15( 15): 1407– 1412
CrossRef Google scholar
[212]
Zoppino FCM, Militello RD, Slavin I, Álvarez C, Colombo MI. Autophagosome formation depends on the small GTPase Rab1 and functional ER exit sites. Traffic 2010; 11( 9): 1246– 1261
CrossRef Google scholar
[213]
Ao X, Zou L, Wu Y. Regulation of autophagy by the Rab GTPase network. Cell Death Differ 2014; 21( 3): 348– 358
CrossRef Google scholar
[214]
Chua CEL, Gan BQ, Tang BL. Involvement of members of the Rab family and related small GTPases in autophagosome formation and maturation. Cell Mol Life Sci 2011; 68( 20): 3349– 3358
CrossRef Google scholar
[215]
Hutagalung AH, Novick PJ. Role of Rab GTPases in membrane traffic and cell physiology. Physiol Rev 2011; 91( 1): 119– 149
CrossRef Google scholar
[216]
Ganley IG, Wong PM, Gammoh N, Jiang X. Distinct autophagosomal-lysosomal fusion mechanism revealed by thapsigargin-induced autophagy arrest. Mol Cell 2011; 42( 6): 731– 743
CrossRef Google scholar
[217]
Pilli M, Arko-Mensah J, Ponpuak M, Roberts E, Master S, Mandell MA, Dupont N, Ornatowski W, Jiang S, Bradfute SB, Bruun JA, Hansen TE, Johansen T, Deretic V. TBK-1 promotes autophagy-mediated antimicrobial defense by controlling autophagosome maturation. Immunity 2012; 37( 2): 223– 234
CrossRef Google scholar
[218]
Munafó DB, Colombo MI. Induction of autophagy causes dramatic changes in the subcellular distribution of GFP-Rab24. Traffic 2002; 3( 7): 472– 482
CrossRef Google scholar
[219]
Sakurai A, Maruyama F, Funao J, Nozawa T, Aikawa C, Okahashi N, Shintani S, Hamada S, Ooshima T, Nakagawa I. Specific behavior of intracellular Streptococcus pyogenes that has undergone autophagic degradation is associated with bacterial streptolysin O and host small G proteins Rab5 and Rab7. J Biol Chem 2010; 285( 29): 22666– 22675
CrossRef Google scholar
[220]
Bento CF, Puri C, Moreau K, Rubinsztein DC. The role of membrane-trafficking small GTPases in the regulation of autophagy. J Cell Sci 2013; 126( 5): 1059– 1069
CrossRef Google scholar
[221]
Bodemann BO, Orvedahl A, Cheng T, Ram RR, Ou YH, Formstecher E, Maiti M, Hazelett CC, Wauson EM, Balakireva M, Camonis JH, Yeaman C, Levine B, White MA. RalB and the exocyst mediate the cellular starvation response by direct activation of autophagosome assembly. Cell 2011; 144( 2): 253– 267
CrossRef Google scholar
[222]
Nakashima N, Noguchi E, Nishimoto T. Saccharomyces cerevisiae putative G protein, Gtr1p, which forms complexes with itself and a novel protein designated as Gtr2p, negatively regulates the Ran/Gsp1p G protein cycle through Gtr2p. Genetics 1999; 152( 3): 853– 867
CrossRef Google scholar
[223]
Sekiguchi T, Hirose E, Nakashima N, Ii M, Nishimoto T. Novel G proteins, Rag C and Rag D, interact with GTP-binding proteins, Rag A and Rag B. J Biol Chem 2001; 276( 10): 7246– 7257
CrossRef Google scholar
[224]
Sancak Y, Bar-Peled L, Zoncu R, Markhard AL, Nada S, Sabatini DM. Ragulator-Rag complex targets mTORC1 to the lysosomal surface and is necessary for its activation by amino acids. Cell 2010; 141( 2): 290– 303
CrossRef Google scholar
[225]
Sancak Y, Peterson TR, Shaul YD, Lindquist RA, Thoreen CC, Bar-Peled L, Sabatini DM. The rag GTPases bind raptor and mediate amino acid signaling to mTORC1. Science 2008; 320( 5882): 1496– 1501
CrossRef Google scholar
[226]
Odle RI, Walker SA, Oxley D, Kidger AM, Balmanno K, Gilley R, Okkenhaug H, Florey O, Ktistakis NT, Cook SJ. An mTORC1-to-CDK1 switch maintains autophagy suppression during mitosis. Mol Cell 2020; 77( 2): 228– 240.e7
CrossRef Google scholar
[227]
Thiam AR, Farese RV Jr, Walther TC. The biophysics and cell biology of lipid droplets. Nat Rev Mol Cell Biol 2013; 14( 12): 775– 786
CrossRef Google scholar
[228]
Walther TC, Farese RV Jr. Lipid droplets and cellular lipid metabolism. Annu Rev Biochem 2012; 81( 1): 687– 714
CrossRef Google scholar
[229]
Martin S, Parton RG. Lipid droplets: a unified view of a dynamic organelle. Nat Rev Mol Cell Biol 2006; 7( 5): 373– 378
CrossRef Google scholar
[230]
Hashemi HF, Goodman JM. The life cycle of lipid droplets. Curr Opin Cell Biol 2015; 33 : 119– 124
CrossRef Google scholar
[231]
Cruz ALS, Carrossini N, Teixeira LK, Ribeiro-Pinto LF, Bozza PT, Viola JPB. Cell cycle progression regulates biogenesis and cellular localization of lipid droplets. Mol Cell Biol 2019; 39( 9): e00374– 18
CrossRef Google scholar
[232]
Tan R, Wang W, Wang S, Wang Z, Sun L, He W, Fan R, Zhou Y, Xu X, Hong W, Wang T. Small GTPase Rab40c associates with lipid droplets and modulates the biogenesis of lipid droplets. PLoS One 2013; 8( 4): e63213
CrossRef Google scholar
[233]
Ozeki S, Cheng J, Tauchi-Sato K, Hatano N, Taniguchi H, Fujimoto T. Rab18 localizes to lipid droplets and induces their close apposition to the endoplasmic reticulum-derived membrane. J Cell Sci 2005; 118( 12): 2601– 2611
CrossRef Google scholar
[234]
Schroeder B, Schulze RJ, Weller SG, Sletten AC, Casey CA, McNiven MA. The small GTPase Rab7 as a central regulator of hepatocellular lipophagy. Hepatology 2015; 61( 6): 1896– 1907
CrossRef Google scholar
[235]
Gabaldón T. Peroxisome diversity and evolution. Philos Trans R Soc Lond B Biol Sci 2010; 365( 1541): 765– 773
CrossRef Google scholar
[236]
Knoblach B, Rachubinski RA. How peroxisomes partition between cells. A story of yeast, mammals and filamentous fungi. Curr Opin Cell Biol 2016; 41 : 73– 80
CrossRef Google scholar
[237]
Nguyen T, Bjorkman J, Paton BC, Crane DI. Failure of microtubule-mediated peroxisome division and trafficking in disorders with reduced peroxisome abundance. J Cell Sci 2006; 119( 4): 636– 645
CrossRef Google scholar
[238]
Asare A, Levorse J, Fuchs E. Coupling organelle inheritance with mitosis to balance growth and differentiation. Science 2017; 355( 6342): eaah4701
CrossRef Google scholar
[239]
Heasman SJ, Ridley AJ. Mammalian Rho GTPases: new insights into their functions from in vivo studies. Nat Rev Mol Cell Biol 2008; 9( 9): 690– 701
CrossRef Google scholar
[240]
Castro IG, Richards DM, Metz J, Costello JL, Passmore JB, Schrader TA, Gouveia A, Ribeiro D, Schrader M. A role for mitochondrial Rho GTPase 1 (MIRO1) in motility and membrane dynamics of peroxisomes. Traffic 2018; 19( 3): 229– 242
CrossRef Google scholar
[241]
Schollenberger L, Gronemeyer T, Huber CM, Lay D, Wiese S, Meyer HE, Warscheid B, Saffrich R, Peränen J, Gorgas K, Just WW. RhoA regulates peroxisome association to microtubules and the actin cytoskeleton. PLoS One 2010; 5( 11): e13886
CrossRef Google scholar
[242]
Just WW, Peränen J. Small GTPases in peroxisome dynamics. Biochim Biophys Acta 2016; 1863( 5): 1006– 1013
CrossRef Google scholar
[243]
Gronemeyer T, Wiese S, Grinhagens S, Schollenberger L, Satyagraha A, Huber LA, Meyer HE, Warscheid B, Just WW. Localization of Rab proteins to peroxisomes: a proteomics and immunofluorescence study. FEBS Lett 2013; 587( 4): 328– 338
CrossRef Google scholar
[244]
Zerial M, McBride H. Rab proteins as membrane organizers. Nat Rev Mol Cell Biol 2001; 2( 2): 107– 117
CrossRef Google scholar
[245]
Cussac D, Leblanc P, L’Heritier A, Bertoglio J, Lang P, Kordon C, Enjalbert A, Saltarelli D. Rho proteins are localized with different membrane compartments involved in vesicular trafficking in anterior pituitary cells. Mol Cell Endocrinol 1996; 119( 2): 195– 206
CrossRef Google scholar
[246]
Croisé P, Estay-Ahumada C, Gasman S, Ory S. Rho GTPases, phosphoinositides, and actin: a tripartite framework for efficient vesicular trafficking. Small GTPases 2014; 5( 2): e29469
CrossRef Google scholar
[247]
Wittinghofer A. Ras Superfamily Small G Proteins: Biology and Mechanisms 1: general features, signaling. Springer Vienna, 2014
[248]
Zhou B Cox AD. Posttranslational modifications of small G proteins. In: Wittinghofer A. Ras Superfamily Small G Proteins: Biology and Mechanisms 1. Springer Vienna, 2014: 99– 131
[249]
Barr F, Lambright DG. Rab GEFs and GAPs. Curr Opin Cell Biol 2010; 22( 4): 461– 470
CrossRef Google scholar
[250]
Eathiraj S, Pan X, Ritacco C, Lambright DG. Structural basis of family-wide Rab GTPase recognition by rabenosyn-5. Nature 2005; 436( 7049): 415– 419
CrossRef Google scholar
[251]
Spang A, Saw JH, Jørgensen SL, Zaremba-Niedzwiedzka K, Martijn J, Lind AE, van Eijk R, Schleper C, Guy L, Ettema TJG. Complex archaea that bridge the gap between prokaryotes and eukaryotes. Nature 2015; 521( 7551): 173– 179
CrossRef Google scholar

Acknowledgements

We would like to thank Mr. Christopher M. Lavender and Dr. Yuchen Zhang for critically reading our manuscript, and members of the Liu Q laboratory for scientific advice. Space constraints limited the number of citations. We apologize to those whose work we are unable to cite. This research work is supported by the National Key R&D Program of China (Nos. 2019YFA0110300 and 2017YFA0505600-04), the National Natural Science Foundation of China (Nos. 81820108024 and 81630005), the Innovative Research Team in University of Ministry of Education of China (No. IRT-17R15), and the Natural Science Foundation of Guangdong (Nos. 2016A030311038 and 2017A030313608).

Compliance with ethics guidelines

Zijian Zhang, Wei Zhang, and Quentin Liu declare no competing interest. This manuscript is a review article and does not involve a research protocol requiring approval by the relevant institutional review board or ethics committee.

RIGHTS & PERMISSIONS

2022 Higher Education Press
AI Summary AI Mindmap
PDF(2154 KB)

Accesses

Citations

Detail

Sections
Recommended

/