Bacteria-mediated tumor-targeted delivery of tumstatin (54-132) significantly suppresses tumor growth in mouse model by inhibiting angiogenesis and promoting apoptosis
Feifei Bao, Mengjie Liu, Wenhua Gai, Yuwei Hua, Jing Li, Chao Han, Ziyu Zai, Jiahuang Li, Zichun Hua
Bacteria-mediated tumor-targeted delivery of tumstatin (54-132) significantly suppresses tumor growth in mouse model by inhibiting angiogenesis and promoting apoptosis
Tumor growth is an angiogenesis-dependent process and accompanied by the formation of hypoxic areas. Tumstatin is a tumor-specific angiogenesis inhibitor that suppresses the proliferation and induces the apoptosis of tumorous vascular endothelial cells. VNP20009, an attenuated Salmonella typhimurium strain, preferentially accumulates in the hypoxic areas of solid tumors. In this study, a novel Salmonella-mediated targeted expression system of tumstatin (VNP-Tum5) was developed under the control of the hypoxia-induced J23100 promoter to obtain anti-tumor efficacy in mice. Treatment with VNP-Tum5 effectively suppressed tumor growth and prolonged survival in the mouse model of B16F10 melanoma. VNP-Tum5 exhibited a higher efficacy in inhibiting the proliferation and inducing the necrosis and apoptosis of B16F10 cells in vitro and in vivo compared with VNP (control). VNP-Tum5 significantly inhibited the proliferation and migration of mouse umbilical vascular endothelial cells to impede angiogenesis. VNP-Tum5 downregulated the expression of anti-vascular endothelial growth factor A, platelet endothelial cell adhesion molecule-1, phosphorylated phosphoinositide 3 kinase, and phosphorylated protein kinase B and upregulated the expression of cleaved-caspase 3 in tumor tissues. This study is the first to use tumstatin-transformed VNP20009 as a tumor-targeted system for treatment of melanoma by combining anti-tumor and anti-angiogenic effects.
Salmonella VNP20009 / tumstatin / B16F10 / melanoma / apoptosis / angiogenesis
[1] |
Hanahan D, Folkman J. Patterns and emerging mechanisms of the angiogenic switch during tumorigenesis. Cell 1996; 86( 3): 353– 364
CrossRef
Pubmed
Google scholar
|
[2] |
Jazowiecka-Rakus J, Szala S. Antitumour activity of Salmonella typhimurium VNP20047 in B16(F10) murine melanoma model. Acta Biochim Pol 2004; 51( 3): 851– 856
CrossRef
Pubmed
Google scholar
|
[3] |
Low KB, Ittensohn M, Luo X, Zheng LM, King I, Pawelek JM, Bermudes D. Construction of VNP20009: a novel, genetically stable antibiotic-sensitive strain of tumor-targeting Salmonella for parenteral administration in humans. Methods Mol Med 2004; 90 : 47– 60
Pubmed
|
[4] |
Zheng JH, Min JJ. Targeted cancer therapy using engineered Salmonella typhimurium. Chonnam Med J 2016; 52( 3): 173– 184
CrossRef
Pubmed
Google scholar
|
[5] |
Kimura H, Zhang L, Zhao M, Hayashi K, Tsuchiya H, Tomita K, Bouvet M, Wessels J, Hoffman RM. Targeted therapy of spinal cord glioma with a genetically modified Salmonella typhimurium. Cell Prolif 2010; 43( 1): 41– 48
CrossRef
Pubmed
Google scholar
|
[6] |
Luo X Li Z Lin S Le T Ittensohn M Bermudes D Runyab JD Shen SY Chen J King IC Zheng LM. Antitumor effect of VNP20009, an attenuated Salmonella, in murine tumor models . Oncol Res 2001; 12(11−12): 501− 508
Pubmed
|
[7] |
Toso JF, Gill VJ, Hwu P, Marincola FM, Restifo NP, Schwartzentruber DJ, Sherry RM, Topalian SL, Yang JC, Stock F, Freezer LJ, Morton KE, Seipp C, Haworth L, Mavroukakis S, White D, MacDonald S, Mao J, Sznol M, Rosenberg SA. Phase I study of the intravenous administration of attenuated Salmonella typhimurium to patients with metastatic melanoma. J Clin Oncol 2002; 20( 1): 142– 152
CrossRef
Pubmed
Google scholar
|
[8] |
Forbes NS, Munn LL, Fukumura D, Jain RK. Sparse initial entrapment of systemically injected Salmonella typhimurium leads to heterogeneous accumulation within tumors. Cancer Res 2003; 63( 17): 5188– 5193
Pubmed
|
[9] |
Floquet N, Pasco S, Ramont L, Derreumaux P, Laronze JY, Nuzillard JM, Maquart FX, Alix AJ, Monboisse JC. The antitumor properties of the α3(IV)-(185-203) peptide from the NC1 domain of type IV collagen (tumstatin) are conformation-dependent. J Biol Chem 2004; 279( 3): 2091– 2100
CrossRef
Pubmed
Google scholar
|
[10] |
Van der Velden J, Harkness LM, Barker DM, Barcham GJ, Ugalde CL, Koumoundouros E, Bao H, Organ LA, Tokanovic A, Burgess JK, Snibson KJ. The effects of tumstatin on vascularity, airway inflammation and lung function in an experimental sheep model of chronic asthma. Sci Rep 2016; 6( 1): 26309
CrossRef
Pubmed
Google scholar
|
[11] |
Maeshima Y, Manfredi M, Reimer C, Holthaus KA, Hopfer H, Chandamuri BR, Kharbanda S, Kalluri R. Identification of the anti-angiogenic site within vascular basement membrane-derived tumstatin. J Biol Chem 2001; 276( 18): 15240– 15248
CrossRef
Pubmed
Google scholar
|
[12] |
Kawaguchi T, Yamashita Y, Kanamori M, Endersby R, Bankiewicz KS, Baker SJ, Bergers G, Pieper RO. The PTEN/Akt pathway dictates the direct αVβ3-dependent growth-inhibitory action of an active fragment of tumstatin in glioma cells in vitro and in vivo. Cancer Res 2006; 66( 23): 11331– 11340
CrossRef
Pubmed
Google scholar
|
[13] |
Wahyu Effendi SS, Tan SI, Ting WW, Ng IS. Enhanced recombinant Sulfurihydrogenibium yellowstonense carbonic anhydrase activity and thermostability by chaperone GroELS for carbon dioxide biomineralization. Chemosphere 2021; 271 : 128461
CrossRef
Pubmed
Google scholar
|
[14] |
Chen T, Zhao X, Ren Y, Wang Y, Tang X, Tian P, Wang H, Xin H. Triptolide modulates tumour-colonisation and anti-tumour effect of attenuated Salmonella encoding DNase I. Appl Microbiol Biotechnol 2019; 103( 2): 929– 939
CrossRef
Pubmed
Google scholar
|
[15] |
Zhang X, Cheng X, Lai Y, Zhou Y, Cao W, Hua ZC. Salmonella VNP20009-mediated RNA interference of ABCB5 moderated chemoresistance of melanoma stem cell and suppressed tumor growth more potently. Oncotarget 2016; 7( 12): 14940– 14950
CrossRef
Pubmed
Google scholar
|
[16] |
Jiang XD, Qiao Y, Dai P, Chen Q, Wu J, Song DA, Li SQ. Enhancement of recombinant human endostatin on the radiosensitivity of human pulmonary adenocarcinoma A549 cells and its mechanism. J Biomed Biotechnol 2012; 2012 : 301931
CrossRef
Pubmed
Google scholar
|
[17] |
Clairmont C, Lee KC, Pike J, Ittensohn M, Low KB, Pawelek J, Bermudes D, Brecher SM, Margitich D, Turnier J, Li Z, Luo X, King I, Zheng LM. Biodistribution and genetic stability of the novel antitumor agent VNP20009, a genetically modified strain of Salmonella typhimurium. J Infect Dis 2000; 181( 6): 1996– 2002
CrossRef
Pubmed
Google scholar
|
[18] |
Sottile J. Regulation of angiogenesis by extracellular matrix. Biochim Biophys Acta 2004; 1654( 1): 13– 22
Pubmed
|
[19] |
Hlatky L, Hahnfeldt P, Folkman J. Clinical application of antiangiogenic therapy: microvessel density, what it does and doesn’t tell us. J Natl Cancer Inst 2002; 94( 12): 883– 893
CrossRef
Pubmed
Google scholar
|
[20] |
Li W Zhai L Tang Y Cai J Liu M Zhang J. Antitumor properties of taxol in combination with cyclooxygenase-1 and cyclooxygenase-2 selective inhibitors on ovarian tumor growth in vivo. Oncol Res 2012; 20(2−3): 49− 59
Pubmed
|
[21] |
Maeshima Y, Sudhakar A, Lively JC, Ueki K, Kharbanda S, Kahn CR, Sonenberg N, Hynes RO, Kalluri R. Tumstatin, an endothelial cell-specific inhibitor of protein synthesis. Science 2002; 295( 5552): 140– 143
CrossRef
Pubmed
Google scholar
|
[22] |
Hamano Y, Kalluri R. Tumstatin, the NC1 domain of α3 chain of type IV collagen, is an endogenous inhibitor of pathological angiogenesis and suppresses tumor growth. Biochem Biophys Res Commun 2005; 333( 2): 292– 298
CrossRef
Pubmed
Google scholar
|
[23] |
Gu Q, Zhang T, Luo J, Wang F. Expression, purification, and bioactivity of human tumstatin from Escherichia coli. Protein Expr Purif 2006; 47( 2): 461– 466
CrossRef
Pubmed
Google scholar
|
[24] |
Hamano Y, Zeisberg M, Sugimoto H, Lively JC, Maeshima Y, Yang C, Hynes RO, Werb Z, Sudhakar A, Kalluri R. Physiological levels of tumstatin, a fragment of collagen IV α3 chain, are generated by MMP-9 proteolysis and suppress angiogenesis via αV β3 integrin. Cancer Cell 2003; 3( 6): 589– 601
CrossRef
Pubmed
Google scholar
|
[25] |
Zhang GM Sui LH Jia T Zhao YZ Fu SB Liu XH Yu Y. Inhibitory effect of recombinant anti-angiogenic peptide of tumstatin on growth and metastasis of human ovarian cancer transplanted in nude mice. Chin J Oncol (Zhonghua Zhong Liu Za Zhi) 2008; 30( 3): 170− 173 (in Chinese)
Pubmed
|
[26] |
Sudhakar A, Boosani CS. Inhibition of tumor angiogenesis by tumstatin: insights into signaling mechanisms and implications in cancer regression. Pharm Res 2008; 25( 12): 2731– 2739
CrossRef
Pubmed
Google scholar
|
[27] |
Weth R, Christ O, Stevanovic S, Zöller M. Gene delivery by attenuated Salmonella typhimurium: comparing the efficacy of helper versus cytotoxic T cell priming in tumor vaccination. Cancer Gene Ther 2001; 8( 8): 599– 611
CrossRef
Pubmed
Google scholar
|
[28] |
Tjuvajev J, Blasberg R, Luo X, Zheng LM, King I, Bermudes D. Salmonella-based tumor-targeted cancer therapy: tumor amplified protein expression therapy (TAPET) for diagnostic imaging. J Control Release 2001; 74( 1-3): 313– 315
CrossRef
Pubmed
Google scholar
|
[29] |
Devraj B, Meenhard H. Salmonella typhimurium as a novel RNA interference vector for cancer gene therapy. Cancer Biol Ther 2008; 7( 1): 151– 152
CrossRef
Pubmed
Google scholar
|
[30] |
Mei S, Theys J, Landuyt W, Anne J, Lambin P. Optimization of tumor-targeted gene delivery by engineered attenuated Salmonella typhimurium. Anticancer Res 2002; 22( 6A): 3261– 3266
Pubmed
|
[31] |
Bhushan JT, Neil SF. Motility is critical for effective distribution and accumulation of bacteria in tumor tissue. Integr Biol 2012; 4( 2): 165– 167
CrossRef
Pubmed
Google scholar
|
[32] |
Broadway KM, Suh S, Behkam B, Scharf BE. Optimizing the restored chemotactic behavior of anticancer agent Salmonella enterica serovar Typhimurium VNP20009. J Biotechnol 2017; 251 : 76– 83
CrossRef
Pubmed
Google scholar
|
[33] |
Thamm DH, Kurzman ID, King I, Li Z, Sznol M, Dubielzig RR, Vail DM, MacEwen EG. Systemic administration of an attenuated, tumor-targeting Salmonella typhimurium to dogs with spontaneous neoplasia: phase I evaluation. Clin Cancer Res 2005; 11( 13): 4827– 4834
CrossRef
Pubmed
Google scholar
|
/
〈 | 〉 |